Django 2
by Example

By Antonio Melé

Django 2 by Example

Build powerful and reliable Python web applications from scratch

Antonio Melé

Packt

BIRMINGHAM - MUMBAI

Django 2 by Example

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Content Development Editor: Arun Nadar
Technical Editor: Prajakta Mhatre

Copy Editor: Dhanya Baburaj and Safis Editing
Project Coordinator: Sheejal Shah
Proofreader: Safis Editing

Indexer: Rekha Nair

Production Coordinator: Nilesh Mohite

First published: May 2018
Production reference: 1250518
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78847-248-7

www . packtpub.com

http://www.packtpub.com

To my sister

A Mapt

Mapt is an online digital library that gives you full access to over
5,000 books and videos, as well as industry leading tools to help
you plan your personal development and advance your career. For
more information, please visit our website.

mapt.io

https://mapt.io/

Why subscribe?

e Spend less time learning and more time coding with

practical eBooks and Videos from over 4,000 industry
professionals

e Improve your learning with Skill Plans built especially for
you

¢ Get a free eBook or video every month
e Mapt is fully searchable

e Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to
the eBook version at ww.packtrub.com and as a print book customer,
you are entitled to a discount on the eBook copy. Get in touch with
us at service@packtpub.com for more details.

At www.Packtpub.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on Packt books and eBooks.

http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author

Antonio Melé is the CTO of Exo Investing and the founder of
Zenx IT. Antonio has been developing Django projects since 2006
for clients in several industries. He has been working as the CTO
and as a technology consultant for multiple technology-based start-
ups, and he has managed development teams building projects for
large digital businesses. Antonio holds a master's in computer
science from Universidad Pontificia Comillas. His father inspired
his passion for computers and programming.

What this book covers

chapter 1, Building a Blog Application, introduces you to the
framework by creating a blog application. You will create the basic
blog models, views, templates, and URLSs to display blog posts. You
will learn how to build QuerySets with the Django ORM, and you
will configure the Django administration site.

chapter 2, Enhancing Your Blog with Advanced Features, teaches
you how to handle forms and model forms, send emails with
Django, and integrate third-party applications. You will implement
a comment system for your blog posts and allow your users to share
posts via email. The chapter also guides you through the process of
creating a tagging system.

chapter 3, Extending Your Blog Application, explores how to create
custom template tags and filters. The chapter also shows you how to
use the sitemap framework and create an RSS feed for your posts.
You will complete your blog application by building a search engine
with PostgreSQL's full-text search capabilities.

chapter 4, Building a Social Website, explains how to build a social
website. You will use the Django authentication framework to
create user account views. You will learn how to create a custom
user profile model and build social authentication into your project
using major social networks.

chapter 5, Sharing Content in Your Website, teaches you how to
transform your social application into an image bookmarking
website. You will define many-to-many relationships for models,
and you will create an AJAX bookmarklet in JavaScript and
integrate it into your project. The chapter shows you how to
generate image thumbnails and create custom decorators for your

views.

chapter 6, 1racking User Actions, shows you how to build a follower
system for users. You will complete your image bookmarking
website by creating a user activity stream application. You will learn
how to optimize QuerySets, and you will work with signals. You will
integrate Redis into your project to count image views.

chapter 7, Building an Online Shop, explores how to create an online
shop. You will build catalog models, and you will create a shopping
cart using Django sessions. You will build a context processor for
the shopping cart, and you will learn how to implement sending
asynchronous notifications to users using Celery.

chapter 8, Managing Payments and Orders, explains how to
integrate a payment gateway into your shop. You will also
customize the administration site to export orders to CSV files, and
you will generate PDF invoices dynamically.

chapter 9, Extending Your Shop, teaches you how to create a coupon
system to apply discounts to orders. The chapter shows you how to
add internationalization to your project and how to translate
models. You will also build a product recommendation engine using
Redis.

chapter 10, Building an E-Learning Platform, guides you through
creating an e-learning platform. You will add fixtures to your
project, use model inheritance, create custom model fields, use
class-based views, and manage groups and permissions. You will
create a content management system and handle formsets.

chapter 11, Rendering and Caching Content, shows you how to create
a student registration system and manage student enrollment on
courses. You will render diverse course content and you will learn
how to use the cache framework.

chapter 12, Building an API, explores building a RESTful API for your

project using the Django REST framework.

chapter 13, Going Live, shows how to set up a production
environment using uWSGI and NGINX, and how to secure it with
SSL. The chapter explains how to build a custom middleware and
create custom management commands.

About the reviewers

Norbert Maté is a web developer. He started his career back in
2008. His first programming language as a professional web
developer was PHP, then he moved on to JavaScript/Node.js and
Python/Django/Django REST framework. He is passionate about
software architecture, design patterns, and clean code. Norbert was
the reviewer of another Django book Django RESTful Web
Services by Packt Publishing.

I would like to thank my wife for her support.

Packt is searching for authors
like you

If you're interested in becoming an author for Packt, please visit autn
ors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share
their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Title Page
Copyright and Credits

Django 2 by Example

Dedication
Packt Upsell

Why subscribe?

PacktPub.com

Contributors

About the author
About the reviewers

Packt is searching for authors like you
Preface

Who this book is for

What this book covers

To get the most out of this book

Download the example code files

Conventions used

Get in touch

Reviews

1. Building a Blog Application

Installing Django

Creating an isolated Python environment

Installing Django with pip

Creating your first project

Running the development server
Project settings
Projects and applications

Creating an application

Designing the blog data schema

Activating your application

Creating and applying migrations

Creating an administration site for your models

Creating a superuser
The Django administration site
Adding your models to the administration site

Customizing the way models are displayed

Working with QuerySet and managers

Creating objects

Updating objects
Retrieving objects

Using the filter() method
Using exclude()

Using order_by()

Deleting objects
When QuerySets are evaluated

Creating model managers

Building list and detail views

Creating list and detail views
Adding URL patterns for your views

Canonical URLs for models

Creating templates for your views
Adding pagination

Using class-based views

Summary

2. Enhancing Your Blog with Advanced Features

Sharing posts by email

Creating forms with Django

Handling forms in views
Sending emails with Django

Rendering forms in templates

Creating a comment system

Creating forms from models
Handling ModelForms in views

Adding comments to the post detail template

Adding the tagging functionality
Retrieving posts by similarity

Summary

3. Extending Your Blog Application

Creating custom template tags and filters

Creating custom template tags

Creating custom template filters

Adding a sitemap to your site

Creating feeds for your blog posts
Adding full-text search to your blog

Installing PostgreSQL
Simple search lookups
Searching against multiple fields

Building a search view

Stemming and ranking results
Weighting queries
Searching with trigram similarity

Other full-text search engines

Summary

4. Building a Social Website

Creating a social website project
Starting your social website project
Using the Django authentication framework
Creating a login view
Using Django authentication views
Login and logout views
Changing password views

Resetting password views

User registration and user profiles

User registration

Extending the user model

Using a custom user model

Using the messages framework

Building a custom authentication backend

Adding social authentication to your site

Authentication using Facebook
Authentication using Twitter

Authentication using Google

Summary

5. sharing Content in Your Website

Creating an image bookmarking website

Building the image model
Creating many-to-many relationships

Registering the image model in the administration site

Posting content from other websites

Cleaning form fields
Overriding the save() method of a ModelForm

Building a bookmarklet with jQuery

Creating a detail view for images

Creating image thumbnails using sorl-thumbnail

Adding AJAX actions with jQuery

Loading jQuery
Cross-Site Request Forgery in AJAX requests

Performing AJAX requests with jQuery

Creating custom decorators for your views
Adding AJAX pagination to your list views

Summary

6. Tracking User Actions

Building a follower system

Creating many-to-many relationships with an intermediary
model
Creating list and detail views for user profiles

Building an AJAX view to follow users

Building a generic activity stream application

Using the contenttypes framework

Adding generic relations to your models

Avoiding duplicate actions in the activity stream
Adding user actions to the activity stream

Displaying the activity stream

Optimizing QuerySets that involve related objects

Using select_related()

Using prefetch_related()

Creating templates for actions

Using signals for denormalizing counts

Working with signals

Application configuration classes

Using Redis for storing item views

Installing Redis

Using Redis with Python
Storing item views in Redis
Storing a ranking in Redis

Next steps with Redis

Summary

7. Building an Online Shop

Creating an online shop project

Creating product catalog models
Registering catalog models on the admin site
Building catalog views

Creating catalog templates

Building a shopping cart

Using Django sessions
Session settings
Session expiration

Storing shopping carts in sessions

Creating shopping cart views

Adding items to the cart

Building a template to display the cart
Adding products to the cart

Updating product quantities in the cart

Creating a context processor for the current cart

Context processors

Setting the cart into the request context

Registering customer orders

Creating order models
Including order models in the administration site

Creating customer orders

Launching asynchronous tasks with Celery

Installing Celery

Installing RabbitMQ

Adding Celery to your project

Adding asynchronous tasks to your application

Monitoring Celery

Summary

8. Managing Payments and Orders

Integrating a payment gateway

Creating a Braintree sandbox account

Installing the Braintree Python module
Integrating the payment gateway

Integrating Braintree using Hosted Fields

Testing payments

Going live

Exporting orders to CSV files

Adding custom actions to the administration site

Extending the admin site with custom views

Generating PDF invoices dynamically

Installing WeasyPrint
Creating a PDF template
Rendering PDF files

Sending PDF files by email

Summary

O. Extending Your Shop

Creating a coupon system

Building the coupon models

Applying a coupon to the shopping cart

Applying coupons to orders

Adding internationalization and localization

Internationalization with Django

Internationalization and localization settings
Internationalization management commands
How to add translations to a Django project

How Django determines the current language

Preparing our project for internationalization

Translating Python code

Standard translations

Lazy translations

Translations including variables
Plural forms in translations

Translating your own code

Translating templates

The {% trans %} template tag
The {% blocktrans %} template tag

Translating the shop templates

Using the Rosetta translation interface

Fuzzy translations

URL patterns for internationalization

Adding a language prefix to URL patterns

Translating URL patterns

Allowing users to switch language

Translating models with django-parler
Installing django-parler
Translating model fields
Integrating translations in the administration
site
Creating migrations for model translations

Adapting views for translations

Format localization

Using django-localflavor to validate form fields

Building a recommendation engine

Recommending products based on previous purchases

Summary

10. Building an E-Learning Platform

Setting up the e-learning project

Building the course models

Registering the models in the administration site

Using fixtures to provide initial data for models

Creating models for diverse content

Using model inheritance

Abstract models
Multi-table model inheritance

Proxy models

Creating the content models
Creating custom model fields

Adding ordering to module and content objects

Creating a CMS

Adding an authentication system
Creating the authentication templates
Creating class-based views

Using mixins for class-based views

Working with groups and permissions

Restricting access to class-based views

Managing course modules and content

Using formsets for course modules
Adding content to course modules

Managing modules and contents

Reordering modules and contents

Using mixins from django-braces

Summary

11. Rendering and Caching Content

Displaying courses

Adding student registration

Creating a student registration view

Enrolling in courses

Accessing the course contents

Rendering different types of content

Using the cache framework

Available cache backends

Installing Memcached

Cache settings

Adding Memcached to your project

Monitoring Memcached

Cache levels

Using the low-level cache API

Caching based on dynamic data

Caching template fragments

Caching views

Using the per-site cache

Summary

12. Building an API

Building a RESTful API

Installing Django REST framework
Defining serializers

Understanding parsers and renderers
Building list and detail views
Creating nested serializers
Building custom views

Handling authentication

Adding permissions to views
Creating view sets and routers
Adding additional actions to view sets
Creating custom permissions

Serializing course contents

Summary

13. Going Live

Creating a production environment

Managing settings for multiple environments

Using PostgresSQL

Checking your project
Serving Django through WSGI
Installing uWSGI
Configuring uWSGI
Installing NGINX

The production environment
Configuring NGINX

Serving static and media assets

Securing connections with SSL

Creating an SSL certificate
Configuring NGINX to use SSL

Configuring our project for SSL

Creating a custom middleware

Creating a subdomain middleware

Serving multiple subdomains with NGINX

Implementing custom management commands

Summary

Other Books You May Enjoy

Leave a review - let other readers know what you think

Preface

Django is a powerful Python web framework that encourages rapid
development and clean, pragmatic design, offering a relatively
shallow learning curve. This makes it attractive to both novice and
expert programmers.

This book will guide you through the entire process of developing
professional web applications with Django. The book not only
covers the most relevant aspects of the framework, but also teaches
you how to integrate other popular technologies into your Django
projects.

The book will walk you through the creation of real-world
applications, solving common problems, and implementing best
practices with a step-by-step approach that is easy to follow.

After reading this book, you will have a good understanding of how
Django works and how to build practical, advanced web
applications.

Who this book is for

This book is intended for developers with Python knowledge who
wish to learn Django in a pragmatic way. Perhaps you are
completely new to Django, or you already know a little but you want
to get the most out of it. This book will help you master the most
relevant areas of the framework by building practical projects from
scratch. You need to have familiarity with programming concepts in
order to read this book. Some previous knowledge of HTML and
JavaScript is assumed.

To get the most out of this
book

To get the most out of this book, it is recommended that you have
good working knowledge of Python. You should also be comfortable
with HTML and JavaScript. Before reading this book, it is
recommended that you read parts 1 to 3 of the

official Django documentation tutorial at https://docs.djangoproject.com/e
n/2.0/intro/tutorialel/.

https://docs.djangoproject.com/en/2.0/intro/tutorial01/

Download the example code
files

You can download the example code files for this book from your
account at www.packtpub.com. If you purchased this book elsewhere, you
can visit www. packtpub.com/support and register to have the files emailed

directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.

Select the SUPPORT tab.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the

onscreen instructions.

S W nhp R

Once the file is downloaded, please make sure that you unzip or
extract the folder using the latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux
The code bundle for the book is also hosted on GitHub at nttps://githu

b.com/PacktPublishing/Django-2-by-Example. In case there's an update to the
code, it will be updated on the existing GitHub repository.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Django-2-by-Example

We also have other code bundles from our rich catalog of books and
videos available at https://github.com/PacktPublishing/. Check them out!

https://github.com/PacktPublishing/

Conventions used

There are a number of text conventions used throughout this book.

codeInText: INndicates code words in text, database table names, folder
names, filenames, file extensions, pathnames, dummy URLs, user
input, and Twitter handles. Here is an example: "You can deactivate
your environment at any time with the dgeactivate command."

A block of code is set as follows:

from django.contrib import admin
from .models import Post

admin.site.register(Post)

When we wish to draw your attention to a particular part of a code
block, the relevant lines or items are set in bold:

INSTALLED_APPS = [
'django.contrib.admin"',
'django.contrib.auth’',
'django.contrib.contenttypes’',
'django.contrib.sessions',
'django.contrib.messages’,
'django.contrib.staticfiles’,
'blog.apps.BlogConfig',

Any command-line input or output is written as follows:

$ python manage.py startapp blog

Bold: Indicates a new term, an important word, or words that you

see onscreen. For example, words in menus or dialog boxes appear
in the text like this. Here is an example: "Fill in the form and click
on the SAVE button."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedbackapacktpub.com and mention the book
title in the subject of your message. If you have questions about any
aspect of this bOOk, please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy
of our content, mistakes do happen. If you have found a mistake in
this book, we would be grateful if you would report this to us. Please
VISIt www. packtpub.com/submit-errata, selecting your bOOk, clicking on the
Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any
form on the Internet, we would be grateful if you would provide us
with the location address or website name. Please contact us at
copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a
topic that you have expertise in and you are interested in either
ertlng or contributing toa bOOk, please ViSit authors. packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews

Please leave a review. Once you have read and used this book, why
not leave a review on the site that you purchased it from? Potential
readers can then see and use your unbiased opinion to make
purchase decisions, we at Packt can understand what you think
about our products, and our authors can see your feedback on their
book. Thank you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/

Building a Blog Application

In this book, you will learn how to build complete Django projects,
ready for production use. In case you haven't installed Django yet,
you will learn how to do it in the first part of this chapter. This
chapter covers how to create a simple blog application using
Django. The purpose of this chapter is to get a general idea of how
the framework works, understand how the different components
interact with each other, and provide you with the skills to easily
create Django projects with a basic functionality. You will be guided
through the creation of a complete project without elaborating upon
all the details. The different framework components will be covered
in detail throughout this book.

This chapter will cover the following topics:

¢ Installing Django and creating your first project

¢ Designing models and generating model migrations
¢ Creating an administration site for your models

e Working with QuerySet and managers

e Building views, templates, and URLSs

¢ Adding pagination to list views

e Using Django's class-based views

Installing Django

If you have already installed Django, you can skip this section and
jump directly to the Creating your first project section. Django
comes as a Python package and thus can be installed in any Python
environment. If you haven't installed Django yet, the following is a
quick guide to install Django for local development.

Django 2.0 requires Python version 3.4 or higher. In the examples
for this book, we will use Python 3.6.5. If you're using Linux or
macOS X, you probably have Python installed. If you are using
Windows, you can download a Python installer at nttps://www.python.org

/downloads/windows/.

If you are not sure whether Python is installed on your computer,
you can verify it by typing python in the shell. If you see something
like the following, then Python is installed on your computer:

Python 3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018, 03:03:55)

[6CC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

If your installed Python version is lower than 3.4, or if Python is not
installed on your computer, download Python 3.6.5 from nttps: //www.p
ython.org/downloads/ and install it.

Since you will use Python 3, you don't have to install a database.
This Python version comes with a built-in SQLite database. SQLite
is a lightweight database that you can use with Django for
development. If you plan to deploy your application in a production
environment, you should use an advanced database, such as
PostgreSQL, MySQL, or Oracle. You can get more information

https://www.python.org/downloads/windows/
https://www.python.org/downloads/
http://www.python.org/download/

about how to get your database running with Django

at https://docs.djangoproject.com/en/2.0/topics/install/#database-installation.

https://docs.djangoproject.com/en/2.0/topics/install/#database-installation

Creating an isolated Python
environment

It is recommended that you use virtualenv to create isolated Python
environments, so that you can use different package versions for
different projects, which is far more practical than installing Python
packages system-wide. Another advantage of using virtualenv is that
you won't need any administration privileges to install Python
packages. Run the following command in your shell to install

virtualenv.

pip install virtualenv

After you install virtualenv, create an isolated environment with the
following command:

virtualenv my_env

This will create a my_env/ directory, including your Python
environment. Any Python libraries you install while your virtual
environment is active will g0 into the my_env/1ib/python3.6/site-packages
directory.

If your system comes with Python 2.X and you have installed Python 3.X,
you have to tell virtuaienv to use the latter.

You can locate the path where Python 3 is installed and use it to
create the virtual environment with the following commands:

zenx$ which python3
/Library/Frameworks/Python. framework/Versions/3.6/bin/python3
zenx$ virtualenv my_env -p

/Library/Frameworks/Python. framework/Versions/3.6/bin/python3

Run the following command to activate your virtual environment:

source my_env/bin/activate

The shell prompt will include the name of the active virtual
environment enclosed in parentheses, as follows:

(my_env)laptop:~ zenx$

You can deactivate your environment at any time with the dgeactivate
command.

You can find more information about virtualenv at

https://virtualenv.pypa.io/en/latest/.

On tOp of virtualenv, YOU Call USE virtualenvwrapper. This tool provides
wrappers that make it easier to create and manage your virtual
environments. You can download it from https://virtualenvwrapper.readth

edocs.io/en/latest/.

https://virtualenv.pypa.io/en/latest/
https://virtualenvwrapper.readthedocs.io/en/latest/

Installing Django with pip

The pip package management system is the preferred method for
installing Django. Python 3.6 comes with pip preinstalled, but you
can find pip installation instructions at
https://pip.pypa.io/en/stable/installing/.

Run the following command at the shell prompt to install Django
with pip.

pip install Django==2.0.5

Django will be installed in the Python site-packages/ directory of your
virtual environment.

Now, check whether Django has been successfully installed. Run
python ON & terminal, import Django, and check its version, as
follows:

>>> import django
>>> django.get_version()
'2.0.5"'

If you get the preceding output, Django has been successfully
installed on your machine.

Django can be installed in several other ways. You can find a complete
installation guide Qt nttps://docs.djangoproject.com/en/2.0/topics/install/.

https://pip.pypa.io/en/stable/installing/
https://docs.djangoproject.com/en/2.0/topics/install/

Creating your first project

Our first Django project will be building a complete blog. Django
provides a command that allows you to create an initial project file
structure. Run the following command from your shell:

django-admin startproject mysite

This will create a Django project with the name mysite.

Avoid naming projects after built-in Python or Django modules in order to
avoid conflicts.

Let's take a look at the project structure generated:

mysite/
manage.py
mysite/
__init__ .py
settings.py
urls.py
wsgi.py

These files are as follows:

® nanage.py: This is a command-line utility used to interact with
your project. It is a thin wrapper around the django-admin.py
tool. You don't need to edit this file.

e mysite/: This is your project directory, which consists of the
following files:

e _init_.py: An empty file that tells Python to treat the

nysite directory as a Python module.

e settings.py: This indicates settings and configuration
for your project and contains initial default settings.

e uris.py: This is the place where your URL patterns
live. Each URL defined here is mapped to a view.

® usgi.py: This is the configuration to run your project
as a Web Server Gateway
Interface (WSGI) application.

The generated settings.py file contains the project settings, including
a basic configuration to use an SQLite 3 database and a list

named 1staLLep_apps, Which contains common Django

applications that are added to your project by default. We will go
through these applications later in the Project settings section.

To complete the project setup, we will need to create the tables in
the database required by the applications listed
in mstaLLeo_apes. Open the shell and run the following commands:

cd mysite
python manage.py migrate

You will note an output that ends with the following lines:

Applying contenttypes.0001_initial... OK

Applying auth.0001_initial... OK

Applying admin.0001_initial... OK

Applying admin.0002_logentry_remove_auto_add... OK
Applying contenttypes.0002_remove_content_type_name... OK
Applying auth.0002_alter_permission_name_max_length... OK
Applying auth.0003_alter_user_email max_length... OK
Applying auth.0004_alter_user_username_opts... OK
Applying auth.0005_alter_user_last_login_null... OK
Applying auth.0006_require_contenttypes_0002... OK
Applying auth.0007_alter_validators_add_error_messages... OK

Applying auth.0008_alter_user_username_max_length... OK
Applying auth.0009_alter_user_last_name_max_length... OK
Applying sessions.0001 initial... OK

The preceding lines are the database migrations that are applied by
Django. By applying migrations, the tables for the initial
applications are created in the database. You will learn about the
migrate management command in the Creating and applying
migrations section of this chapter.

Running the development
server

Django comes with a lightweight web server to run your code
quickly, without needing to spend time configuring a production
server. When you run the Django development server, it keeps
checking for changes in your code. It reloads automatically, freeing
you from manually reloading it after code changes. However, it
might not notice some actions, such as adding new files to your
project, so you will have to restart the server manually in these
cases.

Start the development server by typing the following command
from your project's root folder:

python manage.py runserver

You should see something like this:

Performing system checks. ..

System check identified no issues (0 silenced).

May 06, 2018 - 17:17:31

Django version 2.0.5, using settings 'mysite.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Now, open nttp://127.0.0.1:8000/ in your browser. You should see a
page stating that the project is successfully running, as shown in the
following screenshot:

000 () [70018000 ¢ b g

django View release notes forDjango 2.0

The Install worked successtully! Congratulations

You are seeing this page because DEBUG=Trugis n
your settingsfle and you have not confgured any
URLS,

() Djengo Documentaton ¢y Ttorl A Pollng App u Django Community
"~/ Topicsreferences, & how-tos et started with Djgngo Connect, get hel,or contrbute

The preceding screenshot indicates that Django is running. If you
take a look at your console, you will see the cet request performed
by your browser:

[06/May/2018 17:20:30] "GET / HTTP/1.1" 200 16348

Each HTTP request is logged in the console by the development
server. Any error that occurs while running the development server
will also appear in the console.

You can indicate Django to run the development server on a custom
host and port or tell it to run your project, loading a different
settings file, as follows:

python manage.py runserver 127.0.0.1:8001 \
--settings=mysite.settings

When you have to deal with multiple environments that require different
configurations, you can create a different settings file for each environment.

Remember that this server is only intended for development and is
not suitable for production use. In order to deploy Django in a
production environment, you should run it as a WSGI application
using a real web server, such as Apache, Gunicorn, or uWSGI. You
can find more information on how to deploy Django with different
web servers at https://docs.djangoproject.com/en/2.0/howto/deployment/wsgi/.

chapter 13, Going Live, explains how to set up a production
environment for your Django projects.

https://docs.djangoproject.com/en/2.0/howto/deployment/wsgi/

Project settings

Let's open the settings.py file and take a look at the configuration of
our project. There are several settings that Django includes in this
file, but these are only a part of all the Django settings available.
You can see all settings and their default values in
https://docs.djangoproject.com/en/2.0/ref/settings/.

The following settings are worth looking at:

e pesuc IS a boolean that turns the debug mode of the project on
and off. If it is set to true, Django will display detailed error
pages when an uncaught exception is thrown by your
application. When you move to a production environment,
remember that you have to set it to raise. Never deploy a site
into production with oesus turned on because you will expose
sensitive project-related data.

e aLLowep_wosTs is not applied while debug mode is on, or when
the tests are run. Once you move your site to production and
set pesuc tO rFaise, you will have to add your domain/host to
this setting in order to allow it to serve your Django site.

e 1nsTALLED_APPs 1S @ setting you will have to edit for all projects.
This setting tells Django which applications are active for
this site. By default, Django includes the following
applications:

® django.contrib.admin: An administration site

https://docs.djangoproject.com/en/2.0/ref/settings/

® django.contrib.auth: An authentication framework

® django.contrib.contenttypes. A framework for handling
content types

® django.contrib.sessions: A session framework
® django.contrib.messages. A messaging framework

® django.contrib.staticfiles: A framework for managing
static files

e wmrooLeware 1S a list that contains middleware to be executed.

e root_urLconr indicates the Python module where the root URL
patterns of your application are defined.

e patasases 1S a dictionary that contains the settings for all the
databases to be used in the project. There must always be a
default database. The default configuration uses an SQLite3
database.

o ancuace_cope defines the default language code for this Django
site.

o use_1z tells Django to activate/deactivate timezone support.
Django comes with support for timezone-aware
datetime. This setting is set to True when you create a new
project using the startproject management command.

Don't worry if you don't understand much about what you are
seeing. You will learn the different Django settings in the following
chapters.

Projects and applications

Throughout this book, you will encounter the terms project and
application over and over. In Django, a project is considered a
Django installation with some settings. An application is a group of
models, views, templates, and URLs. Applications interact with the
framework to provide some specific functionalities and may be
reused in various projects. You can think of the project as your
website, which contains several applications such as a blog, wiki, or
forum, that can be used by other projects also.

Creating an application

Now, let's create our first Django application. We will create a blog
application from scratch. From the project's root directory, run the
following command:

python manage.py startapp blog

This will create the basic structure of the application, which looks
like this:

blog/
__init__ .py
admin.py
apps.py
migrations/
__init__.py

models.py
tests.py
views.py

These files are as follows:

e adnin.py: This is where you register models to include them in
the Django administration site—using the Django admin site
is optional.

® apps.py: This includes the main configuration of the biog
application.

e nigrations: This directory will contain database migrations of
your application. Migrations allow Django to track your
model changes and synchronize the database accordingly.

e nodels.py: Data models of your application—all Django
applications need to have a mode1s.py file, but this file can be
left empty.

e tests.py: This is where you can add tests for your application.

e views.py: The logic of your application goes here; each view
receives an HTTP request, processes it, and returns a
response.

Designing the blog data
schema

We will start designing our blog data schema by defining the data
models for our blog. A model is a Python class that subclasses
django.db.models.Model, iN Which each attribute represents a database
field. Django will create a table for each model defined in the
models.py file. When you create a model, Django provides you with a
practical API to query objects in the database easily.

First, we will define a rost model. Add the following lines to the
models.py file of the blog application:

from django.db import models
from django.utils import timezone
from django.contrib.auth.models import User

class Post(models.Model):
STATUS_CHOICES = (
('draft', 'Draft'),
('"published', 'Published'),
)
title = models.CharField(max_length=250)
slug = models.SlugField(max_length=250,
unique_for_date="'publish')
author = models.ForeignKey(User,
on_delete=models.CASCADE,
related_name='blog_posts')
body = models.TextField()
publish = models.DateTimeField(default=timezone.now)
created = models.DateTimeField(auto_now_add=True)
updated = models.DateTimeField(auto_now=True)
status = models.CharField(max_length=10,
choices=STATUS_CHOICES,
default='draft"')

class Meta:
ordering = ('-publish',)

def __str_ (self):
return self.title

This is our data model for blog posts. Let's take a look at the fields
we just defined for this model:

e title: This is the field for the post title. This field is charrie1d,
which translates into a varciar column in the SQL database.

e s1ug: This is a field intended to be used in URLs. A slug is a
short label that contains only letters, numbers, underscores,
or hyphens. We will use the s1ug field to build beautiful, SEO-
friendly URLSs for our blog posts. We have added the
unique_for_date parameter to this field so that we can build
URLSs for posts using their publish date and s1ug. Django will
prevent multiple posts from having the same siug for a
given date.

e author: This field is a foreign key. It defines a many-to-one
relationship. We are telling Django that each post is written
by a user, and a user can write any number of posts. For this
field, Django will create a foreign key in the database using
the primary key of the related model. In this case, we are
relying on the user model of the Django authentication
system. The on_delete parameter specifies the behavior to
adopt when the referenced object is deleted. This is not
specific to Django; it is an SQL standard. Using cascabe, we
specify that when the referenced user is deleted, the
database will also delete its related blog posts. You can take
a look at all possible options at nttps://docs.djangoproject.com/en/2.

0/ref/models/fields/#django.db.models.ForeignKey.on_delete. We specify

https://docs.djangoproject.com/en/2.0/ref/models/fields/#django.db.models.ForeignKey.on_delete

the name of the reverse relationship, from user to post, with
the related name attribute. This will allow us to access related
objects easily. We will learn more about this later.

¢ nody: This is the body of the post. This field is a text field,
which translates into a texr column in the SQL database.

e pnublish: This datetime indicates when the post was published.
We use Django's timezone now method as the default value.
This returns the current datetime in a timezone-aware
format. You can think of it as a timezone-aware version of
the standard Python datetine.now method.

e created: This datetime indicates when the post was created.
Since we are using auto_now_add here, the date will be saved
automatically when creating an object.

e updated: This datetime indicates the last time the post was
updated. Since we are using auto_now here, the date will be
updated automatically when saving an object.

e status: This field shows the status of a post. We use a choices
parameter, so the value of this field can only be set to one of
the given choices.

Django comes with different types of fields that you can use to
define your models. You can find all field types
at https://docs.djangoproject.com/en/2.0/ref/models/fields/.

The weta class inside the model contains metadata. We tell Django to
sort results in the pubiish field in descending order by default when
we query the database. We specify descending order using the
negative prefix. By doing so, posts published recently will appear
first.

https://docs.djangoproject.com/en/2.0/ref/models/fields/

The _str_ () method is the default human-readable representation
of the object. Django will use it in many places, such as the
administration site.

If you come from using Python 2.X, note that in Python 3, all strings are
natively considered Unicode, and therefore, we only use the __str_ () method.
The __unicode__() method is obsolete.

Activating your application

In order for Django to keep track of our application and be able to
create database tables for its models, we have to activate it. To do
thiS, edit the settings.py file and add blog.apps.BlogConfig tO the
nstaLLep_apps Setting. It should look like this:

INSTALLED_APPS = [
'django.
'django.
'django.
'django.
'django.
'django.
'blog.apps.BlogConfig',

contrib.
contrib.
contrib.
contrib.

contrib

contrib.

admin',

auth',
contenttypes',
sessions',

.messages',

staticfiles’',

The s1ogcontig class is your application configuration. Now Django
knows that our application is active for this project and will be able

to load its models.

Creating and applying
migrations

Now that we have a data model for our blog posts, we will need a
database table for it. Django comes with a migration system

that tracks the changes done to models and allows to propagate
them into the database. The migrate command applies migrations for
all applications listed in 1nstaLLep_apps; it synchronizes the database
with the current models and existing migrations.

First, you will need to create an initial migration for our rost model.
In the root directory of your project, run the following command:

python manage.py makemigrations blog
You should get the following output:

Migrations for 'blog':
blog/migrations/0001_initial.py
- Create model Post

Django just created the 0001 _initial.py file inside the migrations
directory of the b1og application. You can open that file to see how a
migration appears. A migration specifies dependencies on other
migrations and operations to perform in the database to
synchronize it with model changes.

Let's take a look at the SQL code that Django will execute in the
database to create the table for our model. The sqimigrate command
takes migration names and returns their SQL without executing it.
Run the following command to inspect the SQL output of our first
migration:

python manage.py sqlmigrate blog 0001
The output should look as follows:

BEGIN;

-- Create model Post

CREATE TABLE "blog_post" ("id" integer NOT NULL PRIMARY KEY AUTOINCREMENT,
"title" varchar(250) NOT NULL, "slug" varchar(250) NOT NULL, "body" text NOT
NULL, "publish" datetime NOT NULL, "created" datetime NOT NULL, "updated"
datetime NOT NULL, "status" varchar(10) NOT NULL, "author_id" integer NOT
NULL REFERENCES "auth_user" ("id"));

CREATE INDEX "blog post_slug b95473f2" ON "blog post" ("slug");

CREATE INDEX "blog post_author_id_dd7a8485" ON "blog post" ("author_id");
COMMIT;

The exact output depends on the database you are using. The
preceding output is generated for SQLite. As you can see in the
preceding output, Django generates the table names by combining
the app name and the lowercase name of the model (b10g_post), but
you can also specify a custom database name for your model in the
veta class of the model using the db_tanie attribute. Django creates a
primary key automatically for each model, but you can also override
this by specifying primary_key=True in one of your model fields. The
default primary key is an i¢ column, which consists of an integer
that is incremented automatically. This column corresponds to
the id field that is automatically added to your models.

Let's sync our database with the new model. Run the following
command to apply existing migrations:

python manage.py migrate

You will get an output that ends with the following line:

Applying blog.0001_initial... OK

We just applied migrations for the applications listed in
INSTALLED_APPS, including Our blog application. After applying
migrations, the database reflects the current status of our models.

If you edit your mode1s.py file in order to add, remove, or change fields
of existing models, or if you add new models, you will have to

create a new migration using the makemigrations command. The
migration will allow Django to keep track of model changes. Then,
you will have to apply it with the nigrate command to keep the
database in sync with your models.

Creating an administration site
for your models

Now that we have defined the rost model, we will create a simple
administration site to manage your blog posts. Django comes with a
built-in administration interface that is very useful for editing
content. The Django admin site is built dynamically by reading your
model metadata and providing a production-ready interface for
editing content. You can use it out of the box, configuring how you
want your models to be displayed in it.

The django.contrib.admin application is already included in the
nsTALLED_aPps Setting, so we don't need to add it.

Creating a superuser

First, we will need to create a user to manage the administration
site. Run the following command:

python manage.py createsuperuser

You will see the following output; enter your desired username,
email, and password, as follows:

Username (leave blank to use 'admin'): admin
Email address: admin@admin.com

Password- khkkkkkk*

Password (again): *****%%*

Superuser created successfully.

The Django administration site

NOW, start the developrnent server with the python manage.py

runserver command and open nttp://127.0.0.1:8000/admin/ in your browser.
You should see the administration login page, as shown in the
following screenshot:

W00 () [000 ey

Denoatmmstaion

Usemame

Password

Log in using the credentials of the user you created in the preceding
step. You will see the admin site index page, as shown in the
following screenshot:

Django administration WELCOME, ADMIN. VIEW SITE / CHANGE PASSWORD / LOG OUT
Site administration
.
Recent actions
Groups +Add ¢ Change
Users +Add ¢ Change My actions

None available

The sroup and uvser models you see in the preceding screenshot are
part of the Django authentication framework located in
django.contrib.auth. If you click on Users, you will see the user you
created previously. The rost model of your b10g application has a

relationship with this user model. Remember that it is a relationship
defined by the author field.

Adding your models to the
administration site

Let's add your blog models to the administration site. Edit the
admin.py file of your b1og application and make it look like this:

from django.contrib import admin
from .models import Post

admin.site.register(Post)

Now, reload the admin site in your browser. You should see your
rost model on the admin site, as follows:

DJ ango administration WELCOME, ADMIN. VIEW SITE / CHANGE PASSWORD / LOG OUT
Site administration
AUTHENTICATION AND AUTHORIZATION .
Recent actions
Groups +Add ¢ Change
Users +Add ¢ Change My actions
None available
Posts +Add ¢ Change

That was easy, right? When you register a model in the Django
admin site, you get a user-friendly interface generated by

introspecting your models that allows you to list, edit, create, and
delete objects in a simple way.

Click on the Add link beside Posts to add a new post. You will note
the create form that Django has generated dynamically for your
model, as shown in the following screenshot:

Django administration WELCOME, ADMIN, VIEW SITE / CHANGE PASSWORD / LOG OUT

Home > Blog » Posts » Add post

Add post
Title:
Slug:

Author 0 e A &

Body.

Z

Publish: Date: 2017-12-14 Today £

Time: 08:5424 Now| ()

Status: Draft L

Save and add another | Save and continue editing [SAVE

Django uses different form widgets for each type of field. Even
complex fields, such as patetinerie1d, are displayed with an easy
interface, such as a JavaScript date picker.

Fill in the form and click on the SAVE button. You should be
redirected to the post list page with a successful message and the
post you just created, as shown in the following screenshot:

Django administration WELCOVE, ADMIN VIEW I CHANGE PASSHORD/ L0G 0UT

Home) Blog» Psts

() The ost "o was Django Reher” wasadded sucessuly

oot ost o crang

e o 6o Oof T selecte

o

~ WhowasDjango Renhardt?

T post

Customizing the way models
are displayed

Now, we will take a look at how to customize the admin site. Edit
the admin.py file of your blog application and change it, as follows:

from django.contrib import admin
from .models import Post

@admin.register(Post)
class PostAdmin(admin.ModelAdmin):
list_display = ('title', 'slug', 'author', 'publish',
'status')

We are telling the Django admin site that our model is registered in
the admin site using a custom class that inherits from wmode1admin. In
this class, we can include information about how to display the
model in the admin site and how to interact with it. The 1ist_display
attribute allows you to set the fields of your model that you want to
display in the admin object list page. The @admin.register() decorator
performs the same function as the admin.site.register() function we
have replaced, registering the mode1admin class that it decorates.

Let's customize the admin model with some more options, using the
following code:

@admin.register(Post)
class PostAdmin(admin.ModelAdmin):
list_display = ('title', 'slug', 'author', 'publish',
'status')
list_filter = ('status', 'created', 'publish', 'author')
search_fields = ('title', 'body')
prepopulated_fields = {'slug': ('title',)}
raw_id_fields = ('author',)
date_hierarchy = 'publish'

ordering = ('status', 'publish')

Return to your browser and reload the post list page. Now, it will
look like this:

DJ ango adminstration WELCONE ADMIN VEW STE CHANGE PASSHORD 1 L0G OLT

Home) Blog Posts

Selectposttochange

Q Seatch

017 December 14

Wiy eeeeeee vl 60 Oof selected

" Tme $LUG AUTHOR PUBLISH 24 S5 1a

* Whowas DjngoReimherd? ~~ who-was-ango-reinberdt admin Dec.14 2017 8%am. Dret

1 post

FILTER

By status

Al
Orat
Published

By created

Any date
Today
Past T days
This month
This year

By publish

Any dae
Today
Past 7 days
This month
Thisyear

You can see that the fields displayed on the post list page are the
ones you specified in the 1ist_disp1iay attribute. The list page now
includes a right sidebar that allows you to filter the results by the
fields included in the 1ist_riiter attribute. A Search bar has appeared
on the page. This is because we have defined a list of searchable
fields using the search_rie1ds attribute. Just below the Search bar,
there are navigation links to navigate through a date hierarchy: this
has been defined by the date_nierarcny attribute. You can also see that
the posts are ordered by Status and Publish columns by default. We
have specified the default order using the ordering attribute.

Now, click on the Add Post link. You will also note some changes
here. As you type the title of a new post, the siug field is filled in
automatically. We have told Django to prepopulate the siug field
with the input of the titie field using the prepopuiated_rieids attribute.
Also, now, the author field is displayed with a lookup widget that can
scale much better than a drop-down select input when you have
thousands of users, as shown in the following screenshot:

Author. 1 Q

With a few lines of code, we have customized the way our model is
displayed on the admin site. There are plenty of ways to customize
and extend the Django administration site. You will learn more
about this later in this book.

Working with QuerySet and
managers

Now that you have a fully functional administration site to manage
your blog's content, it's time to learn how to retrieve information
from the database and interact with it. Django comes with a
powerful database abstraction API that lets you create, retrieve,
update, and delete objects easily. The Django Object-relational
mapper is compatible with MySQL, PostgreSQL, SQLite, and
Oracle. Remember that you can define the database of your project
in the patasases setting of your project's settings.py file. Django can
work with multiple databases at a time, and you can program
database routers to create custom routing schemes.

Once you have created your data models, Django gives you a free
API to interact with them. You can find the data model reference of
the official documentation at
https://docs.djangoproject.com/en/2.0/ref/models/.

https://docs.djangoproject.com/en/2.0/ref/models/

Creating objects

Open the terminal and run the following command to open the
Python shell:

python manage.py shell

Then, type the following lines:

>>> from django.contrib.auth.models import User
>>> from blog.models import Post
>>> user = User.objects.get(username='admin')
>>> post Post(title='Another post',
slug="'another-post',
body='Post body."',
author=user)
>>> post.save()

Let's analyze what this code does. First, we will retrieve the user
object with the username adnin:

user = User.objects.get(username="admin')

The get() method allows you to retrieve a single object from the
database. Note that this method expects a result that matches the
query. If no results are returned by the database, this method will
raise a poesNotexist €xception, and if the database returns more than
one result, it will raise a muitipieobjectsreturned €xception. Both
exceptions are attributes of the model class that the query is being
performed on.

Then, we create a rost instance with a custom title, slug, and body,
and we set the user we previously retrieved as the author of the

post:

post = Post(title='Another post', slug='another-post', body='Post body.',
author=user)

This object is in memory and is not persisted to the database.

Finally, we save the rost object to the database using the save()
method:

post.save()

The preceding action performs an iserr SQL statement behind the
scenes. We have seen how to create an object in memory first and
then persist it to the database, but we can also create the object and
persist it into the database in a single operation using the create()
method, as follows:

Post.objects.create(title='0ne more post', slug='one-more-post', body='Post
body.', author=user)

Updating objects

Now, change the title of the post to something different and save the
object again:

>>> post.title = 'New title'
>>> post.save()

This time, the save() method performs an veoate SQL statement.

The changes you make to the object are not persisted to the database until
you call the save() method.

Retrieving objects

The Django object-relational mapping (ORM) is based on
QuerySets. A QuerySet is a collection of objects from your database
that can have several filters to limit the results. You already know
how to retrieve a single object from the database using the get()
method. We have accessed this method using post.objects.get (). Each
Django model has at least one manager, and the default manager is
called objects. You get a queryset object using your model manager.
To retrieve all objects from a table, you just use the a11() method on
the default objects manager, like this:

>>> all posts = Post.objects.all()

This is how we create a QuerySet that returns all objects in the
database. Note that this QuerySet has not been executed yet.
Django QuerySets are lazy; they are only evaluated when they are
forced to. This behavior makes QuerySets very efficient. If we don't
set the QuerySet to a variable, but instead write it directly on the
Python shell, the SQL statement of the QuerySet is executed
because we force it to output results:

>>> Post.objects.all()

Using the filter() method

To filter a QuerySet, you can use the riiter() method of the manager.
For example, we can retrieve all posts published in the year 2017
using the following QuerySet:

Post.objects.filter(publish__year=2017)

You can also filter by multiple fields. For example, we can retrieve
all posts published in 2017 by the author with the username admin:

Post.objects.filter(publish__year=2017, author__username='admin')

This equates to building the same QuerySet chaining multiple
filters:

Post.objects.filter(publish__year=2017) \
.filter(author__username="'admin')

Queries with field lookup methods are built using two underscores, for
example, pub1ish_year, but the same notation is also used for accessing fields of
related models, such as author__username.

Using exclude()

You can exclude certain results from your QuerySet using the
exclude() method of the manager. For example, we can retrieve all
posts published in 2017 whose titles don't start with wny:

Post.objects.filter(publish__year=2017) \
.exclude(title__startswith="Why')

Using order_by()

You can order results by different fields using the order_by() method
of the manager. For example, you can retrieve all objects ordered by
their tit1e, as follows:

Post.objects.order_by('title')

Ascending order is implied. You can indicate descending order with
a negative sign prefix, like this:

Post.objects.order_by('-title')

Deleting objects

If you want to delete an object, you can do it from the object
instance using the delete() method:

post = Post.objects.get(id=1)
post.delete()

Note that deleting objects will also delete any dependent relationships for
ForeignKey objects deﬁned wlth on_delete Set tO cAscApE.

When QuerySets are evaluated

You can concatenate as many filters as you like to a QuerySet, and
you will not hit the database until the QuerySet is evaluated.
QuerySets are only evaluated in the following cases:

¢ The first time you iterate over them

e When you slice them, for instance, rost.objects.al1()[:3]
e When you pickle or cache them

e When you call repr() Or 1en() on them

e When you explicitly call 1ist() on them

e When you test them in a statement, such as boo1(), or , and, Or

if

Creating model managers

As we previously mentioned, objects is the default manager of every
model that retrieves all objects in the database. However, we can
also define custom managers for our models. We will create a
custom manager to retrieve all posts with the pubiished status.

There are two ways to add managers to your models: you can add

extra manager methods or modify initial manager QuerySets. The
first method provides you with a QuerySet API such

dAS Post.objects.my_manager (), and the latter provides you

with post .my_manager.all(). The manager will allow us to retrieve pOStS
using post.published.all().

Edit the mode1s.py file of your b10g application to add the custom
manager:

class PublishedManager (models.Manager):
def get_queryset(self):
return super (PublishedManager,
self).get_queryset()\
.filter(status="'published')

class Post(models.Model):
...
objects = models.Manager() # The default manager.
published = PublishedManager() # Our custom manager.

The get_queryset() method of a manager returns the QuerySet that will
be executed. We override this method to include our custom filter in
the final QuerySet. We have defined our custom manager and
added it to the rost model; we can now use it to perform queries.
Let's test it.

Start the development server again with the following command:

python manage.py shell

Now, you can retrieve all published posts whose title starts with who
using the following command:

Post.published.filter(title__ startswith='Who')

Building list and detail views

Now that you have knowledge of how to use the ORM, you are ready
to build the views of the blog application. A Django view is just a
Python function that receives a web request and returns a web
response. All the logic to return the desired response goes inside the
view.

First, we will create our application views, then we will define a
URL pattern for each view, and finally, we will create HTML
templates to render the data generated by the views. Each view will
render a template passing variables to it and will return an HTTP
response with the rendered output.

Creating list and detail views

Let's start by creating a view to display the list of posts. Edit the
views.py file of your b1og application and make it look like this:

from django.shortcuts import render, get_object_or_404
from .models import Post

def post_list(request):
posts = Post.published.all()
return render(request,
'blog/post/list.html’,
{'posts': posts})

You just created your first Django view. The post_1ist view takes the
request Object as the only parameter. Remember that this parameter
is required by all views. In this view, we are retrieving all the posts
with the pub1ished status using the pub1isned manager we created
previously.

Finally, we are using the render() shortcut provided by Django to
render the list of posts with the given template. This function takes
the request Object, the template path, and the context variables to
render the given template. It returns an uttpresponse object with the
rendered text (normally, HTML code). The render() shortcut takes
the request context into account, so any variable set by template
context processors is accessible by the given template. Template
context processors are just callables that set variables into the
context. You will learn how to use them in chapter 3, Extending Your
Blog Application.

Let's create a second view to display a single post. Add the following
function to the views. py file:

def post_detail(request, year, month, day, post):

post = get_object_or_404(Post, slug=post,
status='published',
publish__year=year,
publish__month=month,
publish__day=day)

return render(request,

'blog/post/detail.html’,

{'post': post})

This is the post detail view. This view takes year, month, day, and post
parameters to retrieve a published post with the given slug and
date. Note that when we created the rost model, we added the
unique_for_date parameter to the siug field. This way, we ensure that
there will be only one post with a slug for a given date, and thus, we
can retrieve single posts using date and slug. In the detail view, we
use the get_object_or_se4() shortcut to retrieve the desired post. This
function retrieves the object that matches the given parameters or
launches an HTTP 404 (not found) exception if no object is found.
Finally, we use the render() shortcut to render the retrieved post
using a template.

Adding URL patterns for your
views

URL patterns allow you to map URLs to views. A URL pattern is
composed of a string pattern, a view, and, optionally, a name that
allows you to name the URL project-wide. Django runs through
each URL pattern and stops at the first one that matches the
requested URL. Then, Django imports the view of the matching
URL pattern and executes it, passing an instance of the uttprequest
class and keyword or positional arguments.

Create an uris.py file in the directory of the biog application and add
the following lines to it:

from django.urls import path
from . import views

app_name = 'blog'

urlpatterns = [
post views
path('', views.post_list, name='post_list'),
path('<int:year>/<int:month>/<int:day>/<slug:post>/',
views.post_detail,
name="'post_detail'),

In the preceding code, we define an application namespace with

the app_name variable. This allows us to organize URLSs by application
and use the name when referring to them. We define two different
patterns using the path() function. The first URL pattern doesn't take
any arguments and is mapped to the post_1ist view. The second
pattern takes the following four arguments and is mapped to the
post_detail view:

¢ year: Requires an integer
e nonth: Requires an integer
* day: Requires an integer

¢ post: Can be composed of words and hyphens

We use angle brackets to capture the values from the URL. Any
value specified in the URL pattern as <parameter> is captured as a
string. We use path converters, such as <int:year>, to specifically
match and return an integer and <siug:post> to specifically match a
slug (a string consisting of ASCII letters or numbers, plus the
hyphen and underscore characters). You can see all path converters
provided by Django at nttps://docs.djangoproject.com/en/2.0/topics/http/urls/

#path-converters.

If using path() and converters isn't sufficient for you, you can

use re_path() instead to define complex URL patterns with Python
regular expressions. You can learn more about defining URL
patterns with regular expressions at nttps://docs.djangoproject.com/en/2.0/
ref/urls/#django.urls.re_path. If you haven't worked with regular
expressions before, you might want to take a look at the Regular
Expression HOWTO located

at nttps://docs.python.org/3/howto/regex.html first.

Creating a uris.py file for each app is the best way to make your applications
reusable by other projects.

Now, you have to include the URL patterns of the bi0g application in
the main URL patterns of the project. Edit the uris.py file located in
the mysite directory of your project and make it look like the
following;:

from django.urls import path, include
from django.contrib import admin

urlpatterns = [

https://docs.djangoproject.com/en/2.0/topics/http/urls/#path-converters
https://docs.djangoproject.com/en/2.0/ref/urls/#django.urls.re_path
https://docs.python.org/3/howto/regex.html

path('admin/', admin.site.urls),
path('blog/', include('blog.urls', namespace='blog')),

The new URL pattern defined with inciude refers to the URL patterns
defined in the blog application so that they are included under the
blog/ path. We include these patterns under the namespace biog.
Namespaces have to be unique across your entire project. Later, we
will refer to our blog URLSs easily by including the namespace,
building them, for example, biog:post_1ist and biog:post_detail. YOu can
learn more about URL namespaces at nttps://docs.djangoproject.com/en/2.
0/topics/http/urls/#url-namespaces.

https://docs.djangoproject.com/en/2.0/topics/http/urls/#url-namespaces

Canonical URLs for models

You can use the post_detair URL that you have defined in the
preceding section to build the canonical URL for rost objects. The
convention in Django is to add a get_absoiute_ur1() method to the
model that returns the canonical URL of the object. For this
method, we will use the reverse() method that allows you to build
URLSs by their name and passing optional parameters. Edit your
models.py file and add the following:

from django.urls import reverse

class Post(models.Model):
...
def get_absolute_url(self):
return reverse('blog:post_detail’,
args=[self.publish.year,

self.publish.month,
self.publish.day,
self.slug])

We will use the get_absorute_ur1() method in our templates to link to
specific posts.

Creating templates for your
views

We have created views and URL patterns for the b10g application.
Now, it's time to add templates to display posts in a user-friendly
manner.

Create the following directories and files inside your biog application
directory:

templates/
blog/
base.html
post/
list.html
detail.html

The preceding structure will be the file structure for our templates.
The base.ntm file will include the main HTML structure of the
website and divide the content into the main content area and a
sidebar. The 1ist.ntm1 and detai1.ntm1 files will inherit from the vase.ntm1
file to render the blog post list and detail views, respectively.

Django has a powerful template language that allows you to specify
how data is displayed. It is based on template tags, template
variables, and template filters:

e Template tags control the rendering of the template and
look like {% tag 3.

e Template variables get replaced with values when the
template is rendered and look like {{ variabie 33.

e Template filters allow you to modify variables for display
and look like ¢{ variabie|filter }3.

You can see all built-in template tags and filters in

https://docs.djangoproject.com/en/2.0/ref/templates/builtins/.

Let's edit the base.ntm1 file and add the following code:

{% load static %}
<IDOCTYPE html>
<html>
<head>
<title>{% block title %}{% endblock %}</title>
<link href="{% static "css/blog.css" %}" rel="stylesheet">
</head>
<body>
<div id="content">
{% block content %}
{% endblock %}
</div>
<div id="sidebar">
<h2>My blog</h2>
<p>This is my blog.</p>
</div>
</body>
</html>

{% load static %} tells Django to load the static template tags that are
provided by the django.contrib.staticfiles application, which is
contained in the instaiien_apps setting. After loading it, you are able to
use the (% static %} template filter throughout this template. With
this template filter, you can include static files, such as the biog.css
file, that you will find in the code of this example under the static/
directory of the b1og application. Copy the static/ directory from the
code that comes along with this chapter into the same location of
your project to apply the CSS style sheets.

You can see that there are two % biock %3 tags. These tell Django that
we want to define a block in that area. Templates that inherit from
this template can fill in the blocks with content. We have defined a

https://docs.djangoproject.com/en/2.0/ref/templates/builtins/

block called tit1e and a block called content.

Let's edit the post/1ist.ntm1 file and make it look like the following:

{% extends "blog/base.html" %}
{% block title %}My Blog{% endblock %}

{% block content %}
<h1>My Blog</h1>
{% for post in posts %}
<h2>

{{ post.title }}

</h2>
<p class="date">
Published {{ post.publish }} by {{ post.author }}
</p>
{{ post.body|truncatewords:30|linebreaks }}
{% endfor %}
{% endblock %}

With the % extends %3 template tag, we tell Django to inherit from the
blog/base.htmi template. Then, we are filling the titie and content blocks
of the base template with content. We iterate through the posts and
display their title, date, author, and body, including a link in the
title to the canonical URL of the post. In the body of the post, we are
applying two template filters: truncatewords truncates the value to the
number of words specified, and 1inebreaks converts the output into
HTML line breaks. You can concatenate as many template filters as
you wish; each one will be applied to the output generated by the
preceding one.

Open the shell and execute the python manage.py runserver command to
start the development server. Open nttp://127.0.0.1:8000/blog/ iN yOUT
browser, and you will see everything running. Note that you need to
have some posts with the Published status to show them here. You
should see something like this:

Ny Bl

Whowas Diango Reimart

Who was Django Reimarc,

Another pos

Postody.

Then, let's edit the post/detail.html file:

{% extends "blog/base.html" %}

{% block title %}{{ post.title }}{% endblock %}

{% block content %}
<h1>{{ post.title }}</h1>
<p class="date">
Published {{ post.publish }} by {{ post.author }}
</p>
{{ post.body|linebreaks }}
{% endblock %}

Now, you can return to your browser and click on one of the post
titles to take a look at the detail view of a post. You should see
something like this:

000 () 1 W27.0.0.1:8000/b\og/2017/12/14/who-was-django-reinhardtl6 0 ﬁ I I

Iho was Django Remret?

Wi jano e

Take a look at the URL—it should be /blog/2017/12/14/who-was-django-
reinhardt/. We have designed SEO-friendly URLSs for our blog posts.

Adding pagination

When you start adding content to your blog, you will soon realize
you need to split the list of posts across several pages. Django has a
built-in pagination class that allows you to manage paginated data
easily.

Edit the views.py file of the b1og application to import the Django
paginator classes and modify the post_1ist view, as follows:

from django.core.paginator import Paginator, EmptyPage,\
PageNotAnInteger

def post_list(request):
object_list = Post.published.all()
paginator = Paginator(object_list, 3) # 3 posts in each page
page = request.GET.get('page')
try:
posts = paginator.page(page)
except PageNotAnInteger:
If page is not an integer deliver the first page
posts = paginator.page(1)
except EmptyPage:
If page is out of range deliver last page of results
posts = paginator.page(paginator.num_pages)
return render(request,
'blog/post/list.html’,
{'page’: page,
'posts': posts})

This is how pagination works:

1. We instantiate the raginator class with the number of objects
we want to display on each page.

2. We get the page ceT parameter that indicates the current page
number.

3. We obtain the objects for the desired page calling the page()
method of raginator.

4. If the page parameter is not an integer, we retrieve the first
page of results. If this parameter is a number higher than
the last page of results, we will retrieve the last page.

5. We pass the page number and retrieved objects to the
template.

Now, we have to create a template to display the paginator so that it
can be included in any template that uses pagination. In the
templates/ folder of the b10g application, create a new file and name

it pagination.html. Add the following HTML code to the file:

<div class="pagination">

{% if page.has_previous %}
Previous
{% endif %}

Page {{ page.number }} of {{ page.paginator.num_pages }}.

{% if page.has_next %}
Next
{% endif %}

</div>

The pagination template expects a rage Object in order to render
previous and next links and to display the current page and total
pages of results. Let's return to the biog/post/1ist.htm1 template and
include the pagination.htm1 template at the bottom of the (% content %}
block, as follows:

{% block content %}

{% include "pagination.html" with page=posts %}
{% endblock %}

Since the rage Object we are passing to the template is called posts, we
include the pagination template in the post list template, passing
the parameters to render it correctly. You can follow this method to
reuse your pagination template in paginated views of different
models.

Now, open nttp://127.0.0.1:8000/blog/ iN your browser. You should see
the pagination at the bottom of the post list and should be able to
navigate through pages:

000 () [0048000 by 0

My Blog b

This i my blog

Mis Davis favourtg songs

Mis Deey Davis Il was an American jazz fnmpgter, bandleader, and
COmpose.

Notes on Duke Eflington

Ectward Kennedy ‘Duke’" Elington was an American composer,pianist, and
bandleader of ajazz orchestra

Ancther post

Post body.

Page of 2 Next

000l

Using class-based views

Class-based views are an alternative way to implement views as
Python objects instead of functions. Since a view is a callable that
takes a web request and returns a web response, you can also define
your views as class methods. Django provides base view classes for
this. All of them inherit from the view class, which handles HTTP
method dispatching and other common functionalities.

Class-based views offer advantages over function-based views for
some use cases. They have the following features:

¢ Organizing code related to HTTP methods, such as cer, posr,
or puT, in separate methods instead of using conditional
branching

e Using multiple inheritance to create reusable view classes
(also known as mixins)

You can take a look at an introduction to class-based views at nttps:/

/docs.djangoproject.com/en/2.0/topics/class-based-views/intro/.

We will change our post_1ist view into a class-based view to use the
generic Listview Offered by Django. This base view allows you to list
objects of any kind.

Edit the views.py file of your b10g application and add the following
code:

from django.views.generic import ListView

https://docs.djangoproject.com/en/2.0/topics/class-based-views/intro/

class PostListView(ListView):
gueryset = Post.published.all()
context_object_name = 'posts'
paginate_by = 3

template_name 'blog/post/list.html’

This class-based view is analogous to the previous post_1ist view. In
the preceding code, we are telling Listview to do the following things:

e Use a specific QuerySet instead of retrieving all objects.
Instead of defining a queryset attribute, we could have
specified mode1 = post and Django would have built the generic
Post.objects.a11() QuerySet for us.

e Use the context variable posts for the query results. The
default variable is object_1ist if we don't specify any

context_object_name.
e Paginate the result displaying three objects per page.

e Use a custom template to render the page. If we don't set a
default ternplate, Listview Will use blog/post_list.html.

Now, open the uris.py file of your b10g application, comment the
preceding post_1ist URL pattern, and add a new URL pattern using
the postListview class, as follows:

urlpatterns = [
post views
path('', views.post_list, name='post_list'),
path('', views.PostListView.as_view(), name='post_list'),
path('<int:year>/<int:month>/<int:day>/<slug:post>/',
views.post_detail,
name='post_detail'),

In order to keep pagination working, we have to use the right page

object that is passed to the template. Django's Listview generic view
passes the selected page in a variable called page obj, SO you have to
edit your post/1ist.htm1 template accordingly to include the paginator
using the right variable, as follows:

{% include "pagination.html" with page=page_obj %}

Open http://127.0.0.1:8000/blog/ iN your browser and verify that
everything works the same way as with the previous post_1ist view.
This is a simple example of a class-based view that uses a generic
class provided by Django. You will learn more about class-based
views in chapter 10, Building an E-Learning Platform, and successive
chapters.

Summary

In this chapter, you have learned the basics of the Django web
framework by creating a basic blog application. You have designed
the data models and applied migrations to your project. You have
created the views, templates, and URLs for your blog, including
object pagination.

In the next chapter, you will learn how to enhance your blog
application with a comment system and tagging functionality and
allow your users to share posts by email.

Enhancing Your Blog with
Advanced Features

In the preceding chapter, you created a basic blog application. Now,
you will turn your application into a fully functional blog with
advanced features, such as sharing posts by email, adding
comments, tagging posts, and retrieving posts by similarity. In this
chapter, you will learn the following topics:

Sending emails with Django

Creating forms and handling them in views

Creating forms from models

Integrating third-party applications

Building complex QuerySets

Sharing posts by email

First, we will allow users to share posts by sending them emails.
Take a short time to think how you would use views, URLs, and
templates to create this functionality using what you have learned
in the preceding chapter. Now, check what you need in order to
allow your users to send posts by email. You will need to do the
following things:

e Create a form for users to fill in their name and email, the
email recipient, and optional comments

e Create a view in the views.py file that handles the posted data
and sends the email

e Add a URL pattern for the new view in the uris.py file of the
blog application

e Create a template to display the form

Creating forms with Django

Let's start by building the form to share posts. Django has a built-in
forms framework that allows you to create forms in an easy manner.
The forms framework allows you to define the fields of your form,
specify how they have to be displayed, and indicate how they have
to validate input data. The Django forms framework offers a flexible
way to render forms and handle the data.

Django comes with two base classes to build forms:

* rorm: Allows you to build standard forms

® wodelrorm: Allows you to build forms tied to model instances

First, create a rorms.py file inside the directory of your »10g application
and make it look like this:

from django import forms

class EmailPostForm(forms.Form):
name = forms.CharField(max_length=25)
email = forms.EmailField()
to = forms.EmailField()
comments = forms.CharField(required=False,
widget=forms.Textarea)

This is your first Django form. Take a look at the code. We have
created a form by inheriting the base rorm class. We use different
field types for Django to validate fields accordingly.

Forms can reside anywhere in your Django project. The convention is to
place them inside a rorns.py file for each application.

The name field is charrierd. This type of field is rendered as an <input
type="text"> HTML element. Each field type has a default widget that
determines how the field is rendered in HTML. The default widget
can be overridden with the widget attribute. In the comments fleld, we
use a Textarea Widget to display it as a <textarea> HTML element
instead of the default <input> element.

Field validation also depends on the field type. For example, the
email and to fields are emaiirie1d fields. Both fields require a valid email
address, Otherwise, the field validation will raise a forms.validationError
exception and the form will not validate. Other parameters are also
taken into account for form validation: we define a maximum
length of 25 characters for the name field and make the comments field
optional with required=raise. All of this is also taken into account for
field validation. The field types used in this form are only a part of
Django form fields. For a list of all form fields available, you can
VlSlt https://docs.djangoproject.com/en/2.0/ref/forms/fields/.

https://docs.djangoproject.com/en/2.0/ref/forms/fields/

Handling forms in views

You have to create a new view that handles the form and sends an
email when it's successfully submitted. Edit the views.py file of your
blog application and add the following code to it:

from .forms import EmailPostForm

def post_share(request, post_id):
Retrieve post by id
post = get_object_or_404(Post, id=post_id, status='published')

if request.method == 'POST':
Form was submitted
form = EmailPostForm(request.POST)
if form.is_valid():
Form fields passed validation
cd = form.cleaned_data
... send email
else:
form = EmailPostForm()
return render(request, 'blog/post/share.html', {'post': post,
'form': form})

This view works as follows:

e We define the post_share view that takes the request object and
the post_id variable as parameters.

e We use the get_object_or_se4() shortcut to retrieve the post by
ID and make sure that the retrieved post has a pubiished
status.

e We use the same view for both displaying the initial form
and processing the submitted data. We differentiate whether

the form was submitted or not based on the request method
and submit the form using rost. We assume that if we get a
et request, an empty form has to be displayed, and if we get
a rost request, the form is submitted and needs to be
processed. Therefore, we use request.method == 'posT' tO
distinguish between the two scenarios.

The following is the process to display and handle the form:

1. When the view is loaded initially with a ceT request, we
create a new rorm instance that will be used to display the
empty form in the template:

form = EmailPostForm()

2. The user fills in the form and submits it via rost. Then, we
create a form instance using the submitted data that is
contained in request.POST:

if request.method == 'POST':
Form was submitted
form = EmailPostForm(request.POST)

3. After this, we validate the submitted data using the form's
is_valid() method. This method validates the data introduced
in the form and returns rrue if all fields contain valid data. If
any field contains invalid data, then is vaiid() returns raise.
You can see a list of validation errors by accessing form.errors.

4. If the form is not valid, we render the form in the template

again with the submitted data. We will display validation
errors in the template.

5. If the form is valid, we retrieve the validated data accessing
form.cleaned_data. This attribute is a dictionary of form fields
and their values.

If your form data does not validate, cieaned_data Will contain only the valid
fields.

Now, let's learn how to send emails using Django to put everything
together.

Sending emails with Django

Sending emails with Django is pretty straightforward. First, you will
need to have a local SMTP server or define the configuration of an
external SMTP server by adding the following settings in the
settings.py file of your project:

e evarL_vost: The SMTP server host; the default is 1ocainost
o emarL_prort: The SMTP port; the default is 25

e evatL_HosT user: Username for the SMTP server

o evatL HosT passworn: Password for the SMTP server

e ewarL_use_tis: Whether to use a TLS secure connection

e evatL_use sst: Whether to use an implicit TLS secure
connection

If you cannot use an SMTP server, you can tell Django to write
emails to the console by adding the following setting to
the settings.py file:

EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'

By using this setting, Django will output all emails to the shell. This
is very useful for testing your application without an SMTP server.

If you want to send emails, but you don't have a local SMTP server,
you can probably use the SMTP server of your email service
provider. The following sample configuration is valid for sending

emails via Gmail servers using a Google account:

EMAIL_HOST = 'smtp.gmail.com'
EMAIL_HOST_USER = 'your_account@gmail.com'
EMAIL_HOST_PASSWORD = 'your_password'
EMAIL_PORT = 587

EMAIL_USE_TLS = True

Run the python manage.py shell command to open the Python shell and
send an email, as follows:

>>> from django.core.mail import send_mail
>>> send_mail('Django mail', 'This e-mail was sent with Django.',
'your_account@gmail.com', ['your_account@gmail.com'], fail silently=False)

The send_mai1() function takes the subject, message, sender, and list of
recipients as required arguments. By setting the optional argument
fail_silently=ralse, We are telling it to raise an exception if the email
couldn't be sent correctly. If the output you see is 1, then your email
was successfully sent.

If you are sending emails by Gmail with the preceding
configuration, you might have to enable access for less secured apps
at nttps://myaccount.google.com/lesssecureapps, S follows:

Some apps and devices use less secure sign-in technology, which makes your account more vulnerable.
You can turn off access for these apps, which we recommend, or turn on access if you want to use them
despite the risks. Learn more

Allow less secure apps: ON .

https://myaccount.google.com/lesssecureapps

Now, we will add this functionality to our view.

Edit the post_share view in the views. py file of the blog application as
follows:

from django.core.mail import send_mail

def post_share(request, post_id):
Retrieve post by id
post = get_object_or_404(Post, id=post_id, status='published')
sent = False

if request.method == 'POST':
Form was submitted
form = EmailPostForm(request.POST)
if form.is_valid():
Form fields passed validation
cd = form.cleaned_data
post_url = request.build_absolute_uri(
post.get_absolute_url())
subject = '{} ({}) recommends you reading "
{}"'.format(cd['name'], cd['email'], post.title)
message = 'Read "{}" at {}\n\n{}\'s comments:
{}'.format(post.title, post_url, cd['name'], cd['comments'])
send_mail(subject, message, 'admin@myblog.com',
[cd['to']])
sent = True
else:
form = EmailPostForm()
return render(request, 'blog/post/share.html', {'post': post,
'form': form,
'sent': sent})

We declare a sent variable and set it to True when the post was sent.
We will use that variable later in the template to display a success
message when the form is successfully submitted. Since we have to
include a link to the post in the email, we will retrieve the absolute
path of the post using its get_absoiute_ur1() method. We use this path
as an input for request.build_absolute_uri() to build a complete URL,
including HTTP schema and hostname. We build the subject and
the message body of the email using the cleaned data of the
validated form and finally send the email to the email address
contained in the o field of the form.

Now that your view is complete, remember to add a new URL
pattern for it. Open the uris.py file of your v10g application and add
the post_share URL pattern, as follows:

urlpatterns = [
...
path('<int:post_id>/share/',
views.post_share, name='post_share'),

Rendering forms in templates

After creating the form, programming the view, and adding the
URL pattern, we are only missing the template for this view. Create
a new file in the biog/tempiates/blog/post/ directory and name it
share.htm1; add the following code to it:

{% extends "blog/base.html" %}
{% block title %}Share a post{% endblock %}

{% block content %}
{% if sent %}
<h1>E-mail successfully sent</hi1>
<p>
"{{ post.title }}" was successfully sent to {{ form.cleaned_data.to }}.
</p>
{% else %}
<hi>Share "{{ post.title }}" by e-mail</hi1>
<form action="." method="post">
{{ form.as_p }}
{% csrf_token %}
<input type="submit" value="Send e-mail">
</form>
{% endif %}
{% endblock %}

This is the template to display the form or a success message when
it's sent. As you would notice, we create the HTML form element,
indicating that it has to be submitted by the rost method:

<form action="." method="post">

Then, we include the actual form instance. We tell Django to render
its fields in HTML paragraph <> elements with the as_p method. We
can also render the form as an unordered list with as u1 or as an
HTML table with as_tanie. If we want to render each field, we can

also iterate through the fields, as in the following example:

{% for field in form %}
<div>
{{ field.errors }}
{{ field.label tag }} {{ field }}
</div>
{% endfor %}

The {% csrr_token %} template tag introduces a hidden field with an
autogenerated token to avoid cross-site request forgery
(CSREF) attacks. These attacks consist of a malicious website or
program performing an unwanted action for a user on your site.
You can find more information about this at https://www.owasp.org/index.

php/Cross-Site_Request_Forgery_(CSRF).

The preceding tag generates a hidden field that looks like this:

<input type='hidden' name='csrfmiddlewaretoken'
value="'26JjKo21cEtYkGoV9z4XmJIEHLXNSLDR' />

By default, Django checks for the CSRF token in all rost requests. Remember
that you include the csrr_token tag in all forms that are submitted via rosr.

Edit your biog/post/detail.htmi template and add the following link to
the share pOSt URL after the {{ post.body|linebreaks }} variable:

<p>

Share this post

</p>

Remember that we are building the URL dynamically using the (%
url %} template tag provided by Django. We are using the namespace
called biog and the URL named post_share, and we are passing the post
ID as a parameter to build the absolute URL.

NOW, start the developrnent server with the python manage.py

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

runserver command and OP€n http://127.0.0.1:8000/blog/ n your browser.
Click on any post title to view its detail page. Under the post body,
you should see the link we just added, as shown in the following

screenshot:

Notes on Duke Ellington My blog

This is my blog.

Edward Kennedy "Duke" Ellington was an American composer, pianist, and
bandleader of a jazz orchestra.

Share this post

Click on Share this post, and you should see the page including the
form to share this post by email, as follows:

Share "Notes on Duke Ellington" by e-mail

My blog
Name: This is my blog.
Email:
To:
Comments:

CSS styles for the form are included in the example code in the
static/css/blog.css file. When you click on the SEND E-MAIL button,
the form is submitted and validated. If all fields contain valid data,
you will get a success message, as follows:

E-mail successfully sent My blog

"Notes on Duke Ellington" was successfully sent to account@gmail.com. This is my blog.

If you input invalid data, you will see that the form is rendered
again, including all validation errors:

Snare "Notes on Duke Elington’ by e-mail iy

Name: This is my blog.

Antonio

» Enter a valid email address.

Emall

invalid

v This fild i reuired.

To:

Comments:

SEND E-MAIL

Note that some modern browsers will prevent you from submitting
the form with empty or erroneous fields. This is because of form
validation done by the browser based on field types and restrictions
per field. In this case, the form won't be submitted and the browser
will display an error message for the fields that are wrong.

Our form for sharing posts by email is now complete. Let's create a
comment system for our blog.

Creating a comment system

Now, we will build a comment system for the blog, wherein the
users will be able to comment on posts. To build the comment
system, you will need to do the following steps:

Create a model to save comments

2. Create a form to submit comments and validate the input
data

3. Add a view that processes the form and saves the new
comment to the database

4. Edit the post detail template to display the list of comments
and the form to add a new comment

First, let's build a model to store comments. Open the mode1s.py file of
your biog application and add the following code:

class Comment(models.Model):

post = models.ForeignKey(Post,
on_delete=models.CASCADE,
related_name='comments')

name = models.CharField(max_length=80)

email = models.EmailField()

body = models.TextField()

created = models.DateTimeField(auto_now_add=True)

updated = models.DateTimeField(auto_now=True)

active = models.BooleanField(default=True)

class Meta:
ordering = ('created',)

def __str__ (self):
return 'Comment by {} on {}'.format(self.name, self.post)

This is our comment model. It contains roreignkey to associate the
comment with a single post. This many-to-one relationship is
defined in the comment model because each comment will be made on
one post, and each post may have multiple comments. The
related_name attribute allows us to name the attribute that we use for
the relation from the related object back to this one. After defining
this, we can retrieve the post of a comment object using comment . post
and retrieve all comments of a post using post.comments.a11(). If you
don't define the reiated_name attribute, Django will use the name of the
model in lowercase, followed by _set (that is, comment_set) to name the
manager of the related object back to this one.

You can learn more about many-to-one relationships at

https://docs.djangoproject.com/en/2.0/topics/db/examples/many_to_one/.

We have included an active boolean field that we will use to
manually deactivate inappropriate comments. We use the created
field to sort comments in a chronological order by default.

The new comment model you just created is not yet synchronized into
the database. Run the following command to generate a new
migration that reflects the creation of the new model:

python manage.py makemigrations blog

You should see the following output:

Migrations for 'blog':
blog/migrations/0002_comment.py
- Create model Comment

Django has generated d 0002_comment . py file inside the migrations/
directory of the b1og application. Now, you will need to create the
related database schema and apply the changes to the database.
Run the following command to apply existing migrations:

https://docs.djangoproject.com/en/2.0/topics/db/examples/many_to_one/

python manage.py migrate

You will get an output that includes the following line:

Applying blog.0002_comment... OK

The migration we just created has been applied, and, now, a
blog_comment table exists in the database.

Now, we can add our new model to the administration site in order

to manage comments through a simple interface. Open the admin.py
file of the b10g application, import the comment model, and add the
following mode1admin class:

from .models import Post, Comment

@admin.register (Comment)
class CommentAdmin(admin.ModelAdmin):

list_display = ('name', 'email',6 'post', 'created',6 'active')
list _filter = ('active', 'created', 'updated')
search_fields = ('name', 'email', 'body')

Start the development server with the python manage.py runserver

command and open nttp://127.0.0.1:8000/admin/ IN your browser. You
should see the new model included in the BLOG section, as shown
in the following screenshot:

BLOG

Comments + Add #" Change

Posts + Add # Change

The model is now registered in the admin site, and we can manage
comment instances using a simple interface.

Creating forms from models

We will still need to build a form to let our users comment on blog
posts. Remember that Django has two base classes to build forms,
rForm and mode1rorm. You used the first one previously to let your users
share posts by email. In the present case, you will need to use
modelForm because you have to build a form dynamically from your
comment Mmodel. Edit the forms. py file of YOUr blog application and add the
following lines:

from .models import Comment

class CommentForm(forms.ModelForm):
class Meta:
model = Comment
fields = ('name', 'email', 'body')

To create a form from a model, we will just need to indicate which
model to use to build the form in the weta class of the form. Django
introspects the model and builds the form dynamically for us. Each
model field type has a corresponding default form field type. The
way we define our model fields is taken into account for form
validation. By default, Django builds a form field for each field
contained in the model. However, you can explicitly tell the
framework which fields you want to include in your form using a
rields list or define which fields you want to exclude using an exciude
list of fields. For our commentrorm form, we will just use the name, emai,
and body fields because those are the only fields our users will be able
to fill in.

Handling ModelForms in views

We will use the post detail view to instantiate the form and process
it in order to keep it simple. Edit the views.py file, add imports for the
comment Model and the commentrorm form, and modlfy the post_detail view
to make it look like the following;:

from .models import Post, Comment
from .forms import EmailPostForm, CommentForm

def post_detail(request, year, month, day, post):
post = get_object_or_404(Post, slug=post,
status='published',
publish__year=year,
publish__month=month,
publish__day=day)

List of active comments for this post
comments = post.comments.filter (active=True)

new_comment = None

if request.method == 'POST':
A comment was posted
comment_form = CommentForm(data=request.POST)
if comment_form.is_valid():
Create Comment object but don't save to database yet
new_comment = comment_form.save(commit=False)
Assign the current post to the comment
new_comment.post = post
Save the comment to the database
new_comment.save()
else:
comment_form = CommentForm()
return render(request,
'blog/post/detail.html’,
{'post': post,
'comments': comments,
'new_comment': new_comment,
'comment_form': comment_form})

Let's review what we have added to our view. We used the
post_detail View to display the post and its comments. We added a
QuerySet to retrieve all active comments for this post, as follows:

comments = post.comments.filter(active=True)

We build this QuerySet, starting from the post object. We use the
manager for related objects we defined as comments using the
related_name attribute of the relationship in the comment model.

We also use the same view to let our users add a new comment.
Therefore, we initialize the new_comment Variable by setting it to none. We
will use this variable when a new comment is created. We build a
form instance with comment_form = CommentForm() if the view is called by a
ceT request. If the request is done via rost, we instantiate the form
using the submitted data and validate it using the is_vaiid() method.
If the form is invalid, we render the template with the validation
errors. If the form is valid, we take the following actions:

1. We create a new comment Object by calling the form's save()
method and assign it to the new_comment variable as follows:

new_comment = comment_form.save(commit=False)

The save() method creates an instance of the model that the
form is linked to and saves it to the database. If you call it
using commit=ralse, you create the model instance, but you don't
save it to the database yet. This comes in handy when you
want to modify the object before finally saving it, which is
what we do next.

The save() method is available for modeirorn but not for rorm instances, since they
are not linked to any model.

2. We assign the current post to the comment we just created:

new_comment.post = post

By doing this, we are specifying that the new comment
belongs to this post.

3. Finally, we save the new comment to the database by calling
its save() method:

new_comment.save()

Our view is now ready to display and process new comments.

Adding comments to the post
detail template

We have created the functionality to manage comments for a post.
Now, we will need to adapt our post/detaii.htm1 template to do the
following things:

e Display the total number of comments for the post

e Display the list of comments

¢ Display a form for users to add a new comment

First, we will add the total comments. Open the post/detaii.ntm
template and append the following code to the content block:

{% with comments.count as total_comments %}
<h2>
{{ total_comments }} comment{{ total comments|pluralize }}
</h2>
{% endwith %}

We are using the Django ORM in the template, executing the
QuerySet comments.count (). Note that Django template language doesn't
use parentheses for calling methods. The % with %} tag allows us to
assign a value to a new variable that will be available to be used
until the (% endwith %} tag.

The % with % template tag is useful to avoid hitting the database or
accessing expensive methods multiple times.

We use the piuraiize template filter to display a plural suffix for the
word comment, depending on the tota1_comments value. Template

filters take the value of the variable they are applied to as their
input and return a computed value. We will discuss template filters
in chapter 3, Extending Your Blog Application.

The piurarize template filter returns a string with the letter "s" if the
value is different from 1. The preceding text will be rendered as o
comments, 1 comment, or N comments. Django includes plenty of
template tags and filters that help you display information in the
way you want.

Now, let's include the list of comments. Append the following lines
to the post/detail.nem1 template below the preceding code:

{% for comment in comments %}
<div class="comment">
<p class="info">
Comment {{ forloop.counter }} by {{ comment.name }}
{{ comment.created }}
</p>
{{ comment.body|linebreaks }}
</div>
{% empty %}
<p>There are no comments yet.</p>
{% endfor %}

We use the % for %} template tag to loop through comments. We
display a default message if the comments list is empty, informing our
users that there are no comments on this post yet. We enumerate
comments with the {{ for1oop.counter 33 variable, which contains the
loop counter in each iteration. Then, we display the name of the
user who posted the comment, the date, and the body of the
comment.

Finally, you need to render the form or display a successful message
instead when it is successfully submitted. Add the following lines
just below the preceding code:

{% if new_comment %}
<h2>Your comment has been added.</h2>

{% else %}
<h2>Add a new comment</h2>
<form action="." method="post">
{{ comment_form.as_p }}
{% csrf_token %}
<p><input type="submit" value="Add comment"></p>
</form>
{% endif %}

The code is pretty straightforward: if the new_comment Object exists, we
display a success message because the comment was successfully
created. Otherwise, we render the form with a paragraph <p>
element for each field and include the CSRF token required for rost
requests. Open nttp://127.0.0.1:8000/blog/ iN your browser and click on
a post title to take a look at its detail page. You will see something
like the following screenshot:

Notes on Duke Elington My bog

This is my blog.

Edward Kennedy "Duke" Ellington was an American composer, pianist, and bandleader of
ajazz orchestra.

Share this post

0 comments

There are no comments et

Add a new comment

Name:
Emall:

Body:

ADD COMMENT

Add a couple of comments using the form. They should appear
under your post in chronological order, as follows:

2 comments

Comment 1 by Antonio Dec. 14, 2017, 10:08 p.m.

It's very interesting.

Comment 2 by Bienvenida Dec. 14, 2017, 10:09 p.m.

| didn't know that.

Open http://127.0.0.1:8000/admin/blog/comment/ in your browser. You will
see the admin page with the list of comments you created. Click on
one of them to edit it, uncheck the Active checkbox, and click on the
Save button. You will be redirected to the list of comments again,
and the Active column will display an inactive icon for the
comment. It should look like the first comment in the following
screenshot:

e H 60 Oof st

N EMAL POST (REATED 2 NIV

~ lotonio iselomalcom —— Noteson ule Elingtn Aug, 25,2017 6 08pm. 0

 Dementa useloomalom — Notson Dl Elngon Aug. 25, 2017508 pm 0

Lcomments

If you return to the post detail view, you will note that the deleted
comment is not displayed any more; neither is it being counted for
the total number of comments. Thanks to the active field, you can
deactivate inappropriate comments and avoid showing them in
your posts.

Adding the tagging
functionality

After implementing your comment system, you will create a way to
tag our posts. You will do this by integrating a third-party Django
tagging application in our project. The django-taggit module is a
reusable application that primarily offers you a tag model and a
manager to easily add tags to any model. You can take a look at its
source code at https://github.com/alex/django-taggit.

First, you will need to install django-taggit Via pip by running the
following command:

pip install django_taggit==0.22.2

Then, open the settings.py file of the mysite project and add taggit to
your insTaLLep_apps Setting, as follows:

INSTALLED_APPS = [
...
'blog.apps.BlogConfig"',
'taggit’',

Open the mode1s.py file of your biog application and add the
TaggableManager INAaNnager provided by django-taggit tO the rost model using
the following code:

from taggit.managers import TaggableManager

class Post(models.Model):
...
tags = TaggableManager ()

https://github.com/alex/django-taggit

The tags manager will allow you to add, retrieve, and remove tags
from rost objects.

Run the following command to create a migration for your model
changes:

python manage.py makemigrations blog

You should get the following output:

Migrations for 'blog':
blog/migrations/0003_post_tags.py
- Add field tags to post

Now, run the following command to create the required database
tables for django-taggit models and to synchronize your model
changes:

python manage.py migrate

You will see an output indicating that migrations have been applied,
as follows:

Applying taggit.0001_initial... OK
Applying taggit.0002_auto_20150616_2121... OK
Applying blog.0003_post_tags... OK

Your database is now ready to use django-taggit models. Let's learn
how to use the tags manager. Open the terminal with the python
manage.py shell command and enter the following code; first, we will
retrieve one of our posts (the one with the 1 ID):

>>> from blog.models import Post
>>> post = Post.objects.get(id=1)

Then, add some tags to it and retrieve its tags to check whether they
were successfully added:

>>> post.tags.add('music', 'jazz', 'django')
>>> post.tags.all()
<QuerySet [<Tag: jazz>, <Tag: music>, <Tag: django>]>

Finally, remove a tag and check the list of tags again:

>>> post.tags.remove('django')
>>> post.tags.all()
<QuerySet [<Tag: jazz>, <Tag: music>]>

That was easy, I'lgh’[‘p Run the python manage.py runserver command to
start the development server again and open
http://127.0.0.1:8000/admin/taggit/tag/ n your browser. You will see the
admin page with the list of Tag objects of the taggit application:

Django adminis[ra[ion WELCOME, ADMINVIEW STE CHANGE PASSHORD /06 OLT

Home: Taggit Tags

Selct Tag o change

Q| Seath

S o 6o Oof3stleeted

T P 14
_ Geng dango

| [

 musi musi

Navigate to nttp://127.0.0.1:8000/adnin/blog/post/ and click on a post to
edit it. You will see that posts now include a new Tags field, as
follows, where you can easily edit tags:

Tags: jazz, music

A comma-separated list of tags.

Now, we will edit our blog posts to display tags. Open the
blog/post/list.html template and add the following HTML code below
the post title:

<p class="tags">Tags: {{ post.tags.all|join:", " }}</p>

The join template filter works as the Python string join() method to
concatenate elements with the given string. Open
http://127.0.0.1:8000/blog/ IN your browser. You should be able to see
the list of tags under each post title:

Who was Django Reinhardt?

Tags: jazz, music

Now, we will edit our post_1ist view to let users list all posts tagged
with a specific tag. Open the views.py file of your b10g application,
import the tag model form django-taggit, and change the post_1ist view
to optionally filter posts by a tag, as follows:

from taggit.models import Tag

def post_list(request, tag_slug=None):
object_list = Post.published.all()

tag = None

if tag_slug:
tag = get_object_or_404(Tag, slug=tag_slug)
object_list = object_list.filter(tags__in=[tag])

paginator = Paginator(object_list, 3) # 3 posts in each page
...

The post_1ist view now works as follows:

1. It takes an optional tag s1ug parameter that has a none default
value. This parameter will come in the URL.

2. Inside the view, we build the initial QuerySet, retrieving all
published posts, and if there is a given tag slug, we get the rag
object with the given slug using the get_object or_404() shortcut.

3. Then, we filter the list of posts by the ones that contain the
given tag. Since this is a many-to-many relationship, we
have to filter by tags contained in a given list, which, in our
case, contains only one element.

Remember that QuerySets are lazy. The QuerySets to retrieve posts
will only be evaluated when we loop over the post list when
rendering the template.

Finally, modify the render() function at the bottom of the view to pass
the tag variable to the template. The view should finally look like
this:

def post_list(request, tag_slug=None):
object_list = Post.published.all()
tag = None

if tag_slug:
tag = get_object_or_404(Tag, slug=tag_slug)
object_list = object_list.filter(tags__in=[tag])

paginator = Paginator(object_list, 3) # 3 posts in each page
page = request.GET.get('page')
try:
posts = paginator.page(page)
except PageNotAnInteger:
If page is not an integer deliver the first page
posts = paginator.page(1)
except EmptyPage:
If page is out of range deliver last page of results
posts = paginator.page(paginator.num_pages)
return render(request, 'blog/post/list.html', {'page': page,
'posts': posts,
'tag': tag})

Open the uris.py file of your b10g application, comment out the class-

based rostristview URL pattern, and uncomment the post_1ist view,
like this:

path('', views.post_list, name='post_list'),
path('', views.PostListView.as_view(), name='post_list'),

Add the following additional URL pattern to list posts by tag:

path('tag/<slug:tag_slug>/",
views.post_list, name='post_list_by tag'),

As you can see, both patterns point to the same view, but we are
naming them differently. The first pattern will call the post_1ist view
without any optional parameters, whereas the second pattern will
call the view with the tag_s1ug parameter. We use a siug path
converter for matching the parameter as a lowercase string with
ASCII letters or numbers, plus the hyphen and underscore
characters.

Since we are using the post_list VieW, edit the blog/post/list.html
template and modify the pagination to use the posts object:

{% include "pagination.html" with page=posts %}

Add the following lines above the % for %} loop:

{% if tag %}
<h2>Posts tagged with "{{ tag.name }}"</h2>
{% endif %}

If the user is accessing the blog, they will see the list of all posts. If
they filter by posts tagged with a specific tag, they will see the

tag that they are filtering by. Now, change the way tags are
displayed, as follows:

<p class="tags">
Tags:
{% for tag in post.tags.all %}

{{ tag.name }}

{% if not forloop.last %}, {% endif %}
{% endfor %}
</p>

Now, we loop through all the tags of a post displaying a custom link
to the URL to filter posts by that tag. We build the URL with (% ur1
"blog:post_list_by_tag" tag.slug %}, using the name of the URL and

the s1ug tag as its parameter. We separate the tags by commas.

Open nttp://127.0.0.1:8000/blog/ iN your browser and click on any tag
link. You will see the list of posts filtered by that tag, like this:

My Blog

Posts tagged with "jazz"

Who was Django Reinhardt?

Tags: jazz , music

Who was Django Reinhardt.

Page 1 of 1.

Retrieving posts by similarity

Now that we have implemented tagging for our blog posts, we can
do many interesting things with them. Using tags, we can classify
our blog posts very well. Posts about similar topics will have several
tags in common. We will build a functionality to display similar
posts by the number of tags they share. In this way, when a user
reads a post, we can suggest to them that they read other related
posts.

In order to retrieve similar posts for a specific post, we need to
perform the following steps:

1. Retrieve all tags for the current post

2. Get all posts that are tagged with any of those tags

3. Exclude the current post from that list to avoid
recommending the same post

4. Order the results by the number of tags shared with the
current post

5. In case of two or more posts with the same number of tags,
recommend the most recent post

6. Limit the query to the number of posts we want to
recommend

These steps are translated into a complex QuerySet that we will
include in our post_detai1 view. Open the vieus.py file of your blog
application and add the following import at the top of it:

from django.db.models import Count

This is the count aggregation function of the Django ORM. This
function will allow us to perform aggregated counts of tags.
django.db.models includes the following aggregation functions:

e avg: The value average
e wmax: The maximum value
e win: The minimum value

e count: The objects count

You can learn about aggregation at nttps://docs.djangoproject.com/en/2.0/to
pics/db/aggregation/.

Add the following lines inside the post_detai1 view before the render()
function, with the same indentation level:

List of similar posts
post_tags_ids = post.tags.values_list('id', flat=True)
similar_posts = Post.published.filter(tags__in=post_tags_ids)\
.exclude(id=post.id)
similar_posts.annotate(same_tags=Count('tags'))\
.order_by('-same_tags', '-publish')[:4]

similar_posts

The preceding code is as follows:

1. We retrieve a Python list of IDs for the tags of the current
post. The vaiues 1ist() QuerySet returns tuples with the
values for the given fields. We pass r1at=True to it to get a flat
list like 11, 2, 3, ...1.

2. We get all posts that contain any of these tags, excluding the
current post itself.

3. We use the count aggregation function to generate a
calculated field—same_tags—that contains the number of tags

https://docs.djangoproject.com/en/2.0/topics/db/aggregation/

shared with all the tags queried.

4. We order the result by the number of shared tags
(descending order) and by pub1ish to display recent posts first
for the posts with the same number of shared tags. We slice
the result to retrieve only the first four posts.

Add the simiiar_posts object to the context dictionary for the render()
function, as follows:

return render(request,
'blog/post/detail.html’,
{'post': post,
'comments': comments,
'new_comment': new_comment,
'comment_form': comment_form,
'similar_posts': similar_posts})

Now, edit the biog/post/detail.ntmi template and add the following code
before the post comments list:

<h2>Similar posts</h2>
{% for post in similar_posts %}
<p>
{{ post.title }}
</p>
{% empty %}
There are no similar posts yet.
{% endfor %}

Now, your post detail page should look like this:

Who was Django Reinhardt?

Who was Django Reinhardt.

Share this post

Similar posts

Miles Davis favourite songs

Notes on Duke Ellington

You are now able to successfully recommend similar posts to your
USETS. django-taggit also includes a similar_objects() manager that you
can use to retrieve objects by shared tags. You can take a look at all
django-taggit INaNagers at nttps://django-taggit.readthedocs.io/en/latest/api.htm
1.

You can also add the list of tags to your post detail template the
same way we did in the biog/post/1ist.ntm1 template.

https://django-taggit.readthedocs.io/en/latest/api.html

Summary

In this chapter, you learned how to work with Django forms and
model forms. You created a system to share your site's content by
email and created a comment system for your blog. You added
tagging to your blog posts, integrating a reusable application, and
built complex QuerySets to retrieve objects by similarity.

In the next chapter, you will learn how to create custom template
tags and filters. You will also build a custom sitemap and feed for
your blog posts and implement the full text search functionality for
your blog posts.

Extending Your Blog
Application

The preceding chapter went through the basics of forms, and you
learned how to integrate third-party applications into your project.
This chapter will cover the following points:

¢ Creating custom template tags and filters
¢ Adding a sitemap and post feed

e Implementing full text search with PostgreSQL

Creating custom template tags
and filters

Django offers a variety of built-in template tags, such as % ir % or %
block %}. YOU have used several in your templates. You can find a
complete reference of built-in template tags and filters at nttps://docs.

djangoproject.com/en/2.0/ref/templates/builtins/.

However, Django also allows you to create your own template tags
to perform custom actions. Custom template tags come in very
handy when you need to add a functionality to your templates that
is not covered by the core set of Django template tags.

https://docs.djangoproject.com/en/2.0/ref/templates/builtins/

Creating custom template tags

Django provides the following helper functions that allow you to
create your own template tags in an easy manner:

e simple_tag: Processes the data and returns a string

e inclusion_tag: Processes the data and returns a rendered
template

Template tags must live inside Django applications.

Inside your b10g application directory, create a new directory, name
it templatetags, and add an empty _init__.py file to it. Create another
file in the same folder and name it b1og_tags.py. The file structure of
the blog application should look like the following:

blog/
__init__ .py
models.py

templatetags/
__init__.py
blog_tags.py

The way you name the file is important. You will use the name of
this module to load tags in templates.

We will start by creating a simple tag to retrieve the total posts
published in the blog. Edit the biog_tags.py file you just created and
add the following code:

from django import template
from ..models import Post

register = template.Library()
@register.simple_tag

def total_posts():
return Post.published.count()

We have created a simple template tag that returns the number of
posts published so far. Each template tags module needs to contain
a variable called register to be a valid tag library. This variable is an
instance of tempiate.Library, and it's used to register our own template
tags and filters. Then, we define a tag called tota1_posts with a Python
function and use the eregister.sinpie_tag decorator to register the
function as a simple tag. Django will use the function's name as the
tag name. If you want to register it using a different name, you can
do it by specifying a name attribute, such

dsS @register.simple_tag(name='my_tag').

After adding a new template tags module, you will need to restart the
Django development server in order to use the new tags and filters in
templates.

Before using custom template tags, you have to make them
available for the template using the (% 10ad %} tag. As mentioned
before, you need to use the name of the Python module containing
your template tags and filters. Open the biog/tempiates/base.htm1
template and add (% 10ad b1og_tags %} at the top of it to load your
template tags module. Then, use the tag you created to display your
total posts. Just add ¢% tota1_posts %} to your template. The template
should finally look like this:

{% load blog tags %}
{% load static %}
<IDOCTYPE html>
<html>
<head>
<title>{% block title %}{% endblock %}</title>
<link href="{% static "css/blog.css" %}" rel="stylesheet">
</head>

<body>
<div id="content">
{% block content %}
{% endblock %}
</div>
<div id="sidebar">
<h2>My blog</h2>
<p>This is my blog. I've written {% total posts %} posts so far.</p>
</div>
</body>
</html>

We will need to restart the server to keep track of the new files
added to the project. Stop the development server with Ctrl + C and
run it again using the following command:

python manage.py runserver

Open nttp://127.0.0.1:8000/blog/ iN your browser. You should see the
number of total posts in the sidebar of the site, as follows:

My blog

This is my blog. I've written 4 posts so far.

The power of custom template tags is that you can process any data
and add it to any template regardless of the view executed. You can
perform QuerySets or process any data to display results in your
templates.

Now, we will create another tag to display the latest posts in the
sidebar of our blog. This time, we will use an inclusion tag. Using an
inclusion tag, you can render a template with context variables
returned by your template tag. Edit the biog_tags.py file and add the
following code:

@register.inclusion_tag('blog/post/latest_posts.html')

def show_latest_posts(count=5):
latest_posts = Post.published.order_by('-publish')[:count]
return {'latest_posts': latest_posts}

In the preceding code, we register the template tag

USil’lg @register.inclusion_tag and Specify the template that has to be
rendered with the returned values using blog/post/latest_posts.html. Our
template tag will accept an optional count parameter that defaults to
s. This parameter allows us to specify the number of posts we want
to display. We use this variable to limit the results of the

QUErY Post.published.order_by('-publish')[:count]. Note that the function
returns a dictionary of variables instead of a simple value. Inclusion
tags have to return a dictionary of values, which is used as the
context to render the specified template. The template tag we just
created allows you to specify the optional number of posts to
dlsplay dS {% show_latest_posts 3 %}.

Now, create a new template file under biog/post/ and name it
latest_posts.html. Add the following code to it:

{% for post in latest_posts %}

{{ post.title }}
</1i>
{% endfor %}

In the preceding code, we display an unordered list of posts using
the 1atest_posts variable returned by our template tag. Now, edit the
blog/base.htm1 template and add the new template tag to display the
last three posts. The sidebar code should look like the following:

<div id="sidebar">
<h2>My blog</h2>
<p>This is my blog. I've written {% total posts %} posts so far.</p>

<h3>Latest posts</h3>
{% show_latest_posts 3 %}
</div>

The template tag is called, passing the number of posts to display,
and the template is rendered in place with the given context.

Now, return to your browser and refresh the page. The sidebar
should now look like this:

My blog
This is my blog. I've written 4 posts so far.

Latest posts

¢ Miles Davis favourite songs
e Notes on Duke Ellington
e Another post

Finally, we will create a simple template tag that stores the result in
a variable that can be reused rather than directly outputting it. We
will create a tag to display the most commented posts. Edit the

blog tags.py file and add the following import and template tag in it:

from django.db.models import Count

@register.simple_tag
def get_most_commented_posts(count=5):
return Post.published.annotate(
total_comments=Count('comments"')
).order_by('-total_comments')[:count]

In the preceding template tag, we build a QuerySet using the
annotate() function to aggregate the total number of comments for
each post. We use the count aggregation function to store the number
of comments in the computed field totai_comments for each rost object.
We order the QuerySet by the computed field in descending order.
We also provide an optional count variable to limit the total number
of objects returned.

In addition to count, Django offers the aggregation functions avg, vax,
win, and sum. YOu can read more about aggregation functions at
https://docs.djangoproject.com/en/2.0/topics/db/aggregation/.

Edit the biog/base.ntm1 template and append the following code to the
sidebar <daiv> element:

<h3>Most commented posts</h3>
{% get_most_commented_posts as most_commented_posts %}

{% for post in most_commented_posts %}

{{ post.title }}
</1i>
{% endfor %}

We store the result in a custom variable using the as argument
followed by the variable name. For our template tag, we use (%
get_most_commented_posts as most_commented_posts %} tO store the result of the
template tag in a new variable named most_commented_posts. Then, we
display the returned posts using an unordered list.

Now, open your browser and refresh the page to see the final result.
It should look like the following:

https://docs.djangoproject.com/en/2.0/topics/db/aggregation/

00 () O 0004000y 0 il "

This sy g, v wrten 4 posts s .

Mles Davis favourte songs
Latestposts
Tags ez, st
o s Davi avourte songs
o Notes on Duke Eliglon

i Dy D v Ameanjaz el beader,andcomper, + Koherpos

Most commented posts
Notes on Dukg Ellngto T
o Who was Django Reinherd!?
o Another pos
o s Dav favourte sons

Tags:azz, musi

Ecvard Kenney ‘Duke" Elngton was en American composer, i, and bandlader of a ez
Ochesta

Aot pos
Tags

Postbocy.

You have now a clear idea about how to build custom template tags.
You can read more about them at

https://docs.djangoproject.com/en/2.0/howto/custom-template-tags/.

https://docs.djangoproject.com/en/2.0/howto/custom-template-tags/

Creating custom template
filters

Django has a variety of built-in template filters that allow you to
modify variables in templates. These are Python functions that take
one or two parameters—the value of the variable it's being applied
to, and an optional argument. They return a value that can be
displayed or treated by another filter. A filter looks like (¢
variable|my_filter }}. Filters with an argument look like (¢
variable|my_filter:"foo" }3}. You can apply as many filters as you like to a
variable, for example, {{ variable|filter1|filter2 }}, and each of them
will be applied to the output generated by the preceding filter.

We will create a custom filter to be able to use markdown syntax in
our blog posts and then convert the post contents to HTML in the
templates. Markdown is a plain text formatting syntax that is very
simple to use, and it's intended to be converted into HTML. You can
learn the basics of this format at
https://daringfireball.net/projects/markdown/basics.

First, install the Python markdown module via pip using the
following command:

pip install Markdown==2.6.11

Then, edit the biog tags.py file and include the following code:

from django.utils.safestring import mark_safe
import markdown

@register.filter(name="markdown')
def markdown_format(text):
return mark_safe(markdown.markdown(text))

https://daringfireball.net/projects/markdown/basics

We register template filters in the same way as template tags. To
avoid a collision between our function name and the markdown module,
we name our function markdown_format and name the filter markdown for
usage in templates, such as {{ variabie|markdown 33. Django escapes the
HTML code generated by filters. We use the nark_sare function
provided by Django to mark the result as safe HTML to be rendered
in the template. By default, Django will not trust any HTML code
and will escape it before placing it in the output. The only
exceptions are variables that are marked as safe from escaping. This
behavior prevents Django from outputting potentially dangerous
HTML and allows you to create exceptions for returning safe
HTML.

Now, load your template tags module in the post list and detail
templates. Add the following line at the top of the biog/post/1ist.htm
and blog/post/detail.html templates after the (% extends %) tag:

{% load blog_tags %}

In the post/detail.ntm1 templates, take a look at the following line:

{{ post.body|linebreaks }}

Replace it with the following one:
|{{ post.body |markdown }}

Then, in the post/1ist.ntm1 file, replace the following line:
|{{ post.body | truncatewords:30|linebreaks }}

Then, swap it with the following one:

{{ post.body|markdown|truncatewords_html:30 }}

The truncatewords_ntm1 filter truncates a string after a certain number of
words, avoiding unclosed HTML tags.

Now, open http://127.0.0.1:8000/admin/blog/post/add/ i your browser and
add a post with the following body:

This is a post formatted with markdown

This is emphasized and **this is more emphasized**.
Here is a list:
* One

* Two
* Three

And a [link to the Django website](https://www.djangoproject.com/)

Open your browser and take a look at how the post is rendered. You
should see the following output:

Markdown post

This is a post formatted with markdown

This is emphasized and this is more emphasized.

Here is a list:

e One
e TWO
e Three

And a link to the Django website

As you can see in the preceding screenshot, custom template filters
are very useful to customize formatting. You can find more

information about custom filters at
https://docs.djangoproject.com/en/2.0/howto/custom-template-tags/#writing-custom-

template-filters.

https://docs.djangoproject.com/en/2.0/howto/custom-template-tags/#writing-custom-template-filters

Adding a sitemap to your site

Django comes with a sitemap framework, which allows you to
generate sitemaps for your site dynamically. A sitemap is an XML
file that tells search engines the pages of your website, their
relevance, and how frequently they are updated. Using a sitemap,
you will help crawlers that index your website's content.

The Django sitemap framework depends on django.contrib.sites, which
allows you to associate objects to particular websites that are
running with your project. This comes handy when you want to run
multiple sites using a single Django project. To install the sitemap
framework, you will need to activate both the sites and the sitemap
applications in our project. Edit the settings.py file of your project
and add django.contrib.sites and django.contrib.sitemaps tO the INSTALLED_APPS
setting. Also, define a new setting for the site ID, as follows:

SITE_ID = 1

Application definition
INSTALLED_APPS = [
...
'django.contrib.sites’',
'django.contrib.sitemaps’,

Now, run the following command to create the tables of the Django
site application in the database:

python manage.py migrate

You should see an output that contains the following lines:

Applying sites.0001_initial... OK
Applying sites.0002_alter_domain_unique... OK

The sites application is now synced with the database. Now, create a
new file inside your biog application directory and name it sitemaps. py.
Open the file and add the following code to it:

from django.contrib.sitemaps import Sitemap
from .models import Post

class PostSitemap(Sitemap):
changefreq = 'weekly'
priority = 0.9

def items(self):
return Post.published.all()

def lastmod(self, obj):
return obj.updated

We create a custom sitemap by inheriting the sitemap class of the
sitemaps module. The changefreq and priority attributes indicate the
change frequency of your post pages and their relevance in your
website (the maximum value is 1). The itens() method returns the
QuerySet of objects to include in this sitemap. By default, Django
calls the get_abso1ute ur1() method on each object to retrieve its URL.
Remember that we created this method in chapter 1, Building a Blog
Application, to retrieve the canonical URL for posts. If you want to
specify the URL for each object, you can add a 1ocation method to
your sitemap class. The 1astmod method receives each object returned
by items() and returns the last time the object was modified. Both
changefreq and priority methods can also be either methods or
attributes. You can take a look at the complete sitemap reference in
the official Django documentation located

at https://docs.djangoproject.com/en/2.0/ref/contrib/sitemaps/.

Finally, you will just need to add your sitemap URL. Edit the main
ur1s.py file of your project and add the sitemap, as follows:

https://docs.djangoproject.com/en/2.0/ref/contrib/sitemaps/

from django.urls import path, include

from django.contrib import admin

from django.contrib.sitemaps.views import sitemap
from blog.sitemaps import PostSitemap

sitemaps = {
'posts': PostSitemap,

}

urlpatterns = [
path('admin/', admin.site.urls),
path('blog/', include('blog.urls', namespace='blog')),
path('sitemap.xml', sitemap, {'sitemaps': sitemaps},
name='django.contrib.sitemaps.views.sitemap')

In the preceding code, we included the required imports and
defined a dictionary of sitemaps. We defined a URL pattern that
matches with sitemap.xml and uses the sitemap view. The sitemaps
dictionary is passed to the sitemap view. Now, run the development
server and open http://127.0.0.1:8000/sitemap. xnl N your browser. You
will note the following XML output:

<?xml version="1.0" encoding="utf-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<url>
<loc>http://example.com/blog/2017/12/15/markdown-post/</loc>
<lastmod>2017-12-15</lastmod>
<changefreg>weekly</changefreq>
<priority>0.9</priority>
</url>
<url>
<loc>
http://example.com/blog/2017/12/14/who-was-django-reinhardt/
</loc>
<lastmod>2017-12-14</lastmod>
<changefreg>weekly</changefreq>
<priority>0.9</priority>
</url>
</urlset>

The URL for each post has been built calling its get_absolute_ur1()
method.
The 1astmod attribute corresponds to the post updated date field, as we

specified in our sitemap, and the changefreq and priority attributes are
also taken from our rostsitemap class. You can see that the domain
used to build the URLS is exampie.con. This domain comes from a site
object stored in the database. This default object has been created
when we synced the site's framework with our database. Open
http://127.0.0.1:8000/admin/sites/site/ 1N your browser. You should see
something like this:

DJ&HQO admimstra[ion WELCONE ADMIN VIEW ST CHANGE PASSHORD /06 007

Home: St Stes

Soectste o change e

0 Seach

i o G0 Oofelcted

DM o DSPLAYNANE

~ exmplecom eramplecom

It

The preceding screenshot contains the list display admin view for
the site's framework. Here, you can set the domain or host to be
used by the site's framework and the applications that depend on it.
In order to generate URLs that exist in our local environment,
change the domain name to 1ocalnost:see0, as shown in the following

screenshot, and save it:

Change site
Domain name: localhost:8000
Display name: localhost:8000

The URLs displayed in your feed will now be built using this
hostname. In a production environment, you will have to use your
own domain name for the site's framework.

Creating feeds for your blog
posts

Django has a built-in syndication feed framework that you can use
to dynamically generate RSS or Atom feeds in a similar manner to
creating sitemaps using the site's framework. A web feed is a data
format (usually XML) that provides users with frequently updated
content. Users will be able to subscribe to your feed using a feed
aggregator, a software that is used to read feeds and get new
content notifications.

Create a new file in your biog application directory and name it
feeds.py. Add the following lines to it:

from django.contrib.syndication.views import Feed
from django.template.defaultfilters import truncatewords
from .models import Post

class LatestPostsFeed(Feed):
title = 'My blog'
link = '/blog/'
description = 'New posts of my blog.'

def items(self):
return Post.published.all()[:5]

def item_title(self, item):
return item.title

def item_description(self, item):
return truncatewords(item.body, 30)

First, we subclass the reed class of the syndication framework. The
title, link, aNd description attributes correspond to the <tities, <1ink>,
and <description> RSS elements, respectively.

The itens() method retrieves the objects to be included in the feed.
We are retrieving only the last five published posts for this feed. The
item_title() and item description() methods receive each object returned
by items() and return the title and description for each item. We use
the truncatewords built-in template filter to build the description of the
blog post with the first 30 words.

NOW, edit the blog/urls.py file, ll’IlpOI't LatestPostsFeed YOU just created,
and instantiate the feed in a new URL pattern:

from .feeds import LatestPostsFeed

urlpatterns = [
...
path('feed/', LatestPostsFeed(), name='post_feed'),

Navigate to nttp://127.0.0.1:8000/blog/feed/ IN YyOur browser. You should
now see the RSS feed, including the last five blog posts:

<?xml version="1.0" encoding="utf-8"?>
<rss xmlns:atom="http://www.w3.0rg/2005/Atom" version="2.0">
<channel>
<title>My blog</title>
<link>http://localhost:8000/blog/</1link>
<description>New posts of my blog.</description>
<atom:link href="http://localhost:8000/blog/feed/" rel="self"/>
<language>en-us</language>
<lastBuildDate>Fri, 15 Dec 2017 09:56:40 +0000</lastBuildDate>
<item>
<title>Who was Django Reinhardt?</title>
<link>http://localhost:8000/blog/2017/12/14/who-was-django-
reinhardt/</1link>
<description>Who was Django Reinhardt.</description>
<guid>http://localhost:8000/blog/2017/12/14/who-was-django-
reinhardt/</guid>
</item>

</channel>
</rss>

If you open the same URL in an RSS client, you will be able to see

your feed with a user-friendly interface.

The final step is to add a feed subscription link to the blog's sidebar.
Open the biog/base.ntmi template and add the following line under the
number of total posts inside the sidebar div:

<p>Subscribe to my RSS feed</p>

Now, open nttp://127.0.0.1:8000/blog/ iN your browser and take a look at
the sidebar. The new link should take you to your blog's feed:

My blog
This is my blog. I've written 5 posts so far.

Subscribe to my RSS feed

Adding full-text search to your
blog

Now, you will add search capabilities to your blog. The Django ORM
allows you to perform simple matching operations using, for
example, the contains filter (or its case-insensitive version, icontains).
You can use the following query to find posts that contain the

word framework 1n their bOdy:

from blog.models import Post
Post.objects.filter(body__contains='framework')

However, if you want to perform complex search lookups, retrieving
results by similarity or by weighting terms, you will need to use a
full-text search engine.

Django provides a powerful search functionality built on top

of PostgreSQL full-text search

features. The django.contrib.postgres module provides functionalities
offered by PostgreSQL that are not shared by the other databases
that Django supports. You can learn about PostgreSQL full-text
search at https://www.postgresql.org/docs/10/static/textsearch.html.

Although Django is a database-agnostic web framework, it provides a
module that supports part of the rich feature set offered by PostgreSQL, not
shared by other databases that Django supports.

https://www.postgresql.org/docs/10/static/textsearch.html

Installing PostgreSQL

You are currently using SQLite for your b1og project. This is
sufficient for development purposes. However, for a production
environment, you will need a more powerful database, such as
PostgreSQL, MySQL, or Oracle. We will change our database to
PostgreSQL to benefit from its full-text search features.

If you are using Linux, install dependencies for PostgreSQL to work
with Python, like this:

sudo apt-get install libpqg-dev python-dev

Then, install PostgreSQL with the following command:

sudo apt-get install postgresql postgresql-contrib

If you are using macOS X or Windows, download PostgreSQL from
https://www.postgresql.org/download/ and install it.

You also need to install the Psycopg2 PostgreSQL adapter for
Python. Run the following command in the shell to install it:

pip install psycopg2==2.7.4

Let's create a user for our PostgreSQL database. Open the shell and
run the following commands:

su postgres
createuser -dP blog

https://www.postgresql.org/download/

You will be prompted a password for the new user. Enter the
desired password and then create the n10g database and give the
ownership to the b10g user you just created with the following
command:

createdb -E utf8 -U blog blog

Then, edit the settings.py file of your project and modify
the pataeases setting to make it look as follows:

DATABASES = {
'default': {
'ENGINE': 'django.db.backends.postgresql',
'NAME': 'blog',
'USER': 'blog',
'"PASSWORD': '*****1

Replace the preceding data with the database name and credentials
for the user you created. The new database is empty. Run the
following command to apply all database migrations:

python manage.py migrate

Finally, create a superuser with the following command:

python manage.py createsuperuser

You can now run the development server and access the
administration site at nttp://127.0.0.1:8000/admin/ With the new
superuser.

Since we switched the database, there are no posts stored in
it. Populate your new database with a couple of sample blog posts
so that you can perform searches against the database.

Simple search lookups

Edit the settings.py file OfYOU.I' project and add django.contrib.postgres tO
the nstaLLep_apps setting, as follows:

INSTALLED_APPS = [
...
'django.contrib.postgres’,

Now, you can search against a single field using the searcn QuerySet
lookup, like this:

from blog.models import Post
Post.objects.filter(body__search='django')

This query uses PostgreSQL to create a search vector for the body
field and a search query from the term django. Results are obtained
by matching the query with the vector.

Searching against multiple
fields

You might want to search against multiple fields. In this case, you
will need to define searchvector. Let's build a vector that allows us to
search against the titie and body fields of the rost model:

from django.contrib.postgres.search import SearchVector
from blog.models import Post

Post.objects.annotate(
search=SearchVvector('title', 'body'),
).filter(search="'django"')

Using annotate and defining searchvector with both fields, we provide
a functionality to match the query against both the title and body of
the posts.

Full-text search is an intensive process. If you are searching for more than a
few hundred rows, you should define a functional index that matches the
search vector you are using. Django provides a searchvectorrield field for your
models. You can read more about this at https://docs.djangoproject.com/en/2.0/ref/contrib/

postgres/search/#performance.

https://docs.djangoproject.com/en/2.0/ref/contrib/postgres/search/#performance

Building a search view

Now, we will create a custom view to allow our users to search
posts. First, we will need a search form. Edit the forns.py file of
the b1og application and add the following form:

class SearchForm(forms.Form):
query = forms.CharField()

We will use the query field to let the users introduce search terms.
Edit the views.py file of the biog application and add the following code
to it:

from django.contrib.postgres.search import SearchvVector
from .forms import EmailPostForm, CommentForm, SearchForm

def post_search(request):
form = SearchForm()
query = None
results = []
if 'query' in request.GET:
form = SearchForm(request.GET)
if form.is_valid():
query = form.cleaned_data['query']
results = Post.objects.annotate(
search=SearchVector('title', 'body'),
) .filter (search=query)
return render(request,
'blog/post/search.html’,
{'form': form,
'query': query,
'results': results})

In the preceding view, first, we instantiate the searchrorn form. We
plan to submit the form using the cer method so that the resulting
URL includes the query parameter. To check whether the form is
submitted, we look for the query parameter in

the request.cet dictionary. When the form is submitted, we instantiate
it with the submitted cer data, and we verify that the form data is
valid. If the form is valid, we search for posts with a

custom searchvector instance built with the titie and body fields.

The search view is ready now. We need to create a template to
display the form and the results when the user performs a search.
Create a new file inside the /b109/post/ template directory, name

it search.ntm1, and add the following code to it:

{% extends "blog/base.html" %}
{% block title %}Search{% endblock %}

{% block content %}
{% if query %}
<hi>Posts containing "{{ query }}"</h1>
<h3>
{% with results.count as total_results %}
Found {{ total results }} result{{ total results|pluralize }}
{% endwith %}
</h3>
{% for post in results %}
<h4>{{ post.title }}</h4>
{{ post.body|truncatewords:5 }}
{% empty %}
<p>There are no results for your query.</p>
{% endfor %}
<p>Search again</p>
{% else %}
<hi>Search for posts</hi1>
<form action="." method="get">
{{ form.as_p }}
<input type="submit" value="Search">
</form>
{% endif %}
{% endblock %}

As in the search view, we can distinguish whether the form has been
submitted by the presence of the query parameter. Before the post is
submitted, we display the form and a submit button. After the post
is submitted, we display the query performed, the total number of
results, and the list of posts returned.

Finally, edit the ur1s.py file of your b10g application and add the
following URL pattern:

path('search/', views.post_search, name='post_search'),

Now, open nttp://127.0.0.1:8000/blog/search/ iN your browser. You should
see the following search form:

Search for posts

Query:

Enter a query and click on the Search button. You will see the
results of the search query, as follows:

Posts containing "music”

Found 2 results
Another post more
Post body.

Who was Django Reinhardt?

The Django web framework was ...

Search again

My blog

This is my blog. I've written 4
posts so far.

Subscribe to my RSS feed

Latest posts

« Another post more
+ New title
« Who was Django Reinhardt?

Most commented posts

+ Who was Django Reinhardt?
+ New title

« Another post more

« Old

Congratulations! You have created a basic search engine for your

blog.

Stemming and ranking results

Django provides a searchquery class to translate the terms into a
search query object. By default, the terms are passed through
stemming algorithms, which helps you to obtain better matches.
You also may want to order results by relevancy. PostgreSQL
provides a ranking function that orders results based on how often
the query terms appear and how close together they are. Edit the
views.py file of your b1og application and add the following imports:

from django.contrib.postgres.search import SearchVector, SearchQuery,
SearchRank

Then, take a look at the following lines:

results = Post.objects.annotate(
search=SearchVector('title', 'body'),
).filter (search=query)

Replace them with the following ones:

search_vector = SearchVector('title', 'body')
search_query = SearchQuery(query)
results = Post.objects.annotate(
search=search_vector,
rank=SearchRank(search_vector, search_query)
).filter (search=search_query).order_by('-rank')

In the preceding code, we created a searchquery Object, filtered results
by it, and used searchrank to order the results by relevancy. You can
Open http://127.6.0.1:8000/blog/search/ IN your browser and test different
searches to test stemming and ranking. The following is an example
of ranking by the number of occurrences for the word django in the
title and body of the posts:

Posts containing "django”

Found 3 results

Django, Django, Django
Django is the Web Framework ...
Django twice

Django offers full text search ...
Django once

A Python web framework.

Search again

Weighting queries

You can boost specific vectors so that more weight is attributed to
them when ordering results by relevancy. For example, you can use
this to give more relevance to posts that are matched by title rather
than by content. Edit the previous lines of the vieus.py file

of your b1og application and make them look like this:

search_vector = SearchVector('title', weight='A') + SearchVector('body',
weight='B")
search_query = SearchQuery(query)
results = Post.objects.annotate(
rank=SearchRank(search_vector, search_query)
).filter(rank__gte=0.3).order_by('-rank')

In the preceding code, we apply different weights to the search
vectors built using the tit1e and body fields. The default weights are o,
¢, 8, and a that refer to the numbers o.1, 0.2, 0.4, and 1.0, respectively.
We apply a weight of 1.0 to the tit1ie search vector and a weight of .4
to the body vector: title matches will prevail over body content
matches. We filter the results to display only the ones with a rank
higher than o.s.

Searching with trigram
similarity

Another search approach is trigram similarity. A trigram is a group
of three consecutive characters. You can measure the similarity of
two strings by counting the number of trigrams they share. This

approach turns out to be very effective for measuring the similarity
of words in many languages.

In order to use trigrams in PostgreSQL, you will need to install the

pg_trgm extension first. Execute the following command from the
shell to connect to your database:

psql blog

Then, execute the following command to install the pg_trgm
extension:

CREATE EXTENSION pg_trgm;

Let's edit our view and modify it to search for trigrams. Edit
the views.py file of your biog application and add the following import:

from django.contrib.postgres.search import TrigramSimilarity

Then, replace rost search query with the following lines:

results = Post.objects.annotate(
similarity=TrigramSimilarity('title', query),
).filter(similarity_ gt=0.3).order_by('-similarity')

Open http://127.0.0.1:8000/blog/search/ iN your browser and test different
searches for trigrams. The following example displays

a hypothetical typo in the django term, showing search results

for yango.

Posts containing "yango"

Found 1 result
Django Django
A Python web framework.
Now, you have a powerful search engine built into your project. You

can find more information about full-text search at nttps://docs.djangop

roject.com/en/2.0/ref/contrib/postgres/search/.

https://docs.djangoproject.com/en/2.0/ref/contrib/postgres/search/

Other full-text search engines

You may want to use a full-text search engine different from
PostgreSQL. If you want to use Solr or Elasticsearch, you can
integrate them into your Django project using Haystack. Haystack
is a Django application that works as an abstraction layer for
multiple search engines. It offers a simple search API very similar to
Django QuerySets. You can find more information about Haystack

at http://haystacksearch.org/.

http://haystacksearch.org/

Summary

In this chapter, you learned how to create custom Django template
tags and filters to provide templates with a custom functionality.
You also created a sitemap for search engines to crawl your site and
an RSS feed for users to subscribe to your blog. You also built a
search engine for your blog using the full-text search engine of
PostgreSQL.

In the next chapter, you will learn how to build a social website
using the Django authentication framework, create custom user
profiles, and build social authentication.

Building a Social Website

In the preceding chapter, you learned how to create sitemaps and
feeds and built a search engine for your blog application. In this
chapter, you will develop a social application. You will create a
functionality for users to log in, log out, edit, and reset their
password. You will learn how to create a custom profile for your
users, and you will add social authentication to your site.

This chapter will cover the following topics:

Using the Django authentication framework

Creating user registration views

Extending the user model with a custom profile model

Adding social authentication with python-social-auth

Let's start by creating our new project.

Creating a social website
project

We will create a social application that will allow users to share
images they find on the internet. We will need to build the following
elements for this project:

e An authentication system for users to register, log in, edit
their profile, and change or reset their password
o A followers' system to allow users to follow each other

¢ A functionality to display shared images and implement a
bookmarklet for users to share images from any website

e An activity stream for each user that allows users to see the
content uploaded by the people they follow

This chapter addresses the first point mentioned in the preceding
list.

Starting your social website
project

Open the terminal, and use the following commands to create a
virtual environment for your project and activate it:

mkdir env
virtualenv env/bookmarks
source env/bookmarks/bin/activate

The shell prompt will display your active virtual environment, as
follows:

(bookmarks)laptop:~ zenx$

Install Django in your virtual environment with the following
command:

pip install Django==2.0.5

Run the following command to create a new project:

django-admin startproject bookmarks

After creating the initial project structure, use the following
commands to get into your project directory and create a new
application named account:

cd bookmarks/
django-admin startapp account

Remember that you should activate the new application in your
project by adding it to the staLLep_apps setting in the settings.py file.
Place it in the 1nstaLLep_apps list before any of the other installed apps:

INSTALLED_APPS = [
'account.apps.AccountConfig',
...

We will define Django authentication templates later on. By placing
our app first in the msraLLen_apps setting, we ensure that our
authentication templates will be used by default instead of any
other authentication templates contained in other apps. Django
looks for templates by order of app appearance in the instaLiep_apps
setting.

Run the next command to sync the database with the models of the
default applications included in the instaiien_arprs setting:

python manage.py migrate

You will see that all initial Django database migrations get applied.
We will build an authentication system into our project using the
Django authentication framework.

Using the Django
authentication framework

Django comes with a built-in authentication framework that can
handle user authentication, sessions, permissions, and user groups.
The authentication system includes views for common user actions
such as login, logout, password change, and password reset.

The authentication framework is located at django.contrib.auth and is
used by other Django contrib packages. Remember that you have
already used the authentication framework in chapter 1, Building a
Blog Application, to create a superuser for your blog application to
access the administration site.

When you create a new Django project using the startproject
command, the authentication framework is included in the default
settings of your project. It consists of the django.contrib.auth
application and the following two middleware classes found in the
wrppLewaRe Setting of your project:

® AuthenticationMiddleware: Associates users with requests using
sessions

® sessionmiddleware: Handles the current session across requests

A middleware is a class with methods that are globally executed
during the request or response phase. You will use middleware
classes on several occasions throughout this book, and you will
learn to create custom middleware in chapter 13, Going Live.

The authentication framework also includes the following models:

e user: A user model with basic fields; the main fields of this

model are username, password, email, first_name, last_name, and is_active
e croup: A group model to categorize users

e rermission: Flags for users or groups to perform certain actions

The framework also includes default authentication views and
forms that we will use later.

Creating a login view

We will start this section by using the Django authentication
framework to allow users to log in to our website. Our view should
perform the following actions to log in a user:

Get the username and password by posting a form
Authenticate the user against the data stored in the database
Check whether the user is active

S W N

Log the user into the website and start an authenticated
session

First, we will create a login form. Create a new rorns.py file in your
account application directory and add the following lines to it:

from django import forms

class LoginForm(forms.Form):
username = forms.CharField()
password = forms.CharField(widget=forms.PasswordInput)

This form will be used to authenticate users against the database.
Note that we use the PasswordInput w1dget to render its HTML input
element, including a type="password" attribute, so that the browser
treats it as a password input. Edit the views.py file of your account
application and add the following code to it:

from django.http import HttpResponse

from django.shortcuts import render

from django.contrib.auth import authenticate, login
from .forms import LoginForm

def user_login(request):
if request.method == 'POST':
form = LoginForm(request.POST)
if form.is_valid():
cd = form.cleaned_data
user = authenticate(request,
username=cd['username'],
password=cd['password'])
if user is not None:
if user.is_active:
login(request, user)
return HttpResponse('Authenticated '\
'successfully')
else:
return HttpResponse('Disabled account')
else:
return HttpResponse('Invalid login')
else:
form = LoginForm()
return render(request, 'account/login.html', {'form': form})

This is what our basic login view does: when the user_10gin View is
called with a ceT request, we instantiate a new login form with form =
LoginForm() to display it in the template. When the user submits the
form via rost, we perform the following actions:

1. Instantiate the form with the submitted data with form =
LoginForm(request.POST).

2. Check whether the form is valid with form.is_va1id(). If it is not
valid, we display the form errors in our template (for
example, if the user didn't fill in one of the fields).

3. If the submitted data is valid, we authenticate the user
against the database using the authenticate() method. This
method takes the request object, the username, and
the password parameters and returns the uvser object if the user
has been successfully authenticated, or none otherwise. If the
user has not been authenticated, we return a raw sttpresponse,
displaying the Invalid login message.

4. If the user was successfully authenticated, we check whether
the user is active, accessing its is_active attribute. This is an
attribute of Django's user model. If the user is not active, we
return an wttpresponse that displays the Disabled
account message.

5. If the user is active, we log the user into the website. We set
the user in the session by calling the 10gin() method and
return the Authenticated successfully message.

Note the difference between authenticate and 1ogin: authenticate() checks user
credentials and returns a vser object if they are right; 109in() sets the user in
the current session.

Now, you will need to create a URL pattern for this view. Create a
NEW urls.py file in YOUr account application directory and add the
following code to it:

from django.urls import path
from . import views

urlpatterns = [
post views
path('login/', views.user_login, name='login'),

Edit the main uris.py file located in your vookmarks project directory,
import inciude, and add the URL patterns of the account application, as
follows:

from django.conf.urls import path, include
from django.contrib import admin

urlpatterns = [
path('admin/', admin.site.urls),
path('account/', include('account.urls')),

The login view can now be accessed by a URL. It is time to create a

template for this view. Since you don't have any templates for this
project, you can start by creating a base template that can be
extended by the login template. Create the following files and
directories inside the account application directory:

templates/
account/
login.html
base.html

Edit the base.ntm1 file and add the following code to it:

{% load staticfiles %}
<IDOCTYPE html>
<html>
<head>
<title>{% block title %}{% endblock %}</title>
<link href="{% static "css/base.css" %}" rel="stylesheet">
</head>
<body>
<div id="header">
Bookmarks
</div>
<div id="content">
{% block content %}
{% endblock %}
</div>
</body>
</html>

This will be the base template for the website. As we did in our
previous project, we include the CSS styles in the main template.
You can find these static files in the code that comes along with this
chapter. Copy the static/ directory of the account application from the
chapter's source code to the same location in your project so that
you can use the static files.

The base template defines a tit1e block and a content block that can be
filled with content by the templates that extend from it.

Let's fill in the template for our login form. Open the account/10gin.htm1

template and add the following code to it:

{% extends "base.html" %}
{% block title %}Log-in{% endblock %}

{% block content %}
<hi>Log-in</h1>
<p>Please, use the following form to log-in:</p>
<form action="." method="post">
{{ form.as_p }}
{% csrf_token %}
<p><input type="submit" value="Log in"></p>
</form>
{% endblock %}

This template includes the form that is instantiated in the view.
Since our form will be submitted via rost, we will include the %
csrf_token %} template tag for CSRF protection. You learned about
CSRF protection in chapter 2, Enhancing Your Blog with Advanced
Features.

There are no users in your database, yet. You will need to create a
superuser first in order to be able to access the administration site
to manage other users. Open the command line and execute python
manage.py createsuperuser. Fill in the desired username, email, and
password. Then, run the development server using the python manage.py
runserver command and open nttp://127.0.0.1:8000/admin/ i your browser.
Access the administration site using the credentials of the user you
just created. You will see the Django administration site, including
the user and eroup models of the Django authentication framework.

It will look as follows:

DJa go adm |0n WELCONE ADMIN. VIEW SITE CHANGE PASSIWORD / LOG OUT

Steadmmstration

AUTHENTICATION AND AUTHORIZATION

Recent actons
broups thdd 4 Change
s bSOl Myatios
None avalble

Create a new user using the administration site and open
http://127.0.0.1:8000/account/login/ IN your browser. You should see the
rendered template, including the login form:

000 (ill ‘ 127.0.0.1:8000/account/login/ ¢ | il 0

Bookmarks

Log-in

Please, use the following form to log-in:

Username;

Password:

LOGIN

Now, submit the form, leaving one of the fields empty. In this case,
you will see that the form is not valid and displays errors, as
follows:

Username:

test

This field is required.

Password:

LOGIN

Note that some modern browsers will prevent you from submitting
the form with empty or erroneous fields. This is because of form
validation done by the browser based on field types and restrictions
per field. In this case, the form won't be submitted and the browser
will display an error message for the fields that are wrong.

If you enter a non-existing user or a wrong password, you will get
an Invalid login message.

If you enter valid credentials, you will get an Authenticated
successfully message, like this:

000 < 1270.0.1:8000/accountflogin/ ﬁ o] |_|_

Authenticated successfully

Using Django authentication
views

Django includes several forms and views in the authentication
framework that you can use straight away. The login view you have
created is a good exercise to understand the process of user
authentication in Django. However, you can use the default Django
authentication views in most cases.

Django provides the following class-based views to deal with
authentication. All of them are located in django.contrib.auth.views:

® Loginview: Handles a login form and logs in a user

® Logoutview: LOgS out a user

Django provides the following views to handle password changes:

e passwordchangeview: Handles a form to change the user password

® PpasswordChangeDoneView. The success view the user is redirected to
after a successful password change

Django also includes the following views to allow users to reset their
password:

® passwordresetview: Allows users to reset their password. It
generates a one-time use link with a token and sends it to
the user's email account.

® Ppasswordresetboneview: T€lls users that an email—including a link
to reset their password—has been sent to them.

® passwordResetConfirmvViews AHOWS users to set a new password.

® passwordResetCompleteView: The success view the user is redirected
to after successfully resetting the password.

The views listed in the preceding list can save you a lot of time when
creating a website with user accounts. The views use default values
that you can override, such as the location of the template to be
rendered, or the form to be used by the view.

You can get more information about the built-in authentication
views at https://docs.djangoproject.com/en/2.0/topics/auth/default/#all-authentic

ation-views.

https://docs.djangoproject.com/en/2.0/topics/auth/default/#all-authentication-views

Login and logout views

Edit the uris.py of your account application, like this:

from django.urls import path
from django.contrib.auth import views as auth_views
from . import views

urlpatterns = [
previous login view
path('login/', views.user_login, name='login'),
path('login/', auth_views.LoginView.as_view(), name='login'),
path('logout/', auth_views.LogoutView.as_view(), name='logout'),

We comment out the URL pattern for the user_1ogin view we have
created previously to use the Loginview View of Django's
authentication framework. We also add a URL pattern for

the LogoutView view.

Create a new directory inside the tempiates directory of your account
application and name it registration. This is the default path where
the Django authentication views expect your authentication
templates to be.

The django.contrib.adnin module includes some of the authentication
templates that are used for the administration site. We have placed
the account application at the top of the instaLien_ares setting so that
Django uses our templates by default instead of any authentication
templates defined in other apps.

Create a new file inside the tempiates/registration directory, name it
1ogin.htm1, and add the following code to it:

{% extends "base.html" %}
{% block title %}Log-in{% endblock %}

{% block content %}
<hi>Log-in</h1>
{% if form.errors %}
<p>
Your username and password didn't match.
Please try again.
</p>
{% else %}
<p>Please, use the following form to log-in:</p>
{% endif %}
<div class="login-form">
<form action="{% url 'login' %}" method="post">
{{ form.as_p }}
{% csrf_token %}
<input type="hidden" name="next" value="{{ next }}" />
<p><input type="submit" value="Log-in"></p>
</form>
</div>
{% endblock %}

This login template is quite similar to the one we created before.
Django uses the authenticationrorm form located at django.contrib.auth.forms
by default. This form tries to authenticate the user and raises a
validation error if login was unsuccessful. In this case, we can look
for errors using % if form.errors %} in the template to check whether
the credentials provided are wrong. Note that we have added a
hidden HTML <input> element to submit the value of a variable called
next. This variable is first set by the login view when you pass a next
parameter in the request (for

example, http://127.G).O.1:SOOO/account/login/?next=/account/).

The next parameter has to be a URL. If this parameter is given, the
Django login view will redirect the user to the given URL after a
successful login.

Now, create a 1ogged_out.htm1 template inside the registration template
directory and make it look like this:

{% extends "base.html" %}
{% block title %}Logged out{% endblock %}

{% block content %}
<hi>Logged out</h1>
<p>You have been successfully logged out. You can <a href="{% url
"login" %}">log-in again.</p>

{% endblock %}

This is the template that Django will display after the user logs out.

After adding the URL patterns and the templates for login and
logout views, your website is ready for users to log in using Django
authentication views.

Now, we will create a new view to display a dashboard when users
10g in to their account. Open the views. py file of YOur account
application and add the following code to it:

from django.contrib.auth.decorators import login_required

@login_required
def dashboard(request):
return render(request,
'account/dashboard.html',
{'section': 'dashboard'})

We decorate our view with the 10gin_required decorator of the
authentication framework. The 1ogin_required decorator checks
whether the current user is authenticated. If the user is
authenticated, it executes the decorated view; if the user is not
authenticated, it redirects the user to the login URL with the
originally requested URL as a cer parameter named next. By doing so,
the login view redirects users to the URL they were trying to access
after they successfully log in. Remember that we added a hidden
input in the form of our login template for this purpose.

We also define a section variable. We will use this variable to track
the site's section that the user is browsing. Multiple views may

correspond to the same section. This is a simple way to define the
section that each view corresponds to.

Now, you will need to create a template for the dashboard view.
Create a new file inside the temp1ates/account/ directory and name it
dashboard.html. Make it look like this:

{% extends "base.html" %}
{% block title %}Dashboard{% endblock %}

{% block content %}
<h1>Dashboard</h1>
<p>Welcome to your dashboard.</p>
{% endblock %}

Then, add the following URL pattern for this view in the uris.py file
of the account application:

urlpatterns = [
...
path('', views.dashboard, name='dashboard'),

Edit the settings.py file of your project and add the following code to
it:

LOGIN_REDIRECT_URL = 'dashboard'
LOGIN_URL = 'login'
LOGOUT_URL = 'logout'

The settings mentioned in the preceding code are as follows:
e ocn_reptrecT_urL: Tells Django which URL to redirect after a
successful login if no next parameter is present in the request

e roc1n_urL: The URL to redirect the user to log in (for example,
views using the 1ogin_required decorator)

e ocout_urL: The URL to redirect the user to log out

We are using the names of the URL patterns we previously defined
using the name attribute of the patn() function. Hardcoded URLs
instead of URL names can also be used for these settings.

Let's summarize what you have done so far:

¢ You have added the built-in Django authentication login and
logout views to your project

¢ You have created custom templates for both views and
defined a simple dashboard view to redirect users after they
log in

¢ Finally, you have configured your settings for Django to use
these URLs by default

Now, we will add login and logout links to our base template to put
everything together. In order to do this, we have to determine
whether the current user is logged in or not in order to display the
appropriate link for each case. The current user is set in the
nttprequest Object by the authentication middleware. You can access it
with request.user. You will find a user object in the request even if the
user is not authenticated. A non-authenticated user is set in the
request as an instance of anonymoususer. The best way to check whether
the current user is authenticated is by accessing its read-only
attribute is_authenticated.

Edit your base.ntm1 template and modify the <div> element with
a header ID, like this:

<div id="header">
Bookmarks

{% if request.user.is_authenticated %}
<ul class="menu">

<1li {% if section == "dashboard" %}class="selected"{% endif %}>
My dashboard

</1i>

<1li {% if section == "images" %}class="selected"{% endif %}>
Images

</1i>

<1li {% if section == "people" %}class="selected"{% endif %}>
People

</1i>

{% endif %}

{% if request.user.is_authenticated %}
Hello {{ request.user.first_name }},
Logout
{% else %}
Log-in
{% endif %}

</div>

As you can see in the preceding code, we only display the site's
menu to authenticated users. We also check the current section to
add a seiected class attribute to the corresponding <1i> item in order
to highlight the current section in the menu using CSS. We also
display the user's first name and a link to log out if the user is
authenticated, or a link to log in otherwise.

Now, Oopen nttp://127.0.0.1:8000/account/login/ iN your browser. You
should see the login page. Enter a valid username and password
and click on the Log-in button. You should see the following output:

Bookmarks Images People Hello Antonio, Logout

Dashboard

Welcome to your dashboard.

You can see that the My dashboard section is highlighted with CSS
because it has a se1ected class. Since the user is authenticated, the
first name of the user is displayed on the right side of the header.
Click on the Logout link. You should see the following page:

Bookmarks Log-in

Logged out

You have been successfully logged out. You can log-in again.

In the page mentioned in the preceding screenshot, you can see that
the user is logged out, and, therefore, the menu of the website is not
being displayed anymore. Now, the link on the right side of the
header shows Log-in.

If you see the logout page of the Django administration site instead of your
own log out page, check the istacLen_arps setting of your project and make
sure that django.contrib.admin comes after the account application. Both templates
are located in the same relative path, and the Django template loader will
use the first one it finds.

Changing password views

We also need our users to be able to change their password after
they log in to our site. We will integrate Django authentication
views for password change. Open the uris.py file of the account
application and add the following URL patterns to it:

change password urls
path('password_change/"',
auth_views.PasswordChangeView.as_view(),
name="'password_change'),
path('password_change/done/',
auth_views.PasswordChangeDoneView.as_view(),
name="'password_change_done'),

The PasswordChangeView view will handle the form to change the
password, and the PasswordChangeDoneView VIEW will dlsplay a SuUcCcCess
message after the user has successfully changed his password. Let's
create a template for each view.

Add a new file inside the templates/registration/ directory of YOur account
application and name it password_change_form.htm1. Add the following
code to it:

{% extends "base.html" %}
{% block title %}Change you password{% endblock %}

{% block content %}
<hi>Change you password</hi>
<p>Use the form below to change your password.</p>
<form action="." method="post">
{{ form.as_p }}
<p><input type="submit" value="Change"></p>
{% csrf_token %}
</form>
{% endblock %}

The password_change_form.html template includes the form to change the
password. Now, create another file in the same directory and name
it password_change_done.html. Add the following code to it:

{% extends "base.html" %}
{% block title %}Password changed{% endblock %}

{% block content %}

<hi>Password changed</h1>

<p>Your password has been successfully changed.</p>
{% endblock %}

The password_change_done.html template only contains the success
message to be displayed when the user has successfully changed
their password.

Open http://127.0.0.1:8000/account/password_change/ n your browser. IfYOU.I'
user is not logged in, the browser will redirect you to the login page.
After you are successfully authenticated, you will see the following
change password page:

Bookmarks My dashboard Images People Hello Antonio, Logout

Change you password
Use the form below to change your password.

Old password:

New password:

Your password can't be too similar to your other personal information.
Your password must contain at least 8 characters.

Your password can't be a commonly used password.

Your password can't be entirely numeric.

New password confirmation:

Fill in the form with your current password and your new password,
and click on the CHANGE button. You will see the following success

page:

Bookmarks My dashboard Images People Hello Antonio, Logout

Password changed

Your password has been successfully changed.

Log out and log in again using your new password to verify that
everything works as expected.

Resetting password views

Add the following URL patterns for password restoration to the
urls.py file of the account application:

reset password urls

path('password_reset/',
auth_views.PasswordResetView.as_view(),
name="'password_reset'),

path('password_reset/done/',
auth_views.PasswordResetDoneView.as_view(),
name="'password_reset_done'),

path('reset/<uidb64>/<token>/"',
auth_views.PasswordResetConfirmView.as_view(),
name="'password_reset_confirm'),

path('reset/done/"',
auth_views.PasswordResetCompleteView.as_view(),
name="'password_reset_complete'),

Add a new file in the templates/registration/ directory of YOur account
application and name it password_reset_form.htm1. Add the following code
to it:

{% extends "base.html" %}
{% block title %}Reset your password{% endblock %}

{% block content %}
<hi>Forgotten your password?</hi1>
<p>Enter your e-mail address to obtain a new password.</p>
<form action="." method="post">
{{ form.as_p }}
<p><input type="submit" value="Send e-mail"></p>
{% csrf_token %}
</form>
{% endblock %}

Now, create another file in the same directory and name it

password_reset_email.html. Add the following code to it:

Someone asked for password reset for email {{ email }}. Follow the link
below:

{{ protocol }}://{{ domain }3}{% url "password_reset_confirm" uidb64=uid
token=token %}

Your username, in case you've forgotten: {{ user.get_username }}

The password_reset_email.html template will be used to render the email
sent to users to reset their password.

Create another file in the same directory and name it
password_reset_done.html. Add the following code to it:

{% extends "base.html" %}

{% block title %}Reset your password{% endblock %}

{% block content %}
<hi>Reset your password</hi>
<p>We've emailed you instructions for setting your password.</p>
<p>If you don't receive an email, please make sure you've entered the
address you registered with.</p>
{% endblock %}

Create another template in the same directory and name it
password_reset_confirm.html. Add the following code to it:

{% extends "base.html" %}

{% block title %}Reset your password{% endblock %}

{% block content %}
<hi>Reset your password</hi>
{% if validlink %}
<p>Please enter your new password twice:</p>
<form action="." method="post">
{{ form.as_p }}
{% csrf_token %}
<p><input type="submit" value="Change my password" /></p>
</form>
{% else %}

<p>The password reset link was invalid, possibly because it has
already been used. Please request a new password reset.</p>
{% endif %}
{% endblock %}

We check whether the provided link is valid. The view
Passwordresetconfirmview S€ts this variable and puts it in the context of
the password_reset_confirm.html template. If the link is Valid, we dlsplay
the user password reset form.

Create another template and name it password_reset_complete.html. Enter
the following code into it:

{% extends "base.html" %}
{% block title %}Password reset{% endblock %}

{% block content %}

<h1>Password set</h1>

<p>Your password has been set. You can log in
now</p>
{% endblock %}

Finally, edit the registration/login.html template of the account
application, and add the following code after the <form> element:

<p>Forgotten your
password?</p>

Now, open nttp://127.0.0.1:8000/account/login/ iN your browser and click
on the Forgotten your password? link. You should see the following

page:

Bookmarks Log-in

Forgotten your password?

Enter your e-mail address to obtain a new password.

Email:

SEND E-MAIL

At this point, you need to add an SMTP configuration to the
settings.py file of your project so that Django is able to send emails.
You learned how to add email settings to your project in chapter 2,
Enhancing Your Blog with Advanced Features. However, during
development, you can configure Django to write emails to the
standard output instead of sending them through an SMTP server.
Django provides an email backend to write emails to the console.
Edit the settings.py file of your project, and add the following line:

EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'

The evarL_sackeno setting indicates the class to use to send emails.

Return to your browser, enter the email address of an existing user,
and click on the SEND E-MAIL button. You should see the
following page:

Bookmarks Log-in

Reset your password

We've emailed you instructions for setting your password.

If you don't receive an email, please make sure you've entered the address you registered with.

Take a look at the console where you are running the development
server. You will see the generated email, as follows:

Content-Type: text/plain; charset="utf-8"
MIME-Version: 1.0

Content-Transfer-Encoding: 7bit

Subject: Password reset on 127.0.0.1:8000

From: webmaster@localhost

To: user@domain.com

Date: Fri, 15 Dec 2017 14:35:08 -0000

Message-ID: <20150924143508.62996.55653@zenx.local>

Someone asked for password reset for email user@domain.com. Follow the link
below:

http://127.0.0.1:8000/account/reset/MQ/45f-9c3f30caafd523055fcc/

Your username, in case you've forgotten: zenx

The email is rendered using the password_reset_emai1.htm1 template we
created earlier. The URL to reset your password includes a token
that was generated dynamically by Django. Copy the URL and open
it in your browser. You should see the following page:

Bookmarks Log-in

Reset your password

Please enter your new password twice:

New password:

Your password can't be too similar to your other personal information.
Your password must contain at least 8 characters.

Your password can't be a commonly used password.
Your password can't be entirely numeric.

New password confirmation:

CHANGE MY PASSWORD

The page to set a new password corresponds to the
password_reset_confirm.html template. Fill in a new password and click on
the CHANGE MY PASSWORD button. Django creates a new
encrypted password and saves it in the database. You will see the
following success page:

Bookmarks Log-in

Password set

Your password has been set. You can log in now

Now, you can log back into your account using your new password.

Each token to set a new password can be used only once. If you
open the link you received again, you will get a message stating that
the token is invalid.

You have integrated the views of the Django authentication
framework in your project. These views are suitable for most cases.
However, you can create your own views if you need a different
behavior.

Django also provides the authentication URL patterns we just
created. You can comment out the authentication URL patterns we
added to the uris.py file of the account application and include
django.contrib.auth.urls instead, as follows:

from django.urls import path, include
...

urlpatterns = [
...
path('', include('django.contrib.auth.urls')),

You can see the authentication URL patterns included at nttps://githu
b.com/django/django/blob/stable/2.0.x/django/contrib/auth/urls.py.

https://github.com/django/django/blob/stable/2.0.x/django/contrib/auth/urls.py

User registration and user
profiles

Existing users can now log in, log out, change their password, and
reset their password. Now, we will need to build a view to allow

visitors to create a user account.

User registration

Let's create a simple view to allow user registration on our website.
Initially, we have to create a form to let the user enter a username,
their real name, and a password.

Edit the forms.py file located inside the account application directory
and add the following code to it:

def

from django.contrib.auth.models import User

class UserRegistrationForm(forms.ModelForm):
password = forms.CharField(label="'Password"',

widget=forms.PasswordInput)

password2 = forms.CharField(label="'Repeat password',

widget=forms.PasswordInput)

class Meta:

model = User
fields = ('username', 'first_name', 'email')

clean_password2(self):
cd = self.cleaned_data
if cd['password'] != cd['password2']:
raise forms.ValidationError('Passwords don\'t match.")
return cd['password2']

We have created a model form for the user model. In our form, we
include only the username, first_name, and emai1 fields of the model. These
fields will be validated based on their corresponding model fields.
For example, if the user chooses a username that already exists,
they will get a validation error because usernane is a field defined with
unique=True. We have added two additional fieldS—password and password2
—for users to set their password and confirm it. We have defined a
clean_password2() method to check the second password against the
first one and not let the form validate if the passwords don't match.
This check is done when we validate the form calling its is va1id()

method.

You can provide a ciean_<fieldname>() method to any of your

form fields in order to clean the value or raise form validation
errors for a specific field. Forms also include a general ciean()
method to validate the entire form, which is useful to validate fields
that depend on each other.

Django also provides a usercreationrorm form that you can use, which
resides in django.contrib.auth.forms and is very similar to the one we
have created.

Edit the views.py file of the account application and add the following
code to it:

from .forms import LoginForm, UserRegistrationForm

def register(request):
if request.method == 'POST':
user_form = UserRegistrationForm(request.POST)
if user_form.is_valid():
Create a new user object but avoid saving it yet
new_user = user_form.save(commit=False)
Set the chosen password
new_user.set_password(
user_form.cleaned_data['password'])
Save the User object
new_user.save()
return render(request,
'account/register_done.html',
{'new_user': new_user})
else:
user_form = UserRegistrationForm()
return render(request,
'account/register.html',
{'user_form': user_form})

The view for creating user accounts is quite simple. Instead of
saving the raw password entered by the user, we use the set_password()
method of the user model that handles encryption to save for safety
reasons.

NOW, edit the urls.py file of YOUur account application and add the
following URL pattern:

path('register/', views.register, name='register'),

Finally, create a new template in the account/ template directory,
name it register.ntn1, and make it look as follows:

{% extends "base.html" %}
{% block title %}Create an account{% endblock %}

{% block content %}
<hl>Create an account</hi>
<p>Please, sign up using the following form:</p>
<form action="." method="post">
{{ user_form.as_p }}
{% csrf_token %}
<p><input type="submit" value="Create my account"></p>
</form>
{% endblock %}

Add a template file in the same directory and name it
register_done.html. Add the following code to it:

{% extends "base.html" %}
{% block title %}Welcome{% endblock %}

{% block content %}

<hi>Welcome {{ new_user.first_name }}!</h1>

<p>Your account has been successfully created. Now you can <a href="{% url
"login" %}">log in.</p>
{% endblock %}

NOW, Op€n http://127.0.0.1:8000/account/register/ n your browser. You
will see the registration page you have created:

Bookmarks Log-in

Create an account
Please, sign up using the following form:

Username:

Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.

First name:
Email address:
Password:

Repeat password:

CREATE MY ACCOUNT

Fill in the details for a new user and click on the CREATE MY
ACCOUNT button. If all fields are valid, the user will be created,
and you will get the following success message:

Bookmarks Log-in

Welcome Palomal!

Your account has been successfully created. Now you can log in.

Click on the log in link and enter your username and password to
verify that you can access your account.

Now, you can also add a link to registration in your login template.

Edit the registration/login.html template; take a look at the fOHOWil’lg
line:

<p>Please, use the following form to log-in:</p>
Replace it with the following:

<p>Please, use the following form to log-in. If you don't have an account register here</p>

We made the signup page accessible from the login page.

Extending the user model

When you have to deal with user accounts, you will find that the
user model of the Django authentication framework is suitable for
common cases. However, the user model comes with very basic
fields. You may wish to extend the user model to include additional
data. The best way to do this is by creating a profile model that
contains all additional fields and a one-to-one relationship with the
Django user model.

Edit the mode1s.py file of your account application and add the following
code to it:

from django.db import models
from django.conf import settings

class Profile(models.Model):
user = models.OneToOneField(settings.AUTH_USER_MODEL,
on_delete=models.CASCADE)
date_of_birth = models.DateField(blank=True, null=True)
photo = models.ImageField(upload_to="'users/%Y/%m/%d/"',
blank=True)

def __str__ (self):
return 'Profile for user {}'.format(self.user.username)

In order to keep your code generic, use the get_user_mode1() method to retrieve
the user model and the aurn_user_mooeL Setting to refer to it when defining a
model's relations to the user model, instead of referring to the auth user
model directly.

The user one-to-one field allows you to associate profiles with
users. We use cascaoe for the on_delete parameter so that its related
profile also gets deleted when a user is deleted. The photo field is an
magerield field. You will need to install the pi110w library to handle

images. Install ri110n by running the following command in your
shell:

pip install Pillow==5.1.0

For Django to serve media files uploaded by users with the
development server, add the following settings to the settings.py file
of your project:

MEDIA_URL = '/media/'
MEDIA_ROOT = os.path.join(BASE_DIR, 'media/"')

menza_urL 1S the base URL to serve the media files uploaded by users,
and veb1a_root is the local path where they reside. We build the path
dynamically relative to our project path to make our code more
generic.

Now, edit the main uris.py file of the bookmarks project and modify the
code, as follows:

from django.contrib import admin

from django.urls import path, include

from django.conf import settings

from django.conf.urls.static import static

urlpatterns = [
path('admin/', admin.site.urls),
path('account/', include('account.urls')),

]

if settings.DEBUG:
urlpatterns += static(settings.MEDIA_URL,
document_root=settings.MEDIA_ROOT)

In this way, the Django development server will be in charge of
serving the media files during development (that is when the oesuc
setting is set to True).

The static() helper function is suitable for development, but not for
production use. Never serve your static files with Django in a production
environment.

Open the shell and run the following command to create the

database migration for the new model:
python manage.py makemigrations
You will get the following output:

Migrations for 'account':
account/migrations/0001_initial.py
- Create model Profile

Next, sync the database with the following command:

python manage.py migrate

You will see an output that includes the following line:

Applying account.0001_initial... OK

Edit the adnin.py file of the account application and register the rrofile
model in the administration site, like this:

from django.contrib import admin
from .models import Profile

@admin.register(Profile)
class ProfileAdmin(admin.ModelAdmin):
list_display = ['user', 'date_of_birth', 'photo']

Run the development server USil’lg the python manage.py runserver
command and open nttp://127.0.0.1:8000/admin/ iN your browser. Now,
you should be able to see the Profiles model in the administration
site of your project, as follows:

ACCOUNT

Profiles + Add ¢ Change

Now, we will let users edit their profile on the website. Add the
following import and model forms to the forns.py file of the account
application:

from .models import Profile

class UserEditForm(forms.ModelForm):

class Meta:
model = User
fields = ('first_name', 'last_name', 'email')

class ProfileEditForm(forms.ModelForm):
class Meta:
model = Profile
fields = ('date_of_birth', 'photo')

These forms are as follows:

e usereditrorm: This will allow users to edit their first name, last
name, and email, which are attributes of the built-in Django
user model.

e profileeditrorm: This will allow users to edit the profile data we
save in the custom rrorize model. Users will be able to edit
their date of birth and upload a picture for their profile.

Edit the views.py file of the account application and import the profiie
model, like this:

from .models import Profile

Then, add the fOHOWil’lg lines to the register view below new_user.save().

Create the user profile
Profile.objects.create(user=new_user)

When users register on our site, we will create an empty profile
associated with them. You should create a rrorite Object manually
using the administration site for the users you created before.

Now, we will let users edit their profile. Add the following code to
the same file:

from .forms import LoginForm, UserRegistrationForm, \
UserEditForm, ProfileEditForm

@login_required
def edit(request):
if request.method == 'POST':
user_form = UserEditForm(instance=request.user,
data=request.POST)
profile_form = ProfileEditForm(
instance=request.user.profile,
data=request.POST,
files=request.FILES)
if user_form.is valid() and profile_form.is_valid():
user_form.save()
profile_form.save()
else:
user_form = UserEditForm(instance=request.user)
profile_form = ProfileEditForm(
instance=request.user.profile)
return render(request,
'account/edit.html’',
{'user_form': user_form,
'profile_form': profile_form})

We use the 10gin_required decorator because users have to be
authenticated to edit their profile. In this case, we are using two
model forms: usereditrorm to store the data of the built-in user model
and profileeditrorn to store the additional profile data in the

custom rrorize model. To validate the submitted data, we will
execute the is_va1id() method of both forms. If both forms contain

valid data, we will save both forms, calling the save() method to
update the corresponding objects in the database.

Add the following URL pattern to the uris. py file of the account
application:

path('edit/', views.edit, name='edit'),

Finally, create a template for this view in tempiates/account/ and name
it edit.htmi. Add the following code to it:

{% extends "base.html" %}
{% block title %}Edit your account{% endblock %}

{% block content %}
<h1>Edit your account</h1>
<p>You can edit your account using the following form:</p>
<form action="." method="post" enctype="multipart/form-data">
{{ user_form.as_p }}
{{ profile_form.as_p }}
{% csrf_token %}
<p><input type="submit" value="Save changes"></p>
</form>
{% endblock %}

We include enctype="multipart/form-data" in our form to enable file
uploads. We use an HTML form to submit both the user_form and the
profile_fornlfi)rllls.

Register a new user and Open http://127.0.0.1:8000/account/edit/. YOU
should see the following page:

Bookmarks My dashboard Images People Hello Paloma, Logout

Edit your account

You can edit your account using the following form:

First name:

Paloma

Last name:

Melé

Email address:

paloma@zenxit.com

Date of birth:

1981-04-14

Photo:

Choose File no file selected

Now, you can also edit the dashboard page and include links to the
edit profile and change password pages. Open the account/dashboard.htm1
template:

<p>Welcome to your dashboard.</p>
Replace the preceding line with the following one:

<p>Welcome to your dashboard. You can edit your
profile or change your
password.</p>

Users can now access the form to edit their profile from their
dashboard. Open http://127.0.0.1:8000/account/ in your browser and test
the new link to edit the user's profile:

Dashboard

Welcome to your dashboard. You can edit your profile or change your password.

Using a custom user model

Django also offers a way to substitute the whole user model with
your own custom model. Your user class should inherit from
Django's abstractuser class, which provides the full implementation of
the default user as an abstract model. You can read more about this
method

at https://docs.djangoproject.com/en/2.0/topics/auth/customizing/#substituting-a-

custom-user-model.

Using a custom user model will give you more flexibility, but it
might also result in more difficult integration with pluggable
applications that interact with Django's auth user model.

https://docs.djangoproject.com/en/2.0/topics/auth/customizing/#substituting-a-custom-user-model

Using the messages framework

When allowing users to interact with your platform, there are many
cases where you might want to inform them about the result of their
actions. Django has a built-in messages framework that allows you
to display one-time notifications to your users.

The messages framework is located at django.contrib.messages and is
included in the default instaLLep_apps list of the settings.py file when you
create new projects USil’lg python manage.py startproject. You will note
that your settings file contains a middleware named
django.contrib.messages.middleware.MessageMiddleware in the wmipoLeware settings.

The messages framework provides a simple way to add messages to
users. Messages are stored in a cookie by default (falling back to
session storage), and they are displayed in the next request the user
does. You can use the messages framework in your views by
importing the messages module and adding new messages with simple
shortcuts, as follows:

from django.contrib import messages
messages.error(request, 'Something went wrong')

You can create new messages using the add_message() method or any of
the following shortcut methods:

® success(): Success messages to be displayed after an action
was successful
* info(): Informational messages

e uarning(): Something has not yet failed but may fail

imminently
e error(): An action was not successful, or something failed

® debug(): Debug messages that will be removed or ignored in a
production environment

Let's add messages to our platform. Since the messages framework
applies globally to the project, we can display messages for the user
in our base template. Open the base.ntm1 template of the account
application and add the following code between the <div> element
with the header ID and the <div> element with the content ID:

{% if messages %}
<ul class="messages">
{% for message in messages %}
<li class="{{ message.tags }}">
{{ message|safe }}
x
</1i>
{% endfor %}

{% endif %}

The messages framework includes the context

PTrOCESSOI django.contrib.messages.context_processors.messages that adds a
messages variable to the request context. You can find it in the
context_processors list of the tempLaTES setting of your project. You can use
this variable in your templates to display all existing messages to
the user.

Now, let's modify our edit view to use the messages framework. Edit
the views.py file of the account application, import messages, and make the
edit view look as follows:

from django.contrib import messages

@login_required

def edit(request):
if request.method == 'POST':

...

if user_form.is_valid() and profile_form.is_valid():
user_form.save()
profile_form.save()
messages.success(request, 'Profile updated '\

'successfully')

else:
messages.error(request, 'Error updating your profile')
else:
user_form = UserEditForm(instance=request.user)
...

We add a success message when the user successfully updates their
profile. If any of the forms contain invalid data, we add an error
message instead.

Open http://127.0.0.1:8000/account/edit/ iN your browser and edit your
profile. When the profile is successfully updated, you should see the
following message:

Bookmarks My dashboard Images People Hello Paloma, Logout

Profile updated successfully

When data is not valid, for example, using an incorrectly formatted
date for the Date of birth field, you should see the following
message:

Bookmarks My dashboard Images People Hello , Logout

You can learn more about the messages framework at https://docs.djan

goproject.com/en/2.0/ref/contrib/messages/.

https://docs.djangoproject.com/en/2.0/ref/contrib/messages/

Building a custom
authentication backend

Django allows you to authenticate against different sources. The
auTHENTIcATTON_BAckenps Setting includes the list of authentication
backends for your project. By default, this setting is set as follows:

['django.contrib.auth.backends.ModelBackend']

The default mode1sackend authenticates users against the database
using the user model of django.contrib.auth. This will suit most of your
projects. However, you can create custom backends to authenticate
your user against other sources, such as an LDAP directory or any
other system.

You can read more information about customizing authentication at
https://docs.djangoproject.com/en/2.0/topics/auth/customizing/#other-

authentication-sources.

Whenever you use the authenticate() function of django.contrib.auth,
Django tries to authenticate the user against each of the backends
defined in authentcaTION BACKENDS ONE by one, until one of them
successfully authenticates the user. Only if all of the backends fail to
authenticate will the user not be authenticated into your site.

Django provides a simple way to define your own authentication
backends. An authentication backend is a class that provides the
following two methods:

® authenticate(): It takes the request Object and user credentials as
parameters. It has to return a user object that matches those

https://docs.djangoproject.com/en/2.0/topics/auth/customizing/#other-authentication-sources

credentials if the credentials are valid, or none otherwise. The
request parameter is an wttprequest 0bject, or none if it's not
provided tO authenticate().

e get_user(): Takes a user ID parameter and has to return a user
object.

Creating a custom authentication backend is as simple as writing a
Python class that implements both methods. We will create an
authentication backend to let users authenticate in our site using
their email address instead of their username.

Create a new file inside your account application directory and name
1t authentication. py. Add the following code to it:

from django.contrib.auth.models import User

class EmailAuthBackend(object):

Authenticate using an e-mail address.
def authenticate(self, request, username=None, password=None):
try:
user = User.objects.get(email=username)
if user.check_password(password):
return user
return None
except User.DoesNotExist:
return None

def get_user(self, user_id):
try:
return User.objects.get(pk=user_id)
except User.DoesNotExist:
return None

The preceding code is a simple authentication backend. The
authenticate() method receives a request object and the username and
password Optional parameters. We could use different parameters, but
Wwe use username and password to make our backend work with the

authentication framework views straight away. The preceding code
works as follows:

e authenticate(): We try to retrieve a user with the given email
address and check the password using the built-in
check_password() method of the user model. This method
handles the password hashing to compare the given
password against the password stored in the database.

e get_user(): We get a user through the ID set in the user_id
parameter. Django uses the backend that authenticated the
user to retrieve the user object for the duration of the user
session.

Edit the settings.py file of your project and add the following setting:

AUTHENTICATION_BACKENDS = [
'django.contrib.auth.backends.ModelBackend',
'account.authentication.EmailAuthBackend',

In the preceding setting, we kept the default mode1sackend that is used
to authenticate with username and password and included our own
email-based authentication backend. Now, open
http://127.0.0.1:8000/account/login/ IN your browser. Remember that
Django will try to authenticate the user against each of the
backends, so now we should be able to log in seamlessly using your
username or email account. User credentials will be checked using
the mode1Backend authentication backend, and if no user is returned,
credentials will be checked using our custom emaiiauthackend backend.

The order of the backends listed in the aursenticarron_sackenns setting matters. If
the same credentials are valid for multiple backends, Django will stop at the
first backend that successfully authenticates the user.

Adding social authentication to
your site

You might also want to add social authentication to your site using
services such as Facebook, Twitter, or Google. Python Social Auth is
a Python module that simplifies the process of adding social
authentication to our website. Using this module, you can let your
users log in to your website using their account of other services.
You can find the code of this module at https://github.com/python-social-au
th.

This module comes with authentication backends for different
Python frameworks, including Django. To install the Django
package via pip, open the console and run the following command:

pip install social-auth-app-django==2.1.0

Then, add social_django tO the INSTALLED_APPS setting in the settings.py file
of your project:

INSTALLED_APPS = [
#...
'social django',

This is the default application to add python-social-auth to Django
projects. Now, run the following command to sync python-social-
auth models with your database:

python manage.py migrate

https://github.com/python-social-auth

You should see that the migrations for the default application are
applied as follows:

Applying social django.0001_initial... OK
Applying social django.0002_add_related_name... OK

Applying social django.0008_partial timestamp... OK

Python-social-auth includes backends for multiple services. You can
see a list of all backends at https://python-social-auth.readthedocs.io/en/lates

t/backends/index.html#supported-backends.

We will include authentication backends for Facebook, Twitter, and
Google.

You will need to add social login URL patterns to your project. Open
the main urls.py file of the bookmarks project and include the social_django
URL patterns as follows:

urlpatterns = [
path('admin/', admin.site.urls),
path('account/', include('account.urls')),
path('social-auth/',
include('social_django.urls', namespace='social')),

Several social services will not allow the redirecting of users to
127.0.0.1 OT localhost after a successful authentication. In order to
make social authentication work, you will need a domain. In order
to fix this, under Linux or macOS X, edit your /etc/hosts file and add
the following line to it:

127.0.0.1 mysite.com

This will tell your computer to point the mysite.com hostname to your
own machine. If you are using Windows, your hosts file is located at

C:\Windows\System32\Drivers\etc\hosts.

https://python-social-auth.readthedocs.io/en/latest/backends/index.html#supported-backends

To verify that your host redirection worked, start the development
server with python manage.py runserver and open
http://mysite.com:8000/account/login/ in your browser. You will see the
following error:

DisallowedHost at /account/login/
Invalid HTTP_HOST header: 'mysite.com:8000'. You may need to add 'mysite.com'to ALLOWED_HOSTS.

Django controls the hosts able to serve your application using

the aLLowen_nosts setting. This is a security measure to prevent HTTP
host header attacks. Django will only allow the hosts included in
this list to serve the application. You can learn more about

the ALLOWED_HOSTS setting at nttps://docs.djangoproject.com/en/2.0/ref/settings/#a

llowed-hosts.

Edit the settings.py file of your project and edit the acLowen_nosts setting
as follows:

ALLOWED_HOSTS = ['mysite.com', 'localhost',6 '127.0.0.1']

Besides the mysite.com host, we explicitly include 1ocaihost and 127.6.0.1.
We do this to be able to access the site through 1ocainost, which is the
default Django's behavior when pesus is True and aLLowep_HosTs 1S empty.
NOW, you should be able to OpPe€n http://mysite.com:8000/account/login/ in
your browser.

https://docs.djangoproject.com/en/2.0/ref/settings/#allowed-hosts

Authentication using Facebook

In order to let your users log in with their Facebook account to your
site, add the following line to the authentzcatron_sackenos setting in the
settings.py file of your project:

'social_core.backends.facebook.FacebookOAuth2',

In order to add social authentication with Facebook, you will need a
Facebook developer account and to create a new Facebook
application. Open https://developers.facebook.com/apps/ n your browser.
You will see the following header in the site:

fcsook frcevloers | podis Do TS s Vi aa - Mk e

Search apps by i $ AddalewAp

Click on the Add a New App button. You will see the following form
to create a new app ID:

https://developers.facebook.com/apps/

Create a New App ID

Get started integrating Facebook into your app or website

Display Name

Bookmarks

Contact Email

antonio.mele @zenxit.com

By proceeding, you agree to the Facebook Platform Policies Cancel

Enter sookmarks as Display Name, add a contact email address, and
click on Create App ID. You will see a dashboard for your new app
that displays different features you can set up for your app. Look for
the following Facebook Login box and click on Set Up:

Facebook Login

The world's number one social login
product.

Read Docs m

You will be asked to choose the platform, as follows:

Use the Quickstart to add Facebook Login to your app. To get started, select the platform for this app.

00O

Android Web Other
Select the Web platform. You will see the following form:

1. Tell Us about Your Website v

Tell us what the URL of your site is.

Site URL

http://mysite.com:8000/

Save

Enter nttp://mysite.com:s000/ as your Site URL and click on the Save
button. You can skip the rest of the quickstart process. In the left-
hand menu, click on Dashboard. You will see something similar to
the following:

APPI: TABESTSAISO A View Andlfs & Toos8 St Des &

Dashhoard

i BookmarkSo

This 4015 evelopment mod andcanonly e Use by app admin, cevelopers ard testers [
APWe §on] ApplD

Aop Reiew

Facenook Legin
‘ Aop e

Add Product] Show

Copy the App ID and App Secret keys and add them to the settings.py
file of your project, as follows:

SOCIAL_AUTH_FACEBOOK_KEY = 'XXX' # Facebook App ID
SOCIAL_AUTH_FACEBOOK_SECRET = 'XXX' # Facebook App Secret

Optionally, you can define a soctaL_auth_racesook_score setting with the
extra permissions you want to ask Facebook users for:

SOCIAL_AUTH_FACEBOOK_SCOPE = ['email']

Now, go back to Facebook and click on Settings. You will see a form
with multiple settings for your app. Add mysite.com under App
Domains, as follows:
App Domains
mysite.com

Click on Save Changes. Then, in the left-hand menu, click on
Facebook Login. Ensure that only the following settings are active:

¢ Client OAuth Login
e Web OAuth Login

e Embedded Browser OAuth Login

Enter http://mysite.com:8000/social-auth/complete/facebook/ under Valid

OAuth redirect URIs. The selection should look like this:

Client OAuth Settings

= Client Outh Login
Enables the standard OAuth client token fow, Secure your applicaton and prevent abus by locking
donm which token reirect URIs ar alowed with the optons below. isable lobally f notused. [

" Weo OAuth Logi NonMMMMmMMMn
Enables weh hased OAuth client login for When on, prompts people o enter thei
bulding custom login flows, [7 Facebook password n rder tolog in on

te v |7

2 mbwdemommog " Use Stric Moo for Redirect URIS
Enables browser control redirect rifo Only llow recirects that use the
OAuth cent login, {7 Facebook SDK or that exactly match the

Vali ORuth Recirect URIs, Strongly
recommended. [
Valic OAuth ecirect URls

it Imysite.com8000/Social-auth/completefacebook]

Login from Devices

Enables the OAuth client ogin flow for
devies ke a smart TV [

Open the registration/1ogin.htm1 template of your account application and
append the following code at the bottom of the content block:

<div class="social">

<1li class="facebook">Sign
in with Facebook</1i>

</div>

Open http://mysite.com:8000/account/login/ in your browser. NOW, the
login page will look as follows:

Bookmarks Log-in

Log-in

Please, use the following form to log-in. If you don't have an account register here

Username: Sign in with Facebook

Password:

LOG-IN

Forgotten your password?

Click on the Sign in with Facebook button. You will be redirected to

Facebook, and you will see a modal dialog asking for your
permission to let the Bookmarks application access your public
Facebook profile:

L

Bookmarks will receive:
your public profile and email address. @

[# Edit This

Continue as Antonio

Click on the Continue as ... button. You will be logged in and
redirected to the dashboard page of your site. Remember that we
have set this URL in the rocin_reprrect_urL Setting. As you can see,
adding social authentication to your site is pretty straightforward.

Authentication using Twitter

For social authentication using Twitter, add the following line to the
AUTHENTICATION_BAcKENDs Setting in the settings.py file of your project:

'social_core.backends.twitter.TwitterOAuth',

You will need to create a new application in your Twitter account.
Open https://apps.twitter.com/app/new in your browser. You will see the
following form:

https://apps.twitter.com/app/new

Anplcation Detas
Neme'

Bookmarks

Hourappation name. T st atut e Sur ofa et and i usfcing adhozafion e, 52 Charclrs mar

Deseription”
T Dngo applcaton,

Hourappcation sonptn, i il b Shown i s fing oo e, Bedveen 10ana 20 chrlrs max,

Websie
st com80)

Hourapplceos bl accesbl e page, wheve usescan g0t ol mate us o o A out more ot about our applaton, Thisul-cualied URL s e nte
souroeafiufion o et ety your applcaon anwil b show inusr-xing athorztionsrgns

Iy cont eve a UL st pu a ol e ot emember o change)

Calback AL
ot com B00)sociakautcompleete

ihee s e rfum e Sucessfuly authentcatg OAuth 1.0 apolcafion houdexpit sp e oauth calbaokURL on e request tofen s, regardes of e vl

(e e, T st your pplation o sy calbacks, e s el bl

Enter the details of your application, including the following
settings:

e Website: http://mysite.com:8000/

e Callback URL: http://mysite.com:8000/social-auth/complete/twitter/

Then, click on Create your Twitter application. You will see the
application details. Click on Keys and Access Tokens. You should
see the following information:

Bookmarks

Details ~ Settings =~ Keys and Access Tokens =~ Permissions

Application Settings

Keep the "Consumer Secret" a secret. This key should never be human-readable in your application.

Consumer Key (API Key) eJJU1AzzEQFJ6PAgLjc18TH1

Consumer Secret (Apl Fhkkkhdkhkkkkkkkkkhrkkkrk
Secret)
Access Level Read and write (modify app permissions)

Copy the Consumer Key and Consumer Secret keys into the
following settings in the settings.py file of your project:

SOCIAL_AUTH_TWITTER_KEY = 'XXX' # Twitter Consumer Key
SOCIAL_AUTH_TWITTER_SECRET = 'XXX' # Twitter Consumer Secret

Now, edit the registration/1ogin.htmi template and add the following
code to the <u1> element:

<li class="twitter"><a href="{% url "social:begin" "twitter"
%}">Login with Twitter</1li>

Open http://mysite.com:8000/account/login/ n your browser and click on
the Login with Twitter link. You will be redirected to Twitter, and it
will ask you to authorize the application as follows:

Authorize Bookmarks Test to use
your account?

o _ Bookmarks
orize app BCe mysite.com:8000/

Test Django application.
This application will be able to:

 Read Tweets from your timeline.
¢ See who you follow.

Will not be able to:

 Follow new people.

Update your profile.

Post Tweets for you.

Access your direct messages.

See your email address.

See your Twitter password.

Click on Authorize app. You will be logged in and redirected to the
dashboard page of your site.

Authentication using Google

Google offers OAuth2 authentication. You can read about Google's

OAuth2 implementation at nttps://developers.google.com/identity/protocols/
OAuth2.

To implement authentication using Google, add the following line
to the authenTzcatIon_BACKENDS Setting in the settings.py file of your project:

'social_core.backends.google.GoogleOAuth2',

First, you will need to create an API key in your Google Developer
Console. Open https://console.developers.google.com/apis/credentials n your
browser. Click on Select a project and create a new project, as
follows:

= Google APIs Q

New Project

You have 12 projects remaining in your quota. Learn more.

Project name

Bookmarks

Your project ID will be bookmarks-185117 Edit

https://developers.google.com/identity/protocols/OAuth2
https://developers.google.com/accounts/docs/OAuth2
https://console.developers.google.com/apis/credentials

After the project is created, under Credentials, click on Create
credentials and choose OAuth client ID, as follows:

APls
Credentials

You need credentials to access APIs. Enable the APIs that you
plan to use and then create the credentials that they require.
Depending on the API, you need an API key, a service account or
an OAuth 2.0 client ID. Refer to the APl documentation for details.

Create credentials ~

APl key
Identifies your project using a simple API key to check quota and access.

OAuth client ID
Requests user consent so your app can access the user's data.

Service account key
Enables server-to-server, app-level authentication using robot accounts.

Help me choose
Asks a few questions to help you decide which type of credential to use

Google will ask you to configure the consent screen first:

To create an OAuth clent I, you must frst set product name on the consent cregn, Conigure conent sereen

The preceding page is the page that will be shown to users to give
their consent to access your site with their Google account. Click on
the Configure consent screen button. Select your email address,
enter sookmarks under Product name, and click on the Save button.
The consent screen for your application will be configured, and you

will be redirected to finish creating your client ID.

Fill in the form with the following information:

e Application type: Select Web application

e Name: Enter sookmarks

e Authorized redirect URIs: Add http://mysite.com:8000/social-

auth/complete/google-oauth2/

The form should look like this:

Application type

® Web application
Android Learn more
Chrome App Learn more
i0S Learn more
PlayStation 4
Other

Name

Bookmarks

Restrictions
Enter JavaScript origins, redirect URIs or both

Authorised JavaScript origins
For use with requests from a browser. This is the origin URI of the client application. It cannot contain a wildcard

(https://*.example.com) or a path (https://example.com/subdir). If you're using a non-standard port, you must
include it in the origin URL.

https://www.example.com

Authorised redirect URIs

For use with requests from a web server. This is the path in your application that users are redirected to after they
have authenticated with Google. The path will be appended with the authorisation code for access. Must have a
protocol. Cannot contain URL fragments or relative paths. Cannot be a public IP address.

http://mysite.com:8000/social-auth/complete/google-oauth2/ X

https://www.example.com/ocauth2callback

Cancel

Click on the Create button. You will get the Client ID and Client
Secret keys. Add them to your settings.py file, like this:

SOCIAL_AUTH_GOOGLE_OAUTH2_KEY = 'XXX' # Google Consumer Key
SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET = 'XXX' # Google Consumer Secret

In the left-hand menu of the Google Developers Console, under the
APIs & Services section, click on the Library link. You will see a list
that contains all Google APIs. Click on Google+ API and then click

on the ENABLE button in the following page:

Google+ API
Google

The Google+ API enables developers to build on top of the Google+
platform.

ENABLE TRY THIS API [7

Edit the 10gin.ntm1 template and add the following code to the <u1>
element:

<li class="google">Login
with Google</1li>

Open http://mysite.com:8000/account/login/ n your browser. The login
page should now look as follows:

Bookmarks Log-in

Log-in
Please, use the following form to log-in. If you don't have an account register here

Username: Sign in with Facebook

Login with Twitter

Password: -
Login with Google

LOG-IN

Click on the Login with Google button. You will be logged in and
redirected to the dashboard page of your website.

You have added social authentication to your project. You can easily
implement social authentication with other popular online services
using Python Social Auth.

Summary

In this chapter, you learned how to build an authentication system
into your site and created custom user profiles. You also added
social authentication to your site.

In the next chapter, you will learn how to create an image
bookmarking system, generate image thumbnails, and build AJAX

views.

Sharing Content in Your
Website

In the preceding chapter, you built user registration and
authentication into your website. You learned how to create a
custom profile model for your users and added social
authentication to your site with major social networks.

In this chapter, you will learn how to create a JavaScript
bookmarklet to share content from other sites into your website,
and you will implement AJAX features into your project using
jQuery and Django.

This chapter will cover the following points:

e Creating many-to-many relationships

e Customizing behavior for forms

¢ Using jQuery with Django

e Building a jQuery bookmarklet

e Generating image thumbnails using sorl-thumbnail

e Implementing AJAX views and integrating them with
jQuery

e Creating custom decorators for views

e Building AJAX pagination

Creating an image
bookmarking website

We will allow users to bookmark and share images they find on
other websites and on our site. For this, we will need to do the
following tasks:

1. Define a model to store images and their information

2. Create a form and a view to handle image uploads
3. Build a system for users to be able to post images they find
on external websites

First, create a new application inside your bookmarks project directory
with the following command:

django-admin startapp images

Add the new app to the nstacien_apps setting in the settings.py file, as
follows:

INSTALLED_APPS = [
...
'images.apps.ImagesConfig',

We have activated the images application in the project.

Building the image model

Edit the mode1s.py file of the images application and add the following
code to it:

from django.db import models
from django.conf import settings

class Image(models.Model):

user = models.ForeignKey(settings.AUTH_USER_MODEL,
related_name='images_created',
on_delete=models.CASCADE)

title = models.CharField(max_length=200)

slug = models.SlugField(max_length=200,
blank=True)

url = models.URLField()

image = models.ImageField(upload_to="'images/%Y/%m/%d/")

description = models.TextField(blank=True)

created = models.DateField(auto_now_add=True,

db_index=True)

def __str_ (self):
return self.title

This is the model we will use to store images bookmarked from
different sites. Let's take a look at the fields of this model:

¢ user: This indicates the user object that bookmarked this
image. This is a foreign key field because it specifies a one-
to-many relationship. A user can post multiple images, but
each image is posted by a single user. We use cascaoe for the
on_delete parameter so that related images are also
deleted when a user is deleted.

e title: A title for the image.

e s1ug: A short label that contains only letters, numbers,
underscores, or hyphens to be used for building beautiful
SEO-friendly URLs.

e ur1: The original URL for this image.
® image. The image file.
® description: An optional description for the image.

e created: The date and time that indicate when the object has
been created in the database. Since we use auto_now_add, this
datetime is automatically set when the object is created. We
use do_index=True SO that Django creates an index in the
database for this field.

Database indexes improve query performance. Consider setting db_index=True
for fields that you frequently query using riiter(), exclude(), OT order_by().
Foreignkey fields or fields with unique=true imply the creation of an index. You can
also use weta. index_togetner to create indexes for multiple fields.

We will override the save() method of the 1mage model to
automatically generate the slug field based on the value of the titie
field. Import the s1ugiry() function and add a save() method to the
mmage Model, as follows:

from django.utils.text import slugify

class Image(models.Model):
...
def save(self, *args, **kwargs):
if not self.slug:
self.slug = slugify(self.title)
super (Image, self).save(*args, **kwargs)

In the preceding code, we use the siugiry() function provided by
Django to automatically generate the image slug for the given title
when no slug is provided. Then, we save the object. We will

generate slugs for images automatically so that users don't have
to manually enter a slug for each image.

Creating many-to-many
relationships

We will add another field to the mmage model to store the users who
like an image. We will need a many-to-many relationship in this
case because a user might like multiple images and each image can
be liked by multiple users.

Add the following field to the 1mage model:

users_like = models.ManyToManyField(settings.AUTH_USER_MODEL,
related_name="'images_liked',
blank=True)

When you define a manytomanyrie1d, Django creates an intermediary
join table using the primary keys of both models. The manytomanyrield
can be defined in any of the two related models.

As with ForeignKey fields, the related_name attribute of ManyToManyField
allows us to name the relationship from the related object back to
this one. The manytomanyrie1d fields provide a many-to-many manager
that allows us to retrieve related objects, such as image.users_1ike.a11(),
or from a user object, such as user.images_liked.all().

Open the command line and run the following command to create
an initial migration:

python manage.py makemigrations images

You should see the following output:

Migrations for 'images':
images/migrations/0001_initial.py
- Create model Image

Now, run the following command to apply your migration:

python manage.py migrate images

You will get an output that includes the following line:

Applying images.0001_initial... OK

The mmage model is now synced to the database.

Registering the image model in
the administration site

Edit the adnin.py file of the images application and register the nage
model into the administration site, as follows:

from django.contrib import admin
from .models import Image

@admin.register(Image)

class ImageAdmin(admin.ModelAdmin):
list_display = ['title', 'slug', 'image', 'created']
list_filter = ['created']

Start the development server with the python manage.py
runserver command. Open nttp://127.0.0.1:8000/admin/ iN yOur browser,
and you will see the 1mage model in the administration site, like this:

Images + Add ¢ Change

Posting content from other
websites

We will allow users to bookmark images from external websites.
The user will provide the URL of the image, a title, and optional
description. Our application will download the image and create a
new 1mage Object in the database.

Let's start by building a form to submit new images. Create a new
forms.py file inside the mmages application directory and add the
following code to it:

from django import forms
from .models import Image

class ImageCreateForm(forms.ModelForm):
class Meta:
model = Image
fields = ('title', 'url', 'description')
widgets = {
'url': forms.HiddenInput,

}

As you would notice in this preceding code, this form is a

modelForm form built from the mmage model, including only the titie, ur1,
and description fields. Users will not enter the image URL directly in
the form. Instead, we will provide them with a JavaScript tool to
choose an image from an external site, and our form will receive its
URL as a parameter. We override the default widget of the ur1 field
to use a niddentnput widget. This widget is rendered as an HTML input
element with a type="hidden" attribute. We use this widget because we
don't want this field to be visible to users.

Cleaning form fields

In order to verify that the provided image URL is valid, we will
check that the filename ends with a . jpg Or .jpeg €xtension to only
allow JPEG files. As you saw in the preceding chapter, Django
allows you to define form methods to clean specific fields using

the c1ean_<fie1dname>() notation. This method is executed for each field,
if present, when you call is_vaiid() on a form instance. In the clean
method, you can alter the field's value or raise any validation errors
for this specific field when needed. Add the following method to

ImageCreateForm:

def clean_url(self):
url = self.cleaned_data['url']
valid_extensions = ['jpg', 'jpeg']
extension = url.rsplit('."', 1)[1].lower()
if extension not in valid_extensions:
raise forms.ValidationError('The given URL does not ' \
'match valid image extensions.')
return url

In the preceding code, we define a ciean_ur1() method to clean the ur1
field. The code works as follows:

1. We get the value of the ur1 field by accessing the cieaned_data
dictionary of the form instance.

2. We split the URL to get the file extension and check whether
it is one of the valid extensions. If the extension is invalid,
Wwe raise validationerror and the form instance will not be
validated. Here, we are performing a very simple validation.
You could use more advanced methods to check whether the
given URL provides a valid image file.

In addition to validating the given URL, we will also need to
download the image file and save it. We could, for example, use the
view that handles the form to download the image file. Instead, we
will take a more general approach by overriding the save() method of
our model form to perform this task every time the form is saved.

Overriding the save() method
of a ModelForm

As you know, mode1rorm provides a save() method to save the current
model instance to the database and return the object. This method
receives a boolean comnit parameter, which allows you to specify
whether the object has to be persisted to the database. If comnit is
False, the save() method will return a model instance but will not save
it to the database. We will override the save() method of our form in
order to retrieve the given image and save it.

Add the following imports at the top of the rorns.py file:

from urllib import request
from django.core.files.base import ContentFile
from django.utils.text import slugify

Then, add the fOHOWil’lg save() method to the ImageCreateForm form:

def save(self, force_insert=False,
force_update=False,
commit=True):
image = super(ImageCreateForm, self).save(commit=False)
image_url = self.cleaned_data['url']
image_name = '{}.{}'.format(slugify(image.title),
image_url.rsplit('."', 1)[1].lower())

download image from the given URL

response = request.urlopen(image_url)

image.image.save(image_name,
ContentFile(response.read()),
save=False)

if commit:

image.save()
return image

We override the save() method, keeping the parameters required by
modelrorm. The preceding code is explained as follows:

We create a new image instance by calling the save() method of
the form with commit=raise.

2. We get the URL from the cieaned_data dictionary of the form.

3. We generate the image name by combining the image title slug

with the original file extension.

. We use the Python ur11ib module to download the image and

then we call the save() method of the image field, passing it a
contentrile Object that is instantiated with the downloaded file
content. In this way, we save the file to the media directory
of our project. We also pass the save=ra1se parameter to avoid
saving the object to the database, yet.

In order to maintain the same behavior as the save() method
we override, we save the form to the database only when the
comnit parameter is True.

Now, we will need a view for handling the form. Edit the vieus.py file
of the images application and add the following code to it:

from
from
from
from

django.shortcuts import render, redirect
django.contrib.auth.decorators import login_required
django.contrib import messages

.forms import ImageCreateForm

@login_required
def image_create(request):
if request.method == 'POST':

form is sent
form = ImageCreateForm(data=request.POST)
if form.is_valid():

form data is valid

cd = form.cleaned_data

new_item = form.save(commit=False)

assign current user to the item

new_item.user = request.user

new_item.save()

messages.success(request, 'Image added successfully')

redirect to new created item detail view
return redirect(new_item.get_absolute_url())
else:
build form with data provided by the bookmarklet via GET
form = ImageCreateForm(data=request.GET)

return render(request,
'images/image/create.html’,
{'section': 'images',
"form': form})

We add a login_required decorator to the image_create view to prevent
access for unauthenticated users. This is how this view works:

1. We expect initial data via cet in order to create an instance of
the form. This data will consist of the ur1 and tit1e attributes
of an image from an external website and will be provided
via eeT by the JavaScript tool we will create later. For now,
we just assume that this data will be there initially.

2. If the form is submitted, we check whether it is valid. If the
form data is valid, we create a new mmage instance, but prevent
the object from being saved to the database yet by passing
comnit=rFalse t0 the form's save() method.

3. We assign the current user to the new image object. This is
how we can know who uploaded each image.

4. We save the image Object to the database.

5. Finally, we create a success message using the Django
messaging framework and redirect the user to the canonical
URL of the new image. We haven't yet implemented the
get_absolute_url() Method of the mmage model; we will do that
later.

Create a new uris.py file inside the images application and add the
following code to it:

from django.urls import path
from . import views
app_name = 'images'

urlpatterns = [
path('create/', views.image_create, name='create'),

]

Edit the main uris. py file of the bookmarks project to include the
patterns for the images application, as follows:

urlpatterns = [
path('admin/', admin.site.urls),
path('account/', include('account.urls')),
path('social-auth/',
include('social _django.urls', namespace='social')),
path('images/', include('images.urls', namespace='images')),

Finally, you will need to create a template to render the form.
Create the following directory structure inside the images application
directory:

templates/
images/
image/
create.html

Edit the new create.ntm1 template and add the following code to it:

{% extends "base.html" %}
{% block title %}Bookmark an image{% endblock %}
{% block content %}

<hi1>Bookmark an image</h1>

<form action="." method="post">
{{ form.as_p }}
{% csrf_token %}
<input type="submit" value="Bookmark it!">
</form>
{% endblock %}

NOW, Op€n http://127.0.0.1:8000/images/create/?title=...&url=... in your
browser, including a tit1e and ur1 GET parameters, providing an
existing JPEG image URL in the latter.

For example, you can use the following URL:
http://127.0.0.1:8000/images/create/?
title=%20Django%20and%20Duke&url=http://upload.wikimedia.org/wikipedia/commons/8/85

/Django_Reinhardt_and_Duke_Ellington_%28Gottlieb%29.jpg.

You will see the form with an image preview, like the following one:

Bookmarks My dashboard People Hello Antonio, Logout

Bookmark an image

Title:

Django and Duke

Description:

BOOKMARKIT!

Add a description and click on the BOOKMARK IT! button. A new

mage Object will be saved in your database. However, you will get an
error that indicates that the Image model has no get_absolute_url()
method, as follows:

AttributeError at /fimages/create/
'Image’' object has no attribute 'get_absolute_url'
Don't worry about this for now; we are going to add this method

later. Open nttp://127.0.0.1:8000/admin/images/image/ IN your browser and
verify that the new image Object has been saved, like this:

Action: | ===m===m- s1 | Go | 0of1selected
TITLE SLUG IMAGE CREATED
Django and django-and- images/2017/11/05/django-and- Dec. 16,2017

Duke duke duke.jpg

Building a bookmarklet with
jQuery

A bookmarklet is a bookmark stored in a web browser that contains
JavaScript code to extend the browser's functionality. When you
click on the bookmark, the JavaScript code is executed on the
website being displayed in the browser. This is very useful to build
tools that interact with other websites.

Some online services, such as Pinterest, implement their own
bookmarklets to let users share content from other sites onto their
platform. We will create a bookmarklet, in a similar way, to let users
share images from other sites in our website.

We will use jQuery to build our bookmarklet. jQuery is a popular
JavaScript framework that allows you to develop client-side
functionality faster. You can read more about jQuery at its official
Website, https://jquery.com/.

This is how your users will add a bookmarklet to their browser and
use it:

1. The user drags a link from your site to his browser's
bookmarks. The link contains JavaScript code in its nrer
attribute. This code will be stored in the bookmark.

2. The user navigates to any website and clicks on the
bookmark. The JavaScript code of the bookmark is
executed.

Since the JavaScript code will be stored as a bookmark, you will not

https://jquery.com/

be able to update it later. This is an important drawback that you
can solve by implementing a launcher script to load the actual
JavaScript bookmarklet from a URL. Your users will save this
launcher script as a bookmark, and you will be able to update the
code of the bookmarklet at any time. This is the approach we will
take to build our bookmarklet. Let's start!

Create a new template under images/templates/ and name
1t bookmarklet_launcher .js. This will be the launcher SCI'ipt. Add the
following JavaScript code to this file:

(function(){
if (window.myBookmarklet !== undefined){
myBookmarklet();

3
else {

document .body.appendChild(document.createElement('script')).src="http://127.0
.0.1:8000/static/js/bookmarklet.js?
r="+Math.floor(Math.random()*99999999999999999999);

3
HNO;

The preceding script discovers whether the bookmarklet has been
already loaded by checking whether the mysookmarkiet variable is
defined. By doing so, we avoid loading it again if the user clicks on
the bookmarklet repeatedly. If mysookmarkiet is not defined, we load
another JavaScript file by adding a <script> element to the document.
The script tag loads the bookmarkiet.js script using a random number
as a parameter to prevent loading the file from the browser's cache.

The actual bookmarklet code will reside in the bookmarkiet. js static
file. This will allow us to update our bookmarklet code without
requiring our users to update the bookmark they previously added
to their browser. Let's add the bookmarklet launcher to the
dashboard pages so that our users can copy it to their bookmarks.

Edlt the account/dashboard.html template Of the account application and
make it look like the following:

{% extends "base.html" %}
{% block title %}Dashboard{% endblock %}

{% block content %}
<hi>Dashboard</h1>

{% with total_images_created=request.user.images_created.count %}
<p>Welcome to your dashboard. You have bookmarked {{ total_ images_created
}} image{{ total_images_created|pluralize }}.</p>
{% endwith %}

<p>Drag the following button to your bookmarks toolbar to bookmark images
from other websites - <a href="javascript:{% include
"bookmarklet_launcher.js" %}" class="button">Bookmark it<p>

<p>You can also edit your profile or change your password.<p>
{% endblock %}

The dashboard now displays the total number of images
bookmarked by the user. We use the (% with %} template tag to set a
variable with the total number of images bookmarked by the
current user. We also include a link with an nrer attribute that
contains the bookmarklet launcher script. We will include this
JavaScript code from the bookmarklet_launcher.js template.

Open http://127.0.0.1:8000/account/ iN your browser. You should see the
following page:

Bookmarks Images People Hello Antonio, Logout

Dashboard

Welcome to your dashboard. You have bookmarked 1 image.

Drag the following button to your bookmarks toolbar to bookmark images from other websites -+

You can also edit your profile or change your password.

Now, create the following directories and files inside the inages
application directory:

static/
js/
bookmarklet.js

You will find a static/css/ directory under the images application
directory, in the code that comes along with this chapter. Copy the
css/ directory into the static/ directory of your code. The
css/bookmarklet . css file provides the styles for our JavaScript
bookmarklet.

Edit the bookmarkiet.js static file and add the following JavaScript
code to it:

(function(){
var jquery_version = '3.3.1';
var site_url = 'http://127.0.0.1:8000/"';
var static_url = site_url + 'static/';
var min_width = 100;
var min_height = 100;

function bookmarklet(msg) {
// Here goes our bookmarklet code

}i

// Check if jQuery is loaded

if(typeof window.jQuery != 'undefined') {
bookmarklet();

} else {
// Check for conflicts
var conflict = typeof window.$!= 'undefined';
// Create the script and point to Google API
var script = document.createElement('script');
script.src = '//ajax.googleapis.com/ajax/libs/jquery/' +

jquery_version + '/jquery.min.js';

// Add the script to the 'head' for processing
document.head.appendChild(script);
// Create a way to wait until script loading
var attempts = 15;

(function(){
// Check again if jQuery is undefined
if(typeof window.jQuery == 'undefined') {

if(--attempts > 0) {
// Calls himself in a few milliseconds
window.setTimeout(arguments.callee, 250)
} else {
// Too much attempts to load, send error
alert('An error ocurred while loading jQuery')
}
} else {
bookmarklet();
}
HO;
}
HO

This is the main jQuery loader script. It takes care of using jQuery if
it has already been loaded on the current website. If jQuery is not
loaded, the script loads jQuery from Google's content delivery
network, which hosts popular JavaScript frameworks. When jQuery
is loaded, it executes the vookmarkiet () function that will contain our
bookmarklet code. We also set some variables at the top of the file:

® jquery_version. The jQuery version to load

e site url and static uri: The base URL for our website and base

static files' URL

® nin width and min_height: Minimum width and height in pixels
for the images our bookmarklet will try to find on the site

Now, let's implement the bookmarkiet function. Edit the bookmarkiet ()
function to make it look like this:

function bookmarklet(msg) {
// load CSS
var css = jQuery('<link>');
css.attr({
rel: 'stylesheet',
type: 'text/css',
href: static_url + 'css/bookmarklet.css?r=' +
Math.floor (Math.random()*99999999999999999999)
});
jQuery('head').append(css);

// load HTML

box_html = '<div id="bookmarklet">×
<hi>Select an image to bookmark:</hi><div class="images"></div></div>"';

jQuery('body') .append(box_html);

// close event
jQuery('#bookmarklet #close').click(function(){
jQuery('#bookmarklet').remove();
1
+i

The preceding code works as follows:

1. We load the bookmarkiet.css stylesheet using a random number
as a parameter to prevent the browser from returning a
cached file.

2. We add custom HTML to the document <body> element of the
current website. This consists of a <div> element that will
contain the images found on the current website.

3. We add an event that removes our HTML from the

document when the user clicks on the close link of our
HTML block. We use the #bookmarkiet #c1ose selector to find the
HTML element with an ID named c1ose, which has a parent
element with an ID named bookmarkiet. jJQuery selectors allow
you to find HTML elements. A jQuery selector returns all
elements found by the given CSS selector. You can find a list
of jQuery selectors at https://api.jquery.com/category/selectors/.

After loading the CSS styles and the HTML code for the
bookmarklet, we will need to find the images on the website. Add
the following JavaScript code at the bottom of the bookmarkiet ()
function:

// find images and display them
jQuery.each(jQuery('img[src$="jpg"]"'), function(index, image) {
if (jQuery(image).width() >= min_width && jQuery(image).height()
>= min_height)
{
image_url = jQuery(image).attr('src');
jQuery('#bookmarklet .images').append('<img src="'+
image_url +'" />');
}
1)

The preceding code uses the ing[srcs="jpg"] selector to find all <ing>
HTML elements, whose src attribute finishes with a jpg string. This
means that we will search all JPEG images displayed on the current
website. We iterate over the results using the each() method of
jQuery. We add the images with a size larger than the one specified
with the nin width and min_neight variables to our <div

class="images"> HTML container.

You will need to be able to load the bookmarklet on any site,
including sites served through HTTPS. SSL has become

widely used, and most websites serve content through HTTPS
nowadays. For security reasons, your browser will prevent you from

https://api.jquery.com/category/selectors/

running the bookmarklet over HTTP on a site served through
HTTPS.

The Django development server is intended only for development
and doesn't support HTTPS. To test the bookmarklet over HTTPS,
we will use Ngrok. Ngrok is a tool that creates a tunnel to expose
your localhost to the internet through HTTP and HTTPS.

Download Ngrok for your operating system from
https://ngrok.com/download and run it from the shell using the fOHOWiIlg
command:

./ngrok http 8000

With the preceding command, you tell Ngrok to create a tunnel to
your localhost on the seee port and assign an internet-accessible
hostname for it. You should see an output similar to this one:

Session Status online

Version 2.2.8

Region United States (us)

Web Interface http://127.0.0.1:4040

Forwarding http://3f6ad53c.ngrok.io -> localhost:8000

Forwarding https://3f6ad53c.ngrok.io -> localhost:8000

Connnections ttl opn rti rts p50 p9o
(0] 0 0.00 0.00 0.00 0.00

Ngrok tells us that our site, running locally at localhost on

the se00 port using Django's development server, is made available
on the internet through

the http://3f6ad53c.ngrok.io and https://3f6ad53c.ngrok.io URLSs USil’lg the
HTTP and HTTPS protocols, respectively. Ngrok also provides a
URL to access a web interface that displays information about
requests sent to the server in the localhost at the 040 port.

Edit the settings.py file of your project and add the host provided by
Ngrok to the aLiowen_nosts setting, as follows:

https://ngrok.com/download

ALLOWED_HOSTS = [
'mysite.com',
'localhost’,
'127.0.0.1",
'3f6ad53c.ngrok.io'

This will allow you to serve the application through the new
hostname. Then, open the URL https://3f6ad53c.ngrok.io/account/login/ n
your browser, replacing the host with the one provided by Ngrok.
You will be able to see the login site.

Edit the bookmarklet_launcher.js template and I'eplace
the nttp://127.0.0.1:8000/ URL with the HTTPS URL provided by
Ngrok, as follows:

(function(){
if (window.myBookmarklet !== undefined){
myBookmarklet();

3
else {

document .body.appendChild(document.createElement('script')).src="https://3f6a
d53c.ngrok.io/static/js/bookmarklet.js?
r="+Math.floor(Math.random()*99999999999999999999);

b
HNO;

Edit the js/bookmarkiet. js static file, and take a look at the following
line:

var site_url = 'http://127.0.0.1:8000/"';

Replace the preceding line with the following one, including the
HTTPS URL provided by Ngrok:

var site_url = 'https://3f6ad53c.ngrok.io/';

Open https://3f6ads3c.ngrok.io/account/ in your browser, replacing the

host with the one provided by Ngrok. Log in with an existing user
and then drag the BOOKMARK IT button to the bookmarks toolbar
of your browser as follows:

000 ¢ i £ 3f6ad53c.ngrak.io/account/ ¢ N W

#4 Bookmark it

Bookmarks Images People Hello Paloma, Logout

Dashboaro

Welcome to your dashboard. You have bookmarked 0 images.
Drag the following button to your bookmarks toolbar to bookmark images from other websites -

You can also edit your profile or change your password.

Open a website of your own choice in your browser and click on
your bookmarklet. You will see that a new white box appears on the
website, displaying all JPEG images found with dimensions higher
than 100 x 100 pixels. It should look like the following example:

\\ 3 i-r— - - s
%‘J W NEW & INTERESTING FINDS ON AMAZON m &

\ — Select an image to bookmark:

ama_z’gl'! " Al django reinhardt Q

EN

amazon Prime

Departments ~ Browsing History ~ Antonio's Amazon.com Today's Deals Gift Cards Registry

1-16 of 11,256 results for "django reinhardt"

Show results for

1usic unlimited
CDs & Vinyl)
Jazz
Po
. Introducing Amazon Music Unlimited. Listen to any song, anywhere.
European Jazz
Swing Jazz Learn More about Amazon Music Unlimited
Gypsy Music
See more
Books Showing most relevant results. See all results for django reinhardt.
Jazz Music
See more Sponsored (i
See All 21 Departments 6 iqht* i i i
D, MeShane Solo F!lght. The MEIS.IC of Django Rein
5rfM,'v:5r:15:Mv.nng[]?j‘_wm{qﬂ"ﬂ(,,_“vf?u by J.P. McShane and Django Reinhardt
Refine by $150
prime

FREE SI

eligible orders

International Shipping (whats

this) i Only 2 left in stock - order soon.

Ship to Spain

REINHARDT

GENIUS OF INPROVISATION

Amazon Prime
prime

Eligible for Free Shipping The Essential Django Reinhardt var 13

The HTML container includes the images that can be bookmarked.
We want the user to click on the desired image and bookmark it.
Edit the js/bookmarkiet. js static file and add the following code at the
bottom of the bookmarkiet() function:

// when an image is selected open URL with it
jQuery('#bookmarklet .images a').click(function(e){
selected_image = jQuery(this).children('img').attr('src');
// hide bookmarklet
jQuery('#bookmarklet').hide();
// open new window to submit the image
window.open(site_url +'images/create/?url="'
+ encodeURIComponent(selected_image)
+ '&title="'
+ encodeURIComponent(jQuery('title").text()),
'_blank');

1)

The preceding code works as follows:

1. We attach a c1ick() event to the images' link elements.

2. When a user clicks on an image, we set a new variable called
selected_image that contains the URL of the selected image.

3. We hide the bookmarklet and open a new browser window
with the URL for bookmarking a new image on our site. We
pass the <tit1e> element of the website and the selected image
URL as cer parameters.

Open a new URL with your browser and click on your bookmarklet
again to display the image selection box. If you click on an image,
you will be redirected to the image create page, passing the title of
the website and the URL of the selected image as cer parameters:

Bookmarks My dashboard Hello Paloma, Logout

Bookmark an image

Title:

Django Reinhardt

Description:

BOOKMARK IT!

Congratulations! This is your first JavaScript bookmarklet, and it is
fully integrated into your Django project.

Creating a detail view for
Images

We will now create a simple detail view to display an image that has
been saved into our site. Open the vieus.py file of the images
application and add the following code to it:

from django.shortcuts import get_object_or_404
from .models import Image

def image_detail(request, id, slug):
image = get_object_or_404(Image, id=id, slug=slug)
return render(request,
'images/image/detail.html’,
{'section': 'images',
'image': image})

This is a simple view to display an image. Edit the uris.py file of the
images application and add the following URL pattern:

path('detail/<int:id>/<slug:slug>/",
views.image_detail, name='detail'),

Edit the mode1s. py file of the images application and add the
get_absolute_url() method to the Image model, as follows:

from django.urls import reverse

class Image(models.Model):
...
def get_absolute_url(self):
return reverse('images:detail', args=[self.id, self.slug])

Remember that the common pattern for providing canonical URLs

for objects is to define a get_absoiute_uri() method in the model.

Finally, create a template inside the /images/images template directory
of the images application and name it detai1.ntm1. Add the following
code to it:

{% extends "base.html" %}
{% block title %}{{ image.title }}{% endblock %}

{% block content %}
<hi>{{ image.title }}</h1>

{% with total_likes=image.users_like.count %}
<div class="image-info">
<div>

{{ total_likes }} like{{ total likes|pluralize }}

</div>
{{ image.description|linebreaks }}
</div>
<div class="image-likes">
{% for user in image.users_like.all %}
<div>

<p>{{ user.first_name }}</p>
</div>
{% empty %}
Nobody likes this image yet.
{% endfor %}
</div>
{% endwith %}
{% endblock %}

This is the template to display the detail of a bookmarked image.
We make use of the (% with %} tag to store the result of the QuerySet,
counting all user likes in a new variable called tota1_1ikes. By doing
so, we avoid evaluating the same QuerySet twice. We also include
the image description and iterate over image.users_tike.a11 to display all
the users who like this image.

Using the (% with %3 template tag is useful to prevent Django from
evaluating QuerySets multiple times.

Now, bookmark a new image using the bookmarklet. You will be
redirected to the image detail page after you post the image. The
page will include a success message, as follows:

Bookmarks My dashboard People Hello Paloma, Logout

Django Reinhardt

The Essential Django Reinhardt.

Nobody likes this image yet.

Creating image thumbnails
using sorl-thumbnail

We display the original image on the detail page, but dimensions for
different images may vary a lot. Also, the original files for some
images might be huge, and loading them might take too long. The
best way to display optimized images in a uniform way is to
generate thumbnails. We will use a Django application called sor1-
thumbnail for this purpose.

Open the terminal and install sor1-thumbnaii using the following
command:

pip install sorl-thumbnail==12.4.1

Edit the settings.py file of the bookmarks project and add
sorl.thumbnail to the 1nsTaLLep apps setting, as follows:

INSTALLED_APPS = [
o,
'sorl.thumbnail’,

Then, run the following command to sync the application with your
database:

python manage.py migrate

You should see an output that includes the following line:

Applying thumbnail.®001_initial... OK

The sor1-thumbnail application offers you different ways to define
image thumbnails. The application provides a ¢% thumbnai1 %} template
tag to generate thumbnails in templates and a custom 1magerie1d if
you want to define thumbnails in your models. We will use the
template tag approach. Edit the images/image/detail.ntmi template and
replace the following line:

The following lines should replace the preceding one:

{% load thumbnail %}
{% thumbnail image.image "300" as im %}

{% endthumbnail %}

Here, we define a thumbnail with a fixed width of 300 pixels. The
first time a user loads this page, a thumbnail image will be created.
The generated thumbnail will be served in the following requests.
Start the development server with the python manage.py runserver
command and access the image detail page for an existing image.
The thumbnail will be generated and displayed on the site.

The sor1-thumbnai1 application offers several options to customize your
thumbnails, including cropping algorithms and different effects that
can be applied. If you have any difficulty generating thumbnails,
you can add TtHumenAIL pEBUG = True tO YOUTr settings.py file in order to
obtain debug information. You can read the full documentation of
the sor1-thumbnail application at nttps://sorl-thumbnail.readthedocs.io/.

https://sorl-thumbnail.readthedocs.io/

Adding AJAX actions with
jQuery

Now, we will add AJAX actions to our application. AJAX comes
from Asynchronous JavaScript and XML. This term
encompasses a group of techniques to make asynchronous HTTP
requests. It consists of sending and retrieving data from the server
asynchronously, without reloading the whole page. Despite the
name, XML is not required. You can send or retrieve data in other
formats, such as JSON, HTML, or plain text.

We will add a link to the image detail page to let users click on it in
order to like an image. We will perform this action with an AJAX
call to avoid reloading the whole page. First, we will create a view
for users to like/unlike images. Edit the vieus.py file of the

images application and add the following code to it:

from django.http import JsonResponse
from django.views.decorators.http import require_POST

@login_required
@require_POST
def image_like(request):
image_id = request.POST.get('id")
action = request.POST.get('action')
if image_id and action:
try:
image = Image.objects.get(id=image_id)
if action == 'like':
image.users_like.add(request.user)
else:
image.users_like.remove(request.user)
return JsonResponse({'status':'ok'})
except:
pass
return JsonResponse({'status':'ko'})

We will use two decorators for our view. The 1ogin_required decorator
prevents users that are not logged in from accessing this view. The
require_POST decorator returns an HttpResponseNotAllowed object (Status
code 405) if the HTTP request is not done via rost. This way, we only
allow rost requests for this view. Django also provides a require et
decorator to only allow eeT requests and a require_http_methods decorator
to which you can pass a list of allowed methods as an argument.

In this view, we use two cer parameters:

e image_id: The ID of the image object on which the user is
performing the action

e action: The action that the user wants to perform, which we
assume to be a string with the value 1ike Or un1ike

We use the manager provided by Django for the users_1ike many-to-
many field of the mage model in order to add or remove objects from
the relationship using the add() or remove() methods. Calling add(), that
is, passing an object that is already present in the related object set
does not duplicate it, and thus, calling remove(), passing an object that
is not in the related object set does nothing. Another useful method
of the many-to-many manager is ciear(), which removes all objects
from the related object set.

Finally, we use the ssonresponse class provided by Django, which
returns an HTTP response with an appiication/json content type,

converting the given object into a JSON output.

Edit the uris.py file of the images application and add the following
URL pattern to it:

path('like/', views.image_like, name='like'),

Loading jQuery

We will need to add the AJAX functionality to our image detail
template. In order to use jQuery in our templates, we will include it
in the base.ntm1 template of our project first. Edit the base.ntm
template of the account application and include the following code
before the closing </body>- HTML tag:

<script
src="https://ajax.googleapis.com/ajax/1libs/jquery/3.2.1/jquery.min.js">
</script>
<script>
$(document).ready(function(){
{% block domready %}
{% endblock %}
1)

</script>

We load the jQuery framework from Google's CDN. You can also
downloadeuery from https://jquery.com/ and add it to the static
directory of your application instead.

We add a <script> tag to include JavaScript code. s(document).ready() iS a
jQuery function that takes a handler that is executed when the DOM
hierarchy has been fully constructed. DOM comes from
Document Object Model. The DOM is created by the browser
when a web page is loaded, and is constructed as a tree of objects.
By including our code inside this function, we will make sure that
all HTML elements we are going to interact with are loaded in the
DOM. Our code will only be executed once the DOM is ready.

Inside the document-ready handler function, we include a Django
template block called donready, in which templates that extend the
base template will be able to include specific JavaScript.

https://jquery.com/

Don't get confused with the JavaScript code and Django template
tags. Django template language is rendered on the server side
outputting the final HTML document and JavaScript is executed on
the client side. In some cases, it is useful to generate JavaScript
code dynamically using Django.

In the examples in this chapter, we include JavaScript code in
Django templates. The preferred way to include JavaScript code is
by loading .js files, which are served as static files, especially when
they are large scripts.

Cross-Site Request Forgery in
AJAX requests

You have learned Cross-Site Request Forgery in chapter 2,
Enhancing Your Blog with Advanced Features. With the CSRF
protection active, Django checks for a CSRF token in all rost
requests. When you submit forms, you can use the % csrf_token %}
template tag to send the token along with the form. However, it is a
bit inconvenient for AJAX requests to pass the CSRF token as a rost
data in with every rost request. Therefore, Django allows you to set a
custom x-csrrroken header in your AJAX requests with the value of
the CSRF token. This allows you to set up jQuery or any other
JavaScript library to automatically set the x-csrrroken header in every
request.

In order to include the token in all requests, you need to take the
following steps:

1. Retrieve the CSRF token from the csrftoken cookie, which is
set if CSRF protection is active

2. Send the token in the AJAX request using the x-csrrroken
header

You can find more information about CSRF protection and AJAX
at https://docs.djangoproject.com/en/2.0/ref/csrf/#ajax.

Edit the last code you included in your base.ntm1 template and make it
look like the following:

<script

https://docs.djangoproject.com/en/2.0/ref/csrf/#ajax

src="https://ajax.googleapis.com/ajax/1libs/jquery/3.2.1/jquery.min.js">
</script>
<script src="https://cdn.jsdelivr.net/npm/js-cookie@2/src/js.cookie.min.js">
</script>
<script>
var csrftoken = Cookies.get('csrftoken');
function csrfSafeMethod(method) {
// these HTTP methods do not require CSRF protection
return (//(GET|HEAD|OPTIONS|TRACE)S$/.test(method));
}
$.ajaxSetup({
beforeSend: function(xhr, settings) {
if (!csrfSafeMethod(settings.type) && !this.crossDomain) {
xhr .setRequestHeader ("X-CSRFToken", csrftoken);
}
}
});
$(document).ready(function(){
{% block domready %}
{% endblock %}
1)

</script>

The preceding code is as follows:

1. We load the JS Cookie plugin from a public CDN so that we
can easily interact with cookies. JS Cookie is a lightweight
JavaScript for handling cookies. You can learn more about it
at nttps://github.com/js-cookie/js-cookie.

2. We read the value of the csrrtoken cookie with Cookies.get().

3. We define the csrfsafemetnod() function to check whether an
HTTP method is safe. Safe methods don't require CSRF
protection—these are cet, Heap, optIoNs, and TRAcE.

4. We set up jQuery AJAX requests using s.ajaxsetup(). Before
each AJAX request is performed, we check whether the
request method is safe and the current request is not cross-
domain. If the request is unsafe, we set the x-csrrroken header

https://github.com/js-cookie/js-cookie

with the value obtained from the cookie. This setup will
apply to all AJAX requests performed with jQuery.

The CSRF token will be included in all AJAX requests that use
unsafe HTTP methods, such as rost or pur.

Performing AJAX requests with
jQuery

Edit the images/image/detail.html template of the images application, and
consider the following line:

{% with total_likes=image.users_like.count %}

Replace the preceding one with the following one:

{% with total likes=image.users_like.count users_like=image.users_like.all %}

Then, modify the <div> element with the image-info class, as follows:

<div class="image-info">
<div>

{{ total_ likes }}
like{{ total likes|pluralize }}

<a href="#" data-id="{{ image.id }}" data-action="{% if
request.user in users_like %}un{% endif %}like"
class="1like button">
{% if request.user not in users_like %}
Like
{% else %}
Unlike
{% endif %}

</div>
{{ image.description|linebreaks }}
</div>

First, we added another variable to the (% with %} template tag in
order to store the results of the image.users_1ike.a11 query and avoid

executing it twice. We display the total number of users that like
this image and include a link to like/unlike the image: we check
whether the user is in the related object set of users_1ike to display
either like or unlike, based on the current relationship between the
user and this image. We add the following attributes to the <a>
HTML element:

e data-id: The ID of the image displayed

® data-action: The action to run when the user clicks on the link.
This can be 1ike Or unlike

We will send the value of both attributes in the AJAX request to the
image_like View. When a user clicks on the 1ike/un1ike link, we will need
to perform the following actions on the client side:

1. Call the AJAX view, passing the image ID and the action
parameters to it.

2. If the AJAX request is successful, update the data-action
attribute of the <a> HTML element with the opposite action
(1ike / un1ike), and modify its display text accordingly.

3. Update the total number of 1ikes that is displayed.

Add the domready block at the bottom of the images/image/detail.html
template with the following JavaScript code:

{% block domready %}
$('a.like').click(function(e){
e.preventDefault();
$.post('{% url "images:like" %}',
{
id: $(this).data('id'),
action: $(this).data('action')
+
function(data){

Ve
1)

if (data['status'] == 'ok')
{

var previous_action = $('a.like').data('action');

// toggle data-action

$('a.like').data('action', previous_action == 'like' ?
'unlike' : 'like');

// toggle link text

$('a.like').text(previous_action == 'like' ? 'Unlike' :
'Like');

// update total likes

var previous_likes = parseInt($('span.count .total').text());
$('span.count .total').text(previous_action == 'like' ?
previous_likes + 1 : previous_likes - 1);

}

}

{% endblock %}

The preceding code works as follows:

We use the s('a.1ike') jJQuery selector to find all <a> elements
of the HTML document with the 1ike class.

. We define a handler function for the c1ick event. This

function will be executed every time the user clicks on the

like/unlike link.

. Inside the handler function, we use e.preventpefau1t() to avoid

the default behavior of the <a> element. This will prevent the
link from taking us anywhere.

. We use s.post() to perform an asynchronous rost request to

the server. jQuery also provides a s.get() method to perform
et requests and a low-level s.ajax() method.

. We use Django's % ur1 %} template tag to build the URL for

the AJAX request.

. We build the rost parameters dictionary to send in the

request. These are the o and action parameters expected by

our Django view. We retrieve these values from the <a>
element's data-id and data-action attributes.

7. We define a callback function that is executed when the
HTTP response is received; it takes a data attribute that
contains the content of the response.

8. We access the status attribute of the data received and check
whether it equals ok. If the returned data is as expected, we
toggle the data-action attribute of the link and its text. This
allows the user to undo their action.

9. We increase or decrease the total likes count by one,
depending on the action performed.

Open the image detail page in your browser for an image you have
uploaded. You should be able to see the following initial likes count
and the LIKE button, as follows:

LIKE

Click on the UNLIKE button. You will note that the total likes count
decreases by one and the button text changes to UNLIKE, as

follows:
UNLIKE

When you click on the UNLIKE button, the action is performed, the
button's text changes back to LIKE, and the total count changes
accordingly.

When programming JavaScript, especially when performing AJAX

requests, it is recommended that you use a tool for debugging
JavaScript and HTTP requests. Most modern browsers include
developer tools to debug JavaScript. Usually, you can right-click
anywhere on the website and click on Inspect element to access the
web developer tools.

Creating custom decorators for
your views

We will restrict our AJAX views to allow only requests generated via
AJAX. The Django request object provides an is_ajax() method that
checks whether the request is being made with xmnttprequest, which
means it is an AJAX request. This value is set in the
ntTP_x_rRequesTep_wiTH HTTP header, which is included in AJAX requests by
most JavaScript libraries.

We will create a decorator for checking the wrre_x_requesteo_wrth header
in our views. A decorator is a function that takes another function
and extends the behavior of the latter without explicitly modifying
it. If the concept of decorators is foreign to you, you might like to
take a look at https://www.python.org/dev/peps/pep-0318/ before you continue
reading.

Since our decorator will be generic and could be applied to any
view, we will create a common Python package in our project. Create
the following directory and files inside the bookmarks project directory:

common/
__init__ .py
decorators.py

Edit the decorators. py file and add the fOHOWiIlg code to it:

from django.http import HttpResponseBadRequest

def ajax_required(f):
def wrap(request, *args, **kwargs):
if not request.is_ajax():
return HttpResponseBadRequest()

https://www.python.org/dev/peps/pep-0318/

return f(request, *args, **kwargs)
wrap.__doc__=f.__doc
wrap.__name__=f._ _name__
return wrap

The preceding code is our custom ajax_required decorator. It defines a
wrap function that returns an uttpresponsesadrequest object (HTTP 400
code) if the request is not AJAX. Otherwise, it returns the decorated
function.

NOW, you can edit the views. py file of the images application and add
this decorator to your image_1ike AJAX view, as follows:

from common.decorators import ajax_required

@ajax_required

@login_required

@require_POST

def image_like(request):
...

If you try to access http://127.0.0.1:8000/images/1ike/ directly with your
browser, you will get an HTTP 400 response.

Build custom decorators for your views if you find that you are repeating the
same checks in multiple views.

Adding AJAX pagination to
your list views

We will need to list all bookmarked images on our website. We will
use AJAX pagination to build infinite scroll functionality. Infinite
scroll is achieved by loading the next results automatically when the
user scrolls to the bottom of the page.

We will implement an image list view that will handle both standard
browser requests and AJAX requests, including pagination. When
the user initially loads the image list page, we will display the first
page of images. When they scroll to the bottom of the page, we load
the following page of items via AJAX and append it to the bottom of
the main page.

The same view will handle both standard and AJAX pagination.
Edit the views.py file of the images application and add the following
code to it:

from django.http import HttpResponse
from django.core.paginator import Paginator, EmptyPage, \
PageNotAnInteger

@login_required
def image_list(request):
images = Image.objects.all()
paginator = Paginator(images, 8)
page = request.GET.get('page')
try:
images = paginator.page(page)
except PageNotAnInteger:
If page is not an integer deliver the first page
images = paginator.page(1)
except EmptyPage:
if request.is_ajax():
If the request is AJAX and the page is out of range

return an empty page
return HttpResponse('')
If page is out of range deliver last page of results
images = paginator.page(paginator.num_pages)
if request.is_ajax():
return render(request,
'images/image/list_ajax.html',
{'section': 'images', 'images': images})
return render(request,
'images/image/list.html’',
{'section': 'images', 'images': images})

In this view, we create a QuerySet to return all images from the
database. Then, we build a raginator Object to paginate the results,
retrieving eight images per page. We get an emptyrage €xception if the
requested page is out of range. If this is the case and the request is
done via AJAX, we return an empty uttpresponse that will help us stop
the AJAX pagination on the client side. We render the results to two
different templates:

e For AJAX requests, we render the 1ist_ajax.ntm1 template. This
template will only contain the images of the requested page.

e For standard requests, we render the 1ist.nem1 template. This
template will extend the base.ntm1 template to display the
whole page and will include the 1ist_ajax.ntm1 template to
include the list of images.

Edit the uris.py file of the images application and add the following
URL pattern to it:

path('', views.image_list, name='list'),

Finally, we will need to create the templates mentioned here. Inside
the images/images template directory, create a new template and name
it 1ist_ajax.ntm1. Add the following code to it:

{% load thumbnail %}

{% for image in images %}
<div class="image'">

{% thumbnail image.image "300x300" crop="100%" as im %}

{% endthumbnail %}

<div class="info">

{{ image.title }}

</div>
</div>
{% endfor %}

The preceding template displays the list of images. We will use it to
return results for AJAX requests. Create another template in the
same directory and name it 1ist.ntm1. Add the following code to it:

{% extends "base.html" %}
{% block title %}Images bookmarked{% endblock %}

{% block content %}
<h1>Images bookmarked</h1>
<div id="image-list">
{% include "images/image/list_ajax.html" %}
</div>
{% endblock %}

The list template extends the vase.ntm1 template. To avoid repeating
code, we included the 1ist_ajax.ntm1 template for displaying images.
The 1ist.nem1 template will hold the JavaScript code for loading
additional pages when scrolling to the bottom of the page.

Add the following code to the 1ist.ntm1 template:

{% block domready %}

var page = 1;
var empty_page = false;
var block_request = false;

$(window).scroll(function() {
var margin = $(document).height() - $(window).height() - 200;
if ($(window).scrollTop() > margin && empty_page == false &&
block_request == false) {
block_request = true;

page += 1;
$.get('?page=' + page, function(data) {
if(data == '"') {
empty_page = true;
}
else {

block_request = false;
$('#image-1list').append(data);
}
1)
3

1)
{% endblock %}

The preceding code provides the infinite scroll functionality. We
include the JavaScript code in the donready block that we defined in
the base.ntm1 template. The code is as follows:

1. We define the following variables:

1. page: Stores the current page number.

2. empty page: Allows us to know whether the user is on
the last page and retrieves an empty page. As soon as
we get an empty page, we will stop sending
additional AJAX requests because we will assume
that there are no more results.

3. block_request: Prevents us from sending additional
requests while an AJAX request is in progress.

. We use s(window).scro11() to capture the scroll event and also to
define

a handler function for it.

. We calculate the margin variable to get the difference between
the total document height and the window height, because
that's the height of the remaining content for the user to
scroll. We subtract a value of 200 from the result so that we
load the next page when the user is closer than 200 pixels to
the bottom of the page.

. We only send an AJAX request if no other AJAX request is
being done (biock_request has to be raise) and the user didn't
get to the last page of results (empty page is also faise).

. We set biock_request t0 true to avoid a situation whereby the
scroll event triggers additional AJAX requests, and increase
the page counter by one,

in order to retrieve the next page.

. We perform an AJAX cer request using s.get() and receive the
HTML response in a variable called data. The following are
the two scenarios:

1. The response has no content: We got to the end
of the results, and there are no more pages to load.
We set empty_page to true to prevent additional AJAX
requests.

2. The response contains data: We append the data
to the HTML element with the image-1ist ID. The page
content expands vertically appending results when
the user approaches the bottom of the page.

Open http://127.0.0.1:8000/images/ IN your browser. You will see the list
of images you have bookmarked so far. It should look similar to
this:

Bookmarks My dashboard People Hello Antonio, Logout

Images bookmarked

Louis Armstrong Chick Corea Al Jarreau Al Jarreau

A

Ella Fitzgerald Glenn Miller Charlie Parker Nina Simone

Scroll to the bottom of the page to load additional pages. Ensure
that you have bookmarked more than eight images using the
bookmarklet because that's the number of images we are displaying
per page. Remember that you can use Firebug or a similar tool to
track the AJAX requests and debug your JavaScript code.

Finally, edit the base.ntm template of the account application and add
the URL for the images item of the main menu, as follows:

<li {% if section == "images" %}class="selected"{% endif %}>
Images
</1i>

Now you can access the image list from the main menu.

Summary

In this chapter, we have built a JavaScript bookmarklet to share
images from other websites into our site. You have implemented
AJAX views with jQuery and added AJAX pagination.

In the next chapter, we will teach you how to build a follower
system and an activity stream. You will work with generic relations,
signals, and denormalization. You will also learn how to use Redis
with Django.

Tracking User Actions

In the preceding chapter, you implemented AJAX views into your
project using jQuery and built a JavaScript bookmarklet to share
content from other websites on your platform.

In this chapter, you will learn how to build a follower system and
create a user activity stream. You will discover how Django signals
work and integrate Redis's fast I/O storage into your project to
store item views.

This chapter will cover the following points:
¢ Creating many-to-many relationships with an intermediary
model
¢ Building a follower system
e Creating an activity stream application
¢ Adding generic relations to models
e Optimizing QuerySets for related objects
¢ Using signals for denormalizing counts

¢ Storing item views in Redis

Building a follower system

We will build a follower system into our project. Our users will be
able to follow each other and track what other users share on the
platform. The relationship between users is a many-to-many
relationship. A user can follow multiple users and they, in turn, can

be followed by multiple users.

Creating many-to-many
relationships with an
Intermediary model

In previous chapters, you created many-to-many relationships by
adding manyTomanyrield to one of the related models and letting Django
create the database table for the relationship. This is suitable for
most of the cases, but sometimes you may need to create an
intermediate model for the relation. Creating an intermediary
model is necessary when you want to store additional information
for the relationship, for example, the date when the relation was
created, or a field that describes the nature of the relationship.

We will create an intermediary model to build relationships
between users. There are two reasons why we want to use an
intermediate model:

e We are using the user model provided by Django, and we
want to avoid altering it

e We want to store the time when the relation is created

Edit the mode1s.py file of your account application and add the following
code to it:

class Contact(models.Model):
user_from = models.ForeignKey('auth.User',
related_name='rel_from_set',
on_delete=models.CASCADE)
user_to = models.ForeignKey('auth.User"',
related_name='rel_to_set',

on_delete=models.CASCADE)
created = models.DateTimeField(auto_now_add=True,
db_index=True)

class Meta:
ordering = ('-created',)

def __str_ (self):
return '{} follows {}'.format(self.user_from,
self.user_to)

The preceding code shows the contact model we will use for user
relationships. It contains the following fields:

® yser_from. ForeignKey for the user that creates the relationship
® yser_to. ForeignKey for the user being followed

® created: A DateTimeField fleld Wlth auto_now_add=True tO Store the
time when the relationship was created

A database index is automatically created on the roreignkey fields. We
use db_index=True t0 create a database index for the created field. This

will improve query performance when ordering QuerySets by this
field.

Using the ORM, we could create a relationship for a user—user1
—following another user, userz2, like this:

userl = User.objects.get(id=1)
user2 = User.objects.get(id=2)
Contact.objects.create(user_from=userl, user_to=user2)

The related managers re1_from_set and re1_to_set Will return a QuerySet
for the contact model. In order to access the end side of the
relationship from the user model, it would be desirable that user
contained wmanyTomanyrield, as follows:

following = models.ManyToManyField('self',
through=Contact,
related_name='followers',
symmetrical=False)

In the preceding example, we tell Django to use our custom
intermediary model for the relationship by adding through=contact to
the manyTomanyrie1d. This is a many-to-many relationship from the user
model to itself: we refer to 'seir' in the manytomanyrierd field to create a
relationship to the same model.

When you need additional fields in a many-to-many relationship, create a
custom model with roreignkey for each side of the relationship. Add

manyToManyrField in one of the related models and indicate to Django that your
intermediary model should be used by including it in the through parameter.

If the user model was part of our application, we could add the
previous field to the model. However, we cannot alter the user class
directly because it belongs to the django.contrib.auth application. We
will take a slightly different approach by adding this field
dynamically to the user model. Edit the mode1s. py file of the account
application and add the following lines:

from django.contrib.auth.models import User

Add following field to User dynamically
User.add_to_class('following',
models.ManyToManyField('self',
through=Contact,
related_name='followers',
symmetrical=False))

In the preceding code, we use the add_to_ciass() method of Django
models to monkey patch the user model. Be aware that using
add_to_class() 1S not the recommended way of adding fields to models.
However, we take advantage of using it in this case because of the
following reasons:

e We simplify the way we retrieve related objects using the

Django ORM with user. fo1lowers.a11() and user.following.a11(). We
use the intermediary contact model and avoid complex
queries that would involve additional database joins, as it
would have been, had we defined the relationship in our
custom profize model.

e The table for this many-to-many relationship will be created
using the contact model. Thus, the manyTomanyrie1d added
dynamically will not imply any database changes for the
Django user model.

e We avoid creating a custom user model, keeping all the
advantages of Django's built-in user.

Keep in mind that, in most cases, it is preferable to add fields to the
profile model we created before, instead of monkey-patching the user
model. Django also allows you to use custom user models. If you
want to use your custom user model, take a look at the
documentation at https://docs.djangoproject.com/en/2.0/topics/auth/customizing

/#specifying-a-custom-user-model.

You can note that the relationship includes symmetricai=raise. When
you define a manytomanyrie1d to the model itself, Django forces the
relationship to be symmetrical. In this case, we are setting
symmetrical=False t0 define a non-symmetric relation. This is, if I follow
you, it doesn't mean that you automatically follow me.

When you use an intermediate model for many-to-many relationships, some
of the related manager's methods are disabled, such as add(),

create(), OT" remove(). YOU need to create or delete instances of the intermediate
model instead.

Run the following command to generate the initial migrations for
the account application:

python manage.py makemigrations account

https://docs.djangoproject.com/en/2.0/topics/auth/customizing/#specifying-a-custom-user-model

You will obtain the following output:

Migrations for 'account':
account/migrations/0002_contact.py
- Create model Contact

Now, run the following command to sync the application with the
database:

python manage.py migrate account

You should see an output that includes the following line:

Applying account.0002_contact... OK

The contact model is now synced to the database, and we are able to
create relationships between users. However, our site doesn't offer a
way to browse users or see a particular user profile yet. Let's build
list and detail views for the user model.

Creating list and detail views
for user profiles

Open the views.py file of the account application and add the following
code to it:

from django.shortcuts import get_object_or_404
from django.contrib.auth.models import User

@login_required
def user_list(request):
users = User.objects.filter(is_active=True)
return render(request,
'account/user/list.html',
{'section': 'people',
'users': users})

@login_required
def user_detail(request, username):
user = get_object_or_404(User,
username=username,
is_active=True)
return render(request,
'account/user/detail.html’,
{'section': 'people',
'user': user})

These are simple list and detail views for user objects. The user_1ist
view gets all active users. The Django user model contains an is_active
flag to designate whether the user account is considered active. We
filter the query by is_active=True to return only active users. This view
returns all results, but you can improve it by adding pagination the
same way as we did for the image 1ist view.

The user_detail view uses the get_object_or_404() shortcut to retrieve the
active user with the given username. The view returns an HTTP 404

response if no active user with the given username is found.

Edit the uris. py file of the account application, and add a URL pattern
for each view, as follows:

urlpatterns = [
...
path('users/', views.user_list, name='user_list'),
path('users/<username>/', views.user_detail, name='user_detail'),

We will use the user_detai1 URL pattern to generate the canonical
URL for users. You have already defined a get_absolute ur1() method in
a model to return the canonical URL for each object. Another way
to specify an URL for a model is by adding the assoLute_urL_overr1pes
setting to your project.

Edit the settings.py file of your project and add the following code to
it:

from django.urls import reverse_lazy

ABSOLUTE_URL_OVERRIDES = {
'auth.user': lambda u: reverse_lazy('user_detail',
args=[u.username])

Django adds a get_abso1ute_ur1() method dynamically to any models
that appear in the assoLute_urL_overripes setting. This method returns
the corresponding URL for the given model specified in the setting.
We return the user_detainr URL for the given user. Now, you can

USe get_absolute_url() ON A user instance to retrieve its corresponding
URL.

Open the Python shell with the python manage.py she11 command and
run the following code to test it:

>>> from django.contrib.auth.models import User

>>> user = User.objects.latest('id')
>>> str(user.get_absolute_url())
'/account/users/ellington/'

The returned URL is as expected. We will need to create templates
for the views we just built. Add the following directory and files to
the templates/account/ directory of the account application:

/user/
detail.html
list.html

Edit the account/user/1ist.ntm1 template and add the following code to
it:

{% extends "base.html" %}
{% load thumbnail %}

{% block title %}People{% endblock %}

{% block content %}
<h1>People</h1>
<div id="people-list">
{% for user in users %}
<div class="user">

{% thumbnail user.profile.photo "180x180" crop="100%"
as im %}

{% endthumbnail %}

<div class="info">

{{ user.get_full name }}

</div>
</div>
{% endfor %}
</div>
{% endblock %}

The preceding template allows us to list all the active users in the
site. We iterate over the given users and use sorl-thumbnail's %

thumbnail %} template tag to generate profile image thumbnails.

Open the vase.ntm1 template of your project and include the user_1ist
URL in the nrer attribute of the following menu item:

<li {% if section == "people" %}class="selected"{% endif %}>
People
</1i>

Start the development server with the python manage.py runserver
command and Ope€n http://127.0.0.1:8000/account/users/ in your browser.
You should see a list of users like the following one:

Bookmarks My dashboard Images Hello Tesla, Logout

People

Tesla Einstein Turing

Remember that if you have any difficulty generating thumbnails,

you

can add THumeNAIL DEBUG = True tO YOUTr settings.py file in order to

obtain debug information in the shell.

Edlt the account/user/detail.html template Of the account application and

add

the following code to it:

extends "base.html" %}
load thumbnail %}

block title %}{{ user.get_full name }}{% endblock %}

block content %}
<hi>{{ user.get_full name }}</h1>
<div class="profile-info">
{% thumbnail user.profile.photo "180x180" crop="100%" as im %}

{% endthumbnail %}
</div>
{% with total_ followers=user.followers.count %}

{{ total followers }}
follower{{ total followers|pluralize }}

<a href="#" data-id="{{ user.id }}" data-action="{% if request.user
in user.followers.all %}un{% endif %}follow" class="follow button'">
{% if request.user not in user.followers.all %}
Follow
{% else %}
unfollow
{% endif %}

<div id="image-list" class="image-container">
{% include "images/image/list_ajax.html" with
images=user.images_created.all %}
</div>
{% endwith %}

{% endblock %}

In the detail template, we will display the user profile and use the (%
thumbnail %} template tag to display the profile image. We show the
total number of followers and a link to follow or unfollow the user.

We

will perform an AJAX request to follow/unfollow a particular

user. We add data-id and data-action attributes to the <a> HTML

element, including the user ID and the initial action to perform
when it's clicked, fo110w OT unfo110w, that depends on the user
requesting the page being a follower of this other user or not, as the
case may be. We display the images bookmarked by the user,
il’lCllldil’lg the images/image/list_ajax.html ternplate.

Open your browser again and click on a user that has bookmarked
some images. You will see profile details, as follows:

Bookmarks My dashboard Images Hello Tesla, Logot

Tesla

Django and Duke Louis Armstrong Chick Corea

Building an AJAX view to
follow users

We will create a simple view to follow/unfollow a user using AJAX.
Edit the views.py file of the account application and add the following
code to it:

from django.http import JsonResponse

from django.views.decorators.http import require_POST
from common.decorators import ajax_required

from .models import Contact

@ajax_required
@require_POST
@login_required
def user_follow(request):
user_id = request.POST.get('id")
action = request.POST.get('action')
if user_id and action:
try:
user = User.objects.get(id=user_id)
if action == 'follow':
Contact.objects.get_or_create(
user_from=request.user,
user_to=user)
else:
Contact.objects.filter(user_from=request.user,
user_to=user).delete()
return JsonResponse({'status':'ok'})
except User.DoesNotExist:
return JsonResponse({'status':'ko'})
return JsonResponse({'status':'ko'})

The user_fo110w View is quite similar to the image_1ike View we created
before. Since we are using a custom intermediary model for the
users' many-to-many relationship, the default adda() and remove()
methods of the automatic manager of manyTomanyrield are not available.
We use the intermediary contact model to create or delete user

relationships.

Edit the ur1s.py file of the account application and add the following
URL pattern to it:

path('users/follow/', views.user_follow, name='user_follow'),

Ensure that you place the preceding pattern before the user_detai1
URL pattern. Otherwise, any requests to /users/fo110w/ Will match the
regular expression of the user_detai1 pattern and that view will be
executed instead. Remember that, in every HTTP request, Django
checks the requested URL against each pattern in order of
appearance and stops at the first match.

Edit the user/detail.ntm1 template of the account application and append
the following code to it:

{% block domready %}
$('a.follow').click(function(e){
e.preventDefault();
$.post('{% url "user_follow" %}',
{
id: $(this).data('id'),
action: $(this).data('action')
+
function(data){
if (data['status'] == 'ok') {
var previous_action = $('a.follow').data('action');

// toggle data-action
$('a.follow').data('action',
previous_action == 'follow' ? 'unfollow' : 'follow');
// toggle link text
$('a.follow').text(
previous_action == 'follow' ? 'Unfollow' : 'Follow');

// update total followers
var previous_followers = parseInt(
$('span.count .total').text());
$('span.count .total').text(previous_action == 'follow' ?
previous_followers + 1 : previous_followers - 1);

3
);

1)
{% endblock %}

The preceding code is the JavaScript code to perform the AJAX
request to follow or unfollow a particular user and also to toggle the
follow/unfollow link. We use jQuery to perform the AJAX request
and set both the data-action attribute and the text of the HTML <a>
element based on its previous value. When the AJAX action is
performed, we also update the total followers count displayed on
the page. Open the user detail page of an existing user and click on
the FOLLOW link to test the functionality we just built. You will see

that the follower's count gets increased:
UNFOLLOW

Building a generic activity
stream application

Many social websites display an activity stream to their users so
that they can track what other users do on the platform. An activity
stream is a list of recent activities performed by a user or a group of
users. For example, Facebook's News Feed is an activity stream.
Sample actions can be user X bookmarked image Y or user X is
now following user Y. We will build an activity stream application
so that every user can see recent interactions of the users they
follow. To do so, we will need a model to save the actions performed
by users on the website and a simple way to add actions to the feed.

Create a new application named actions inside your project with the
following command:

python manage.py startapp actions

Add the new application to mstaLLep_apps in the settings.py file of your
project to activate the application in your project:

INSTALLED_APPS = [
...
'actions.apps.ActionsConfig',

Edit the mode1s.py file of the actions application and add the following
code to it:

from django.db import models

class Action(models.Model):

user = models.ForeignKey('auth.User"',
related_name='actions',
db_index=True,
on_delete=models.CASCADE)
verb = models.CharField(max_length=255)
created = models.DateTimeField(auto_now_add=True,
db_index=True)

class Meta:
ordering = ('-created',)

The preceding code shows the action model that will be used to store
user activities. The fields of this model are as follows:

e user: The user that performed the action; this is roreignkey to
the Django user model.

e verb: The verb describing the action that the user has
performed.

e created: The date and time when this action was created. We
use auto_now_add=True t0 automatically set this to the current
datetime when the object is saved for the first time in the
database.

With this basic model, we can only store actions, such as user X did
something. We need an extra roreignkey field in order to save actions
that involve a target Object, such as user X bookmarked image Y or
user X is now following user Y. As you already know, a normal
Foreignkey can point to only one model. Instead, we will need a way
for the action's target Object to be an instance of an existing model.
This is where the Django content types framework comes on the
scene.

Using the contenttypes
framework

Django includes a contenttypes framework located at
django.contrib.contenttypes. This application can track all models
installed in your project and provides a generic interface to interact
with your models.

The django.contrib.contenttypes application is included in the INSTALLED_APPS
setting by default when you create a new project using the startproject
command. It is used by other contrib packages, such as the
authentication framework and the admin application.

The contenttypes application contains a ContentType model. Instances of
this model represent the actual models of your application, and new
instances of contentType are automatically created when new models
are installed in your project. The contenttype model has the following

fields:

e app_1abel: This indicates the name of the application the
model belongs to. This is automatically taken from the
app_label attribute of the model veta options. For example, our
mage Model belongs to the images application.

e model: The name of the model class.

¢ nane: This indicates the human-readable name of the model.
This is automatically taken from the verbose_name attribute of
the model weta options.

Let's take a look at how we can interact with contenttype Objects. Open
the shell using the python manage.py shell command. You can obtain the
contentType Object corresponding to a specific model by performing a
query with the app_1abe1 and mode1 attributes, as follows:

>>> from django.contrib.contenttypes.models import ContentType

>>> image_type = ContentType.objects.get(app_label='images', model='image')
>>> image_type

<ContentType: image>

You can also retrieve the model class from a contentType Object by
calling its mode1_c1ass() method:

>>> image_type.model _class()
<class 'images.models.Image'>

It's also common to get the contenttype Object for a particular model
class, as follows:

>>> from images.models import Image
>>> ContentType.objects.get_ for_model(Image)
<ContentType: image>

These are just some examples of using content types. Django offers
more ways to work with them. You can find the official
documentation about the content types framework at https://docs.djan

goproject.com/en/2.0/ref/contrib/contenttypes/.

https://docs.djangoproject.com/en/2.0/ref/contrib/contenttypes/

Adding generic relations to
your models

In generic relations, contenttype Objects play the role of pointing to the
model used for the relationship. You will need three fields to set up
a generic relation in a model:

e A ForeignKey field to ContentType: This will tell us the model for
the relationship

¢ A field to store the primary key of the related object:
This will usually be a rositiverntegerrield to match Django's
automatic primary key fields

¢ A field to define and manage the generic relation
using the two previous fields: The content types
framework offers a cenericroreignkey field for this purpose

Edit the mode1s.py file of the actions application and make it look like
this:

from django.db import models
from django.contrib.contenttypes.models import ContentType
from django.contrib.contenttypes.fields import GenericForeignKey

class Action(models.Model):

user = models.ForeignKey('auth.User"',
related_name='actions',
db_index=True,
on_delete=models.CASCADE)

verb = models.CharField(max_length=255)

target_ct = models.ForeignKey(ContentType,

blank=True,

null=True,
related_name='target_obj',
on_delete=models.CASCADE)
target_id = models.PositiveIntegerField(null=True,
blank=True,
db_index=True)
target = GenericForeignKey('target_ct', 'target_id')
created = models.DateTimeField(auto_now_add=True,
db_index=True)

class Meta:
ordering = ('-created',)

We have added the following fields to the action model:

® target_ct: A ForeignKey field that points to the ContentType model

® target_id: A PositiveIntegerField for storing the primary key of the
related object

® target: A GenericForeignKey field to the related object based on
the combination of the two previous fields

Django does not create any field in the database for cenericroreignkey
fields. The only fields that are mapped to database fields are target ct
and target_id. Both fields have biank=true and nu11=True attributes so that
a target Object is not required when saving action Objects.

You can make your applications more flexible by using generic relationships
instead of foreign keys when it makes sense to have a generic relation.

Run the following command to create initial migrations for this
application:

python manage.py makemigrations actions

You should see the following output:

Migrations for 'actions':

actions/migrations/0001_initial.py
- Create model Action

Then, run the next command to sync the application with the
database:

python manage.py migrate

The output of the command should indicate that the new
migrations have been applied, as follows:

Applying actions.0001_initial... OK

Let's add the action model to the administration site. Edit the admin.py
file of the actions application and add the following code to it:

from django.contrib import admin
from .models import Action

@admin.register(Action)

class ActionAdmin(admin.ModelAdmin):
list_display = ('user', 'verb',6 'target',K 'created')
list_filter = ('created',)
search_fields = ('verb',)

You just registered the action model in the administration site. Run
the python manage.py runserver command to initialize the development
server and OPE€N http://127.0.0.1:8000/admin/actions/action/add/ n your
browser. You should see the page for creating a new action Object, as
follows:

Django administration WELCOME, ANTONIO. VEW SITE / CHANGE PASSWORD / LOG OUT

Home> Actions » Actions » Add action

Add action

Uer

-
-+

-»

Targetet: | e
Target id:

Verb:

Saveandadd another [Saveand continueediting [SAVE

As you would notice in the preceding screenshot, only the target _ct
and target_id fields that are mapped to actual database fields are
shown. The cenericroreignkey field does not appear in the form. The
target_ct field allows you to select any of the registered models of
your Django project. You can restrict the content types to choose
from a limited set of models using the 1init_choices_to attribute in the
target_ct field: the 1imit choices to attribute allows you to restrict the
content of roreignkey fields to a specific set of values.

Create a new file inside the actions application directory and name it
utils.py. We will define a shortcut function that will allow us to
create new action Objects in a simple way. Edit the new utiis.py file
and add the following code to it:

from django.contrib.contenttypes.models import ContentType
from .models import Action

def create_action(user, verb, target=None):
action = Action(user=user, verb=verb, target=target)
action.save()

The create_action() function allows us to create actions that optionally
include a target object. We can use this function anywhere in our
code as a shortcut to add new actions to the activity stream.

Avoiding duplicate actions in
the activity stream

Sometimes, your users might perform an action multiple times.
They might click several times on the LIKE or UNLIKE buttons or
perform the same action multiple times in a short period of time.
This will easily lead to storing and displaying duplicate actions. To
avoid this, we will improve the create_action() function to skip obvious
duplicated actions.

Edit the utiis.py file of the actions application, as follows:

import datetime

from django.utils import timezone

from django.contrib.contenttypes.models import ContentType
from .models import Action

def create_action(user, verb, target=None):
check for any similar action made in the last minute
now = timezone.now()
last_minute = now - datetime.timedelta(seconds=60)
similar_actions = Action.objects.filter(user_id=user.id,
verb= verb,
created__gte=last_minute)
if target:
target_ct = ContentType.objects.get_for_model(target)
similar_actions = similar_actions.filter(
target_ct=target_ct,
target_id=target.id)
if not similar_actions:
no existing actions found
action = Action(user=user, verb=verb, target=target)
action.save()
return True
return False

We have changed the create_action() function to avoid saving

duplicate actions and return Boolean to tell whether the action was
saved or not. This is how we avoid duplicates:

e First, we get the current time using the timezone.now() method
provided by Django. This method does the same as
datetime.datetime.now() DUt returns a timezone-aware Object. Django
provides a setting called use_1z to enable or disable time zone
support. The default settings.py file created using the
startproject command includes use_tz=True.

e We use the 1ast_minute variable to store the datetime from one
minute ago and retrieve any identical actions performed by
the user since then.

e We create an action Object if no identical action already exists
in the last minute. We return rue if an action object was
created, otherwise raise.

Adding user actions to the
activity stream

It's time to add some actions to our views to build the activity
stream for our users. We will store an action for each of the
following interactions:

A user bookmarks an image

A user likes an image

A user creates an account

A user starts following another user

Edit the views.py file of the images application and add the following
import:

from actions.utils import create_action

In the image_create VieW, add create_action() after saving the image, like
this:

new_item.save()
create_action(request.user, 'bookmarked image', new_item)

In the image_like VieW, add create_action() after addlng the user to the
users_like relationship, as follows:

image.users_like.add(request.user)
create_action(request.user, 'likes',6 image)

NOW, edit the vieus. py file of the account application and add the
following import:

from actions.utils import create_action

In the register VieW, add create_action() after creating the profile object,
as follows:

Profile.objects.create(user=new_user)
create_action(new_user, 'has created an account')

In the user_follow VieW, add create_action():

Contact.objects.get_or_create(user_from=request.user,
user_to=user)
create_action(request.user, 'is following', user)

As you can see in the preceding code, thanks to our action model and
our helper function, it's very easy to save new actions to the activity
stream.

Displaying the activity stream

Finally, we will need a way to display the activity stream for each
user. We will include the activity stream in the user's dashboard.
Edit the views.py file of the account application. Import the action model
and modify the dashboard view, as follows:

from actions.models import Action

@login_required
def dashboard(request):
Display all actions by default
actions = Action.objects.exclude(user=request.user)
following ids = request.user.following.values_list('id',
flat=True)
if following_ids:
If user is following others, retrieve only their actions
actions = actions.filter(user_id__in=following_ids)
actions = actions[:10]

return render(request,
'account/dashboard.html',
{'section': 'dashboard',
'actions': actions})

In the preceding view, we retrieve all actions from the database,
excluding the ones performed by the current user. By default, we
will retrieve the latest actions performed by all users on the
platform. If the user is following other users, we restrict the query
to retrieve only the actions performed by the users they follow.
Finally, we limit the result to the first 10 actions returned. We don't
use order_by() in the QuerySet because we rely on the default ordering
we provided in the veta options of the action model. Recent actions
will come first since we have set ordering = ('-created',) in the action
model.

Optimizing QuerySets that
iInvolve related objects

Every time you retrieve an action object, you will usually access its
related user object and the user's related rroriie object. The Django
ORM offers a simple way to retrieve related objects at the same time
thereby avoiding additional queries to the database.

Using select_related()

Django offers a QuerySet method called seiect_rerated() that allows
you to retrieve related objects for one-to-many relationships. This
translates to a single, more complex QuerySet, but you avoid
additional queries when accessing the related objects. The
select_related method is for ForeignKey and onetoone fields. It works by
performing an SQL sorv and including the fields of the related object
in the seLect statement.

To take advantage of seiect_reiated(), edit the following line of the
preceding code:

actions = actions[:10]

Also, add seiect_rei1ated to the fields that you will use, like this:

actions = actions.select_related('user', 'user__ profile')[:10]

We use user__profile to join the prorile table in a single SQL query. If
you call seiect_related() without passing any arguments to it, it will
retrieve objects from all roreignkey relationships. Always limit
select_related() to the relationships that will be accessed afterward.

Using seiect_reiated() carefully can vastly improve execution time.

Using prefetch_related()

select_related() Will help you boost performance for retrieving related
objects in one-to-many relationships. However, seiect _related()
cannot work for many-to-many or many-to-one relationships
(manyToMany OT Teverse roreignkey fields). Django offers a different
QuerySet method called prefetch_related that works for many-to-many
and many-to-one relations in addition to the relations supported by
select_related(). The prefetch_related() method performs a Separate
lookup for each relationship and joins the results using Python.
This method also supports the prefetching of cenericrelation and

GenericForeignKey.

Edit the views.py file of the app1ication account and complete your
query by addlng prefetch_related() tO it for the target GenericForeignKey
field, as follows:

actions = actions.select_related('user', 'user__profile')\
.prefetch_related('target')[:10]

This query is now optimized for retrieving the user actions,
including related objects.

Creating templates for actions

We will now create the template to display a particular action object.
Create a new directory inside the actions application directory and
name it tempiates. Add the following file structure to it:

actions/
action/
detail.html

Edit the actions/action/detail.htmi template file and add the following
lines to it:

{% load thumbnail %}

{% with user=action.user profile=action.user.profile %}
<div class="action">
<div class="images">
{% if profile.photo %}
{% thumbnail user.profile.photo "80x80" crop="100%" as im %}

<img src="{{ im.url }}" alt="{{ user.get_full name }}"
class="item-img">

{% endthumbnail %}
{% endif %}

{% if action.target %}
{% with target=action.target %}
{% if target.image %}
{% thumbnail target.image "80x80" crop="100%" as im %}

{% endthumbnail %}
{% endif %}
{% endwith %}
{% endif %}
</div>

<div class="info">
<p>
{{ action.created|timesince }} ago

{{ user.first_name }}

{{ action.verb }}
{% if action.target %}
{% with target=action.target %}
{{ target }}
{% endwith %}
{% endif %}
</p>
</div>
</div>
{% endwith %}

This is the template used to display an action object. First, we use the
% with %} template tag to retrieve the user performing the action and
the related rrorite object. Then, we display the image of the target
object if the action Object has a related target Object. Finally, we
display the link to the user who performed the action, the verb, and
the target object, if any.

NOW, edit the account/dashboard.html template of the account application
and append the following code to the bottom of the content block:

<h2>What's happening</h2>
<div id="action-list">
{% for action in actions %}
{% include "actions/action/detail.html" %}
{% endfor %}
</div>

Open http://127.0.0.1:8000/account/ IN yOUur browser. Log in with an
existing user and perform several actions so that they get stored in
the database. Then, log in using another user, follow the previous
user, and take a look at the generated action stream on the
dashboard page. It should look like the following:

What's happening
&

ACAC f“ﬁ” Einstein bookmarked image Turing Machine
) () (s "‘-Il\lf

Tesla likes Chick Corea

We just created a complete activity stream for our users, and we can
easily add new user actions to it. You can also add infinite scroll
functionality to the activity stream by implementing the same AJAX
paginator you used for the image 1ist view.

Using signals for
denormalizing counts

There are some cases when you would like to denormalize your
data. Denormalization is making data redundant in a way that it
optimizes read performance. You have to be careful about
denormalization and only start using it when you really need it. The
biggest issue you will find with denormalization is that it's difficult
to keep your denormalized data updated.

We will take a look at an example of how to improve our queries by
denormalizing counts. The drawback is that we have to keep the
redundant data updated. We will denormalize data from our tmage
model and use Django signals to keep the data updated.

Working with signals

Django comes with a signal dispatcher that allows receiver functions
to get notified when certain actions occur. Signals are very useful
when you need your code to do something every time something
else happens. You can also create your own signals so that others
can get notified when an event happens.

Django provides several signals for models located at
django.db.models.signals. Some of these signals are as follows:

® pre_save and post_save are sent before or after calling the save()
method of a model

® pre_delete and post_delete are sent before or after calling the
delete() Mmethod of a model or QuerySet

® m2m_changed is sent when a ManyToManyField OI1 & model is changed

These are just a subset of the signals provided by Django. You can
find the list of all built-in signals at nttps://docs.djangoproject.com/en/2.0/re
f/signals/.

Let's say you want to retrieve images by popularity. You can use the
Django aggregation functions to retrieve images ordered by

the number of users who like them. Remember you used Django
aggregation functions in chapter 3, Extending Your Blog Application.

The following code will retrieve images according to their number
of likes:

from django.db.models import Count
from images.models import Image

https://docs.djangoproject.com/en/2.0/ref/signals/

images_by_popularity = Image.objects.annotate(
total_likes=Count('users_like')).order_by('-total_likes"')

However, ordering images by counting their total 1ikes is more
expensive in terms of performance than ordering them by a field,
which stores total counts. You can add a field to the 1mage model to
denormalize the total number of likes to boost performance in
queries that involve this field. Now, the issue is how to keep this
field updated?

Edit the mode1s.py file of the images application and add the following
total_likes field to the Image model:

class Image(models.Model):
...
total likes = models.PositiveIntegerField(db_index=True,
default=0)

The tota1 1ikes field will allow us to store the total count of users that
like each image. Denormalizing counts is useful when you want to
filter or order QuerySets by them.

There are several ways to improve performance that you have to take into
account before denormalizing fields. Consider database indexes, query
optimization, and caching, before starting to denormalize your data.

Run the following command to create the migrations for adding the
new field to the database table:

python manage.py makemigrations images
You should see the following output:

Migrations for 'images':
images/migrations/0002_image_total_likes.py
- Add field total likes to image

Then, run the following command to apply the migration:

python manage.py migrate images

The output should include the following line:

Applying images.0002_image_total likes... OK

We will attach a receiver function to the m2n_changed signal. Create a
new file inside the images application directory and name it signais. py.
Add the following code to it:

from django.db.models.signals import m2m_changed
from django.dispatch import receiver
from .models import Image

@receiver (m2m_changed, sender=Image.users_like.through)

def users_like_changed(sender, instance, **kwargs):
instance.total_likes = instance.users_like.count()
instance.save()

First, we register the users_1ike_changed function as a receiver function
using the receiver() decorator, and we attach it to the mem_changed signal.
We connect the function to Image.users_like.through SO that the function
is only called if the m2n_changed signal has been launched by this
sender. There is an alternate method for registering a receiver
function, which consists of using the connect() method of the signa1
object.

Django signals are synchronous and blocking. Don't confuse signals with
asynchronous tasks. Howeuver, you can combine both to launch
asynchronous tasks when your code gets notified by a signal.

You have to connect your receiver function to a signal so that it gets
called every time the signal is sent. The recommended method for
registering your signals is by importing them in the ready() method
of your application configuration class. Django provides an
application registry that allows you to configure and introspect your
applications.

Application configuration
classes

Django allows you to specify configuration classes for your
applications. When you create an application using the startapp
command, Django adds an apps.py file to the app directory, including
a basic app configuration that inherits from the appconrig class.

The application configuration class allows you to store metadata
and configuration for the application and provides introspection for
the app. You can find more information about application
conﬁgurations at nttps://docs.djangoproject.com/en/2.0/ref/applications/.

In order to register your signal receiver functions, when you use the
receiver() decorator, you just need to import the signals module of
your application inside the ready() method of the application
configuration class. This method is called as soon as the application
registry is fully populated. Any other initializations for your
application should also be included in this method.

Edit the apps.py file of the images application and make it look like this:

from django.apps import AppConfig

class ImagesConfig(AppConfig):
name = 'images'

def ready(self):
import signal handlers
import images.signals

We import the signals for this application in the ready() method so
that they are imported when the inages application is loaded.

https://docs.djangoproject.com/en/2.0/ref/applications/

Run the development server with the following command:

python manage.py runserver

Open your browser to view an image detail page and click on the
LIKE button. Go back to the administration site, navigate to the edit
image URL, such as http://127.0.0.1:8000/admin/images/image/1/change/, and
take a look at the tota1_1ikes attribute. You should see that the

total likes attribute is updated with the total number of users that
like the image, as follows:

Users like: Tesla
Einstein
Turing

Hold down "Control", or "Command" on a Mac, to select more than one.

Total likes: 2 .

Now, you can use the tota1 1ikes attribute to order images by
popularity or display the value anywhere, avoiding complex queries
to calculate it. Consider the following query to get images ordered
according to their 1ike count:

from django.db.models import Count

images_by_popularity = Image.objects.annotate(
likes=Count('users_like')).order_by('-1likes")

The preceding query can now be written as follows:
images_by_popularity = Image.objects.order_by('-total_likes"')

This results in a less expensive SQL query. This is just an example
of how to use Django signals.

Use signals with caution since they make it difficult to know the control flow.
In many cases, you can avoid using signals if you know which receivers need
to be notified.

You will need to set initial counts to match the current status of the
database. Open the shell with the python manage.py shell command and
run the following code:

from images.models import Image

for image in Image.objects.all():
image.total_likes = image.users_like.count()
image.save()

The likes count for each image is now up to date.

Using Redis for storing item
views

Redis is an advanced key/value database that allows you to save
different types of data and is extremely fast in I/O operations. Redis
stores everything in memory, but the data can be persisted by
dumping the dataset to disk every once in a while or by adding each
command to a log. Redis is very versatile compared to other
key/value stores: it provides a set of powerful commands and
supports diverse data structures, such as strings, hashes, lists, sets,
ordered sets, and even bitmaps or HyperLogLogs.

Although SQL is best suited to schema-defined persistent data
storage, Redis offers numerous advantages when dealing with
rapidly changing data, volatile storage, or when a quick cache is
needed. Let's take a look at how Redis can be used to build a new
functionality into our project.

Installing Redis

Download the latest Redis version from nttps://redis.io/download. Unzip
the tar.qz file, enter the redis directory, and compile Redis using the
make command, as follows:

cd redis-4.0.9
make

After installing it, use the following shell command to initialize the
Redis server:

src/redis-server

You should see an output that ends with the following lines:

Server initialized
* Ready to accept connections

By default, Redis runs on port s379. You can specify a custom port
using the --port ﬂag, for example, redis-server --port 6655.

Keep the Redis server running and open another shell. Start the
Redis client with the following command:

src/redis-cli

You will see the Redis client shell prompt like this:

127.0.0.1:6379>

https://redis.io/download

The Redis client allows you to execute Redis commands directly
from the shell. Let's try some commands. Enter the ser command in
the Redis shell to store a value in a key:

127.0.0.1:6379> SET name "Peter"
OK

The preceding command creates a name key with the string value
peter” N the Redis database. The ok output indicates that the key has
been saved successfully. Then, retrieve the value using the cet
command, as follows:

127.0.0.1:6379> GET name
"Peter"

You can also check whether a key exists using the exists command.
This command returns 1 if the given key exists, o otherwise:

127.0.0.1:6379> EXISTS name
(integer) 1

You can set the time for a key to expire using the exrire command,
which allows you to set time to live in seconds. Another option is
using the expirear command that expects a Unix timestamp. Key
expiration is useful to use Redis as a cache or to store volatile data:

127.0.0.1:6379> GET name
"Peter"

127.0.0.1:6379> EXPIRE name 2
(integer) 1

Wait for two seconds and try to get the same key again:

127.0.0.1:6379> GET name
(nil)

The (ni1) response is a null response and means that no key has
been found. You can also delete any key using the oec command, as
follows:

127.0.0.1:6379> SET total 1
OK

127.0.0.1:6379> DEL total
(integer) 1

127.0.0.1:6379> GET total
(nil)

These are just basic commands for key operations. Redis includes a
large set of commands for other data types, such as strings, hashes,
sets, and ordered sets. You can take a look at all Redis commands at

https://redis.io/commands and all Redis data types at nttps://redis.io/topics/d
ata-types.

https://redis.io/commands
https://redis.io/topics/data-types

Using Redis with Python

We will need Python bindings for Redis. Install redis-py Via pip using
the following command:

pip install redis==2.10.6

You can find the redis-py docs at https://redis-py.readthedocs.io/.

The redis-py package offers two classes for interacting with Redis:
strictredis and redis. Both offer the same functionality. The strictredis
class attempts to adhere to the official Redis command syntax. The
redis class extends strictredis, overriding some methods to provide
backward compatibility. We will use strictredis since it follows the
Redis command syntax. Open the Python shell and execute the
following code:

>>> import redis
>>> r = redis.StrictRedis(host='localhost', port=6379, db=0)

The preceding code creates a connection with the Redis database. In
Redis, databases are identified by an integer index instead of a
database name. By default, a client is connected to the database o.
The number of available Redis databases is set to 16, but you can
change this in the redis.cont configuration file.

Now, set a key using the Python shell:

>>> r.set('foo', 'bar')
True

The command returns True, indicating that the key has been

https://redis-py.readthedocs.io/

successfully created. Now, you can retrieve the key using the get()
command:

>>> r.get('foo')
b'bar’

As you can note from the preceding code, the methods of strictredis
follow the Redis command syntax.

Let's integrate Redis into our project. Edit the settings.py file of the
bookmarks project and add the following settings to it:

'localhost'
6379

REDIS_HOST
REDIS_PORT
REDIS_DB =

@ I

These are the settings for the Redis server and the database that we
will use for our project.

Storing item views in Redis

Let's find a way to store the total number of times an image has
been viewed. If we implement this using the Django ORM, it will
involve an SQL uroate query every time an image is displayed. If we
use Redis instead, we just need to increment a counter stored in
memory, resulting in a much better performance and less overhead.

Edit the views.py file of the images application and add the following
code to it after the existing import Statements:

import redis
from django.conf import settings

connect to redis

r = redis.StrictRedis(host=settings.REDIS_HOST,
port=settings.REDIS_PORT,
db=settings.REDIS_DB)

With the preceding code, we establish the Redis connection in order
to use it in our views. Edit the image detai1 view and make it look as
follows:

def image_detail(request, id, slug):
image = get_object_or_404(Image, id=id, slug=slug)
increment total image views by 1
total views = r.incr('image:{}:views'.format(image.1id))
return render(request,
'images/image/detail.html’,
{'section': 'images',
'"image': image,
'total views': total_views})

In this view, we use the incr command that increments the value of a
given key by 1. If the key doesn't exist, the incr command creates it

previously. The incr() method returns the final value of the key after
performing the operation. We store the value in the tota1 views
variable and pass it in the template context. We build the Redis key
using a notation, such as object-type:id:field (fOI‘ example, image:SS:id).

The convention for naming Redis keys is to use a colon sign as a separator
for creating namespaced keys. By doing so, the key names are especially
verbose and related keys share part of the same schema in their names.

Edit the images/image/detail.html template of the images application and
add the following code to lt, after the existing
element:

{{ total_views }} view{{ total_views|pluralize }}

Now, open an image detail page in your browser and reload it
several times. You will see that each time the view is processed, the
total views displayed is incremented by 1. Take a look at the
following example:

Django and Duke

LIKE

Django and Duke image.

Nobody likes this image yet.

Great! You have successfully integrated Redis into your project to
store item counts.

Storing a ranking in Redis

Let's build something more complex with Redis. We will create a
ranking of the most viewed images in our platform. For building
this ranking, we will use Redis sorted sets. A sorted set is a non-
repeating collection of strings in which every member is associated
with a score. Items are sorted by their score.

Edit the views. py file of the images application and make the image_detail
view look as follows:

def image_detail(request, id, slug):
image = get_object_or_404(Image, id=id, slug=slug)
increment total image views by 1
total_views = r.incr('image:{}:views'.format(image.id))
increment image ranking by 1
r.zincrby('image_ranking', image.id, 1)
return render(request,
'images/image/detail.html’,
{'section': 'images',
'"image': image,
'"total views': total views})

We use the zincrby() command to store image views in a sorted set
with the image:ranking key. We will store the image id and a related
score of 1 that will be added to the total score of this element in the
sorted set. This will allow us to keep track of all image views
globally and have a sorted set ordered by the total number of views.

Now, create a new view to display the ranking of the most viewed
images. Add the following code to the views. py file of the images
application:

@login_required
def image_ranking(request):

get image ranking dictionary
image_ranking = r.zrange('image_ranking', 0, -1,
desc=True)[:10]
image_ranking_ids = [int(id) for id in image_ranking]
get most viewed images
most_viewed = list(Image.objects.filter(
id__in=image_ranking_ids))

most_viewed.sort(key=lambda x: image_ranking_ids.index(x.1id))
return render(request,

'images/image/ranking.html’',

{'section': 'images',

'most_viewed': most_viewed})

The image_ranking view works like this:

1. We use the zrange() command to obtain the elements in the
sorted set. This command expects a custom range according
to the lowest and highest score. Using o as the lowest and -1
as the highest score, we are telling Redis to return all
elements in the sorted set. We also specify desc=True to
retrieve the elements ordered by descending score. Finally,
we slice the results using [:10] to get the first 10 elements
with the highest score.

2. We build a list of returned image IDs and store it in the
image_ranking_ids variable as a list of integers. We retrieve the
mage Objects for those IDs and force the query to be executed
using the 1ist() function. It is important to force the
QuerySet execution because we will now use the sort() list
method on it (at this point, we need a list of objects instead
of a QuerySet).

3. We sort the mmage Objects by their index of appearance in the
image ranking. Now, we can use the most_viewed list in our
template to display the 10 most viewed images.

Create a new ranking.htm1 template inside the images/images template
directory of the images application and add the following code to it:

{% extends "base.html" %}
{% block title %}Images ranking{% endblock %}

{% block content %}
<hi1>Images ranking</hi1>

{% for image in most_viewed %}

{{ image.title }}

</1i>
{% endfor %}
</o0l>
{% endblock %}

The template is pretty straightforward. We iterate over the mage
objects contained in the most_viewed list and display their names,
including a link to the image detail page.

Finally, you will need to create a URL pattern for the new view. Edit
the uris.py file of the images application and add the following pattern
to it:

path('ranking/', views.image_ranking, name='create'),

Run the development server, access your site in your web browser,
and load the image detail multiple times for different images. Then,
aCCess http://127.0.0.1:8000/images/ranking/ from your browser. You
should be able to see an images ranking, as follows:

Bookmarks My dashboard People Hello Antonio, Logout

Images ranking

1. Chick Corea

2. Louis Armstrong
3. Al Jarreau

4. Django Reinhardt
5. Django and Duke

Great! You just created an ranking with Redis.

Next steps with Redis

Redis is not a replacement for your SQL database, but a fast in-
memory storage that is more suitable for certain tasks. Add it to
your stack and use it when you really feel it's needed. The following
are some scenarios in which Redis suits pretty well:

¢ Counting: As you have seen, it is very easy to manage
counters with Redis. You can use incr() and incrby() for
counting stuff.

e Storing latest items: You can add items to the start/end
of a list using 1push() and rpush(). Remove and return the
first/last element using ipop() / rpop(). You can trim the list
length using 1trim() to maintain its length.

¢ Queues: In addition to push and pop commands, Redis offers
blocking queue commands.

e Caching: Using expire() and expireat() allows you to use Redis
as a cache. You can also find third-party Redis cache
backends for Django.

e Pub/sub: Redis provides commands for
subscribing/unsubscribing and sending messages to
channels.

e Rankings and leaderboards: Redis sorted sets with
scores make it very easy to create leaderboards.

¢ Real-time tracking: Redis's fast I/O makes it perfect for

real-time scenarios.

Summary

In this chapter, you have built a follower system and a user activity
stream. You learned how Django signals work and integrated Redis
into your project.

In the next chapter, you will learn how to build an online shop. You
will create a product catalog and build a shopping cart using
sessions. You will also learn how to launch asynchronous tasks
using Celery.

Building an Online Shop

In the previous chapter, you created a follower system and built a
user activity stream. You also learned how Django signals work and
integrated Redis into your project to count image views. In this
chapter, you will learn how to build a basic online shop. You will
create a catalog of products and implement a shopping cart using
Django sessions. You will also learn how to create custom context
processors and launch asynchronous tasks using Celery.

In this chapter, you will learn to:

¢ Create a product catalog
e Build a shopping cart using Django sessions
e Manage customer orders

¢ Send asynchronous notifications to customers using Celery

Creating an online shop project

We are going to start with a new Django project to build an online
shop. Our users will be able to browse through a product catalog
and add products to a shopping cart. Finally, they will be able to
check out the cart and place an order. This chapter will cover the
following functionalities of an online shop:

¢ Creating the product catalog models, adding them to the
administration site, and building the basic views to display
the catalog

¢ Building a shopping cart system using Django sessions to
allow users to keep selected products while they browse the
site

¢ Creating the form and functionality to place orders on the
site

¢ Sending an asynchronous email confirmation to users when
they place an order

Open a shell, create a virtual environment for the new project, and
activate it with the following commands:

mkdir env
virtualenv env/myshop
source env/myshop/bin/activate

Install Django in your virtual environment with the following
command:

pip install Django==2.0.5

Start a new project called myshop with an application called shop by
opening a shell and running the following commands:

django-admin startproject myshop
cd myshop/
django-admin startapp shop

Edit the settings.py file of your project and add the shop application to
the staLLen_apps setting as follows:

INSTALLED_APPS = [
...
'shop.apps.ShopConfig',

Your application is now active for this project. Let's define the
models for the product catalog.

Creating product catalog
models

The catalog of our shop will consist of products that are organized
into different categories. Each product will have a name, optional
description, optional image, price, and availability. Edit the mode1s.py
file of the snop application that you just created and add the
following code:

from django.db import models

class Category(models.Model):
name = models.CharField(max_length=200,
db_index=True)
slug = models.SlugField(max_length=200,
unique=True)

class Meta:
ordering = ('name',)
verbose_name = 'category'
verbose_name_plural = 'categories'

def __str_ (self):
return self.name

class Product(models.Model):

category = models.ForeignKey(Category,
related_name="'products',
on_delete=models.CASCADE)

name = models.CharField(max_length=200, db_index=True)

slug = models.SlugField(max_length=200, db_index=True)

image = models.ImageField(upload_to="'products/%Y/%m/%d",

blank=True)

description = models.TextField(blank=True)

price = models.DecimalField(max_digits=10, decimal_places=2)

available = models.BooleanField(default=True)

created = models.DateTimeField(auto_now_add=True)

updated = models.DateTimeField(auto_now=True)

class Meta:
ordering = ('name',)
index_together = (('id', 'slug'),)

def __str_ (self):
return self.name

These are the category and product models. The category model consists
of a name field and a siug unique field (unique implies the creation of an
index). The product model fields are as follows:

® category. Foreignkey tO the Category model. Thisis a many—to—one
relationship: a product belongs to one category and a
category contains multiple products.

¢ name: The name of the product.

e s1ug: The slug for this product to build beautiful URLs.
e image: An optional product image.

e description: An optional description of the product.

e price: This field uses Python's decima1.pecima1 type to store a
fixed-precision decimal number. The maximum number of
digits (including the decimal places) is set using the max digits
attribute and decimal places with the decima1 piaces attribute.

e available: A boolean value that indicates whether the product
is available or not. It will be used to enable/disable the
product in the catalog.

e created: This field stores when the object was created.

e updated: This field stores when the object was last updated.

For the price field, we use pecimairie1d instead of rioatrield to avoid

rounding issues.

Always use pecimairield to Store monetary amounts. rioatrield USeS
Python's rioat type internally, whereas pecimairieid uses Python's pecimal type.
By using the vecina1 type, you will avoid rioat rounding issues.

In the weta class of the product model, we use the index_together meta
option to specify an index for the i¢ and siug fields together. We
define this index because we plan to query products by both is and
siug. Both fields are indexed together to improve performances for
queries that utilize the two fields.

Since we are going to deal with images in our models, open the shell
and install ri110w with the following command:

pip install Pillow==5.1.0

Now, run the next command to create initial migrations for your
project:

python manage.py makemigrations

You will see the following output:

Migrations for 'shop':
shop/migrations/0001_initial.py
- Create model Category
- Create model Product
- Alter index_together for product (1 constraint(s))

Run the next command to sync the database:

python manage.py migrate

You will see output that includes the following line:

Applying shop.0001_initial... OK

The database is now synced with your models.

Registering catalog models on
the admin site

Let's add our models to the administration site so that we can easily
manage categories and products. Edit the admin.py file of the shop
application and add the following code to it:

from django.contrib import admin
from .models import Category, Product

@admin.register(Category)

class CategoryAdmin(admin.ModelAdmin):
list_display = ['name', 'slug']
prepopulated_fields = {'slug': ('name',)}

@admin.register(Product)
class ProductAdmin(admin.ModelAdmin):

list_display = ['name', 'slug', 'price',
'available', 'created', 'updated']

list_filter = ['available', 'created',6 'updated']
list_editable = ['price', 'available']
prepopulated_fields = {'slug': ('name',)}

Remember that we use the prepopulated fields attribute to specify fields
where the value is automatically set using the value of other fields.
As you have seen before, this is convenient for generating slugs. We
use the 1ist_editanie attribute in the productadmin class to set the fields
that can be edited from the list display page of the administration
site. This will allow you to edit multiple rows at once. Any field in
1ist_editable must also be listed in the 1ist_dispiay attribute since only
the fields displayed can be edited.

Now, create a superuser for your site using the following command:

python manage.py createsuperuser

Start the development server with the command python manage.py
runserver. Open http://127.0.0.1:8000/admin/shop/product/add/ in your browser
and log in with the user that you just created. Add a new category
and product using the administration interface. The product change
list page of the administration page will then look like this:

Mangoadnnmsnanon VELENE DM VEW T HAIGEPRSORD L0

Home: Shop: Products

() The productGeen e was adted suoessuly.

Seectproduct o change RPN 4

hotlon + sseeeeees 2| Go | Oof 1 selcted FLER

. By avalbe
WE o S5 P SOk AL T T

Al
T Gente gern s 0 DmEINETI DA ATEMpN "

T product Hﬂ
By crated

Anydate
Today

Past 7 dags
This month
This year

By updated

Anydate
Todey

Past T cays
This month
Thisyear

Building catalog views

In order to display the product catalog, we need to create a view to
list all the products or filter products by a given category. Edit the
views.py file of the shop application and add the following code to it:

from django.shortcuts import render, get_object_or_404
from .models import Category, Product

def product_list(request, category_slug=None):
category = None
categories = Category.objects.all()
products = Product.objects.filter(available=True)
if category_slug:
category = get_object_or_404(Category, slug=category_slug)
products = products.filter(category=category)
return render(request,
'shop/product/list.html',
{'category': category,
'categories': categories,
"products': products})

We will filter the QuerySet with availabie=true to retrieve only
available products. We use an optional category_siug parameter to
optionally filter products by a given category.

We also need a view to retrieve and display a single product. Add
the following view to the vieus.py file:

def product_detail(request, id, slug):
product = get_object_or_404(Product,
id=id,
slug=slug,
available=True)
return render(request,
'shop/product/detail.html’,
{'product': product})

The product_detai1l view expects the id and siug parameters in order to
retrieve the product instance. We can get this instance just through
the ID since it's a unique attribute. However, we include the slug in
the URL to build SEO-friendly URLs for products.

After building the product list and detail views, we have to define
URL patterns for them. Create a new file inside the shop application
directory and name it uris.py. Add the following code to it:

from django.urls import path
from . import views

app_name = 'shop'

urlpatterns = [
path('', views.product_list, name='product_list'),
path('<slug:category_slug>/', views.product_list,
name="'product_list by category'),
path('<int:id>/<slug:slug>/"', views.product_detail,
name="'product_detail'),

These are the URL patterns for our product catalog. We have
defined two different URL patterns for the product_1ist view: a pattern
named product_1ist, which calls the product_1ist view without any
parameters; and a pattern named product_list_by_category, which
provides a category_siug parameter to the view for filtering products
according to a given category. We added a pattern for the
product_detail View, which passes the id¢ and s1ug parameters to the
view in order to retrieve a specific product.

Edit the uris.py file of the myshop project to make it look like this:

from django.contrib import admin
from django.urls import path, include

urlpatterns = [
path('admin/', admin.site.urls),
path('', include('shop.urls', namespace='shop')),

In the main URL patterns of the project, we will include URLs for
the shop application under a custom namespace named shop.

Now, edit the mode1s.py file of the shop application, import the reverse()
function, and add a get_absolute_url() method to the Category and product
models as follows:

from django.urls import reverse
...
class Category(models.Model):
...
def get_absolute_url(self):
return reverse('shop:product_list by category',
args=[self.slug])

class Product(models.Model):
...
def get_absolute_url(self):
return reverse('shop:product_detail',
args=[self.id, self.slug])

As you already know, get_abso1ute uri() is the convention to retrieve
the URL for a given object. Here, we will use the URLSs patterns that
we just defined in the uris. py file.

Creating catalog templates

Now, we need to create templates for the product list and detail
views. Create the following directory and file structure inside the
shop application directory:

templates/
shop/
base.html
product/
list.html
detail.html

We need to define a base template, and then extend it in the
product list and detail templates. Edit the shop/base.ntm1 template and
add the following code to it:

{% load static %}
<IDOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>{% block title %}My shop{% endblock %}</title>
<link href="{% static "css/base.css" %}" rel="stylesheet">
</head>
<body>
<div id="header">
My shop
</div>
<div id="subheader">
<div class="cart">
Your cart is empty.
</div>
</div>
<div id="content">
{% block content %}
{% endblock %}
</div>
</body>

</html>

This is the base template that we will use for our shop. In order to
include the CSS styles and images that are used by the templates,
you will need to copy the static files that accompany this chapter,
located in the static/ directory of the shop application. Copy them to
the same location in your project.

Edit the shop/product/1ist.ntm1 template and add the following code to
it:

{% extends "shop/base.html" %}
{% load static %}

{% block title %}
{% if category %}{{ category.name }}{% else %}Products{% endif %}
{% endblock %}

{% block content %}
<div id="sidebar">
<h3>Categories</h3>

<li {% if not category %}class="selected"{% endif %}>
All
</1i>
{% for c in categories %}
<1li {% if category.slug == c.slug %}class="selected"
{% endif %}>
{{ c.name }}
</1i>
{% endfor %}

</div>
<div id="main" class="product-list">
<h1>{% if category %}{{ category.name }}{% else %}Products
{% endif %}</h1>
{% for product in products %}
<div class="item">

<img src="{% if product.image %}{{ product.image.url }3}{%
else %}{% static "img/no_image.png" %}{% endif %}">

{{ product.name }}

${{ product.price }}

</div>
{% endfor %}
</div>
{% endblock %}

This is the product list template. It extends the shop/base.ntm1 template
and uses the categories context variable to display all the categories in
a sidebar and products to display the products of the current page.
The same template is used for both: listing all available products
and listing products filtered by a category. Since the image field of the
product Model can be blank, we need to provide a default image for
the products that don't have an image. The image is located in our
static files directory with the relative path img/no_image.png.

Since we are using mmagerield to store product images, we need the
development server to serve uploaded image files.

Edit the settings.py file of myshop and add the fOHOWiIlg settings:

MEDIA URL = '/media/'
MEDIA ROOT = os.path.join(BASE_DIR, 'media/'")

men1a_urL 1S the base URL that serves media files uploaded by users.
mepa_rooT 1S the local path where these files reside, which we build by
dynamically prepending the sase_o1r variable.

For Django to serve the uploaded media files using the development
server, edit the main uris.py file of mysnop and add the following code
to it:

from django.conf import settings
from django.conf.urls.static import static

urlpatterns = [
...
]
if settings.DEBUG:
urlpatterns += static(settings.MEDIA_URL,
document_root=settings.MEDIA_ROOT)

Remember that we only serve static files this way during
development. In a production environment, you should never serve
static files with Django.

Add a couple of products to your shop using the administration site

and open nttp://127.0.0.1:8000/ iN your browser. You will see the
product list page, which looks like this:

Myshop

Your cartis empty

Products

(ategories

Al

Tea

Green tea Red tea Tea powder
§30 §455 §21.2

If you create a product using the administration site and don't
upload any image for it, the default no_image.png image will be
displayed instead:

NO IMAGE
AVAILABLE

Greentea Red tea Tea powder
$30 §45.5 §21.2

Let's edit the product detail template. Edit the shop/product/detail.htmi
template and add the following code to it:

{% extends "shop/base.html" %}
{% load static %}

{% block title %}
{{ product.name }}
{% endblock %}

{% block content %}
<div class="product-detail">
<img src="{% if product.image %}{{ product.image.url }}{% else %}
{% static "img/no_image.png" %}{% endif %}">
<h1>{{ product.name }}</h1>
<h2>{{
product.category }}</h2>
<p class="price">${{ product.price }}</p>
{{ product.description|linebreaks }}
</div>
{% endblock %}

We call the get_abso1ute uri() method on the related category object to
display the available products that belong to the same category.
Now, open nttp://127.0.0.1:8000/ in your browser and click on any
product to see the product detail page. It will look as follows:

My shop

Your cart is emply.

Red tea

Tea

$45.5

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim id est laborum.

You have now created a basic product catalog.

Building a shopping cart

After building the product catalog, the next step is to create a
shopping cart so that users can pick the products that they want to
purchase. A shopping cart allows users to select products and set
the amounts they want to order, and then store this information
temporarily, while they browse the site until they eventually place
an order. The cart has to be persisted in the session so that the cart
items are maintained during the user's visit.

We will use Django's session framework to persist the cart. The cart
will be kept in the session until it finishes or the user checks out of
the cart. We will also need to build additional Django models for the
cart and its items.

Using Django sessions

Django provides a session framework that supports anonymous and
user sessions. The session framework allows you to store arbitrary
data for each visitor. Session data is stored on the server side, and
cookies contain the session ID unless you use the cookie-based
session engine. The session middleware manages the sending and
receiving of cookies. The default session engine stores session data
in the database, but you can choose between different session
engines.

To use sessions, you have to make sure that the miooLeware setting of
your project contains 'django.contrib.sessions.middleware.SessionMiddleware'.
This middleware manages sessions. It's added by default to the
m1ppLewARE Setting when you create a new project using the startproject
command.

The session middleware makes the current session available in the
request Object. You can access the current session using request.session,
treating it like a Python dictionary to store and retrieve session
data. The session dictionary accepts any Python object by default
that can be serialized to JSON. You can set a variable in the session
like this:

request.session['foo'] = 'bar'

Retrieve a session key as follows:

request.session.get('foo"')

Delete a key you previously stored in the session as follows:

del request.session['foo']

You can just treat request.session like a standard Python dictionary.

When users log in to the site, their anonymous session is lost and a new
session is created for the authenticated users. If you store items in an
anonymous session that you need to keep after the user logs in, you will have
to copy the old session data into the new session.

Session settings

There are several settings you can use to configure sessions for your
project. The most important is sesston_ensne. This setting allows you
to set the place where sessions are stored. By default, Django stores
sessions in the database using the session model of the
django.contrib.sessions application.

Django offers the following options for storing session data:

e Database sessions: Session data is stored in the database.
This is the default session engine.

¢ File-based sessions: Session data is stored in the
filesystem.

¢ Cached sessions: Session data is stored in a cache
backend. You can specify cache backends using the cacres
setting. Storing session data in a cache system provides
the best performance.

¢ Cached database sessions: Session data is stored in a
write-through cache and database. Reads-only use the
database if the data is not already in the cache.

e Cookie-based sessions: Session data is stored in the
cookies that are sent to the browser.

For better performance, use a cache-based session engine. Django supports
Memcached out of the box and you can find third-party cache backends for
Redis and other cache systems.

You can customize sessions with specific settings. Here are some of
the important session-related settings:

e sesston_cookie_ace: The duration of session cookies in seconds.
The default value is 1209600 (two weeks).

® SESSION_COOKIE_DOMAIN: The domain used fOI‘ session COOkieS. Set
this to mydomain.com to enable cross-domain cookies or use none
for a standard domain cookie.

e sesston_cookte_secure: A boolean indicating that the cookie
should only be sent if the connection is an HTTPS
connection.

e sessToN_EXPIRE_AT_Browser cLose: A boolean indicating that the
session has to expire when the browser is closed.

e sess1on_sAvE_EVERY_ReQuesT: A boolean that, if true, will save the
session to the database on every request. The session
expiration is also updated each time it's saved.

You can see all the session settings and their default values at
https://docs.djangoproject.com/en/2.0/ref/settings/#sessions.

https://docs.djangoproject.com/en/2.0/ref/settings/#sessions

Session expiration

You can choose to use browser-length sessions or persistent
sessions using the sesston_exp1re_at_srowser_ctose setting. This is set to
ra1se by default, forcing the session duration to the value stored in
the sesston_cook1e_ace setting. If you set sesston_expire_aT_srowser_cLose tO
True, the session will expire when the user closes the browser, and
the sesston_cook1e_ace setting will not have any effect.

You can use the set_expiry() method of request.session tO overwrite the
duration of the current session.

Storing shopping carts in
sessions

We need to create a simple structure that can be serialized to JSON
for storing cart items in a session. The cart has to include the
following data for each item contained in it:

e The ID of a product instance
¢ Quantity selected for the product

e Unit price for the product

Since product prices may vary, we take the approach of storing the
product's price along with the product itself when it's added to the
cart. By doing so, we use the current price of the product when
users add it to their cart, no matter if the product's price is changed
afterwards.

Now, you have to build functionality to create carts and associate
them with sessions. The shopping cart has to work as follows:

e When a cart is needed, we check if a custom session key is
set. If no cart is set in the session, we create a new cart and
save it in the cart session key.

e For successive requests, we perform the same check and get
the cart items from the cart session key. We retrieve the cart
items from the session and their related product objects from
the database.

Edit the settings.py file of your project and add the following setting
to it:

CART_SESSION_ID = 'cart'

This is the key that we are going to use to store the cart in the user
session. Since Django sessions are managed per-visitor, we can use
the same cart session key for all sessions.

Let's create an application for managing shopping carts. Open the
Terminal and create a new application, running the following
command from the project directory:

python manage.py startapp cart

Then, edit the settings.py file of your project and add the new
application to the instacien_arps setting as follows:

INSTALLED_APPS = [
...
'shop.apps.ShopConfig"',
'cart.apps.CartConfig’',

Create a new file inside the cart application directory and name it
cart.py. Add the following code to it:

from decimal import Decimal
from django.conf import settings
from shop.models import Product

class Cart(object):

def __init_ (self, request):

Initialize the cart.

self.session = request.session
cart = self.session.get(settings.CART_SESSION_ID)

if not cart:

save an empty cart in the session

cart = self.session[settings.CART_SESSION_ID] = {}
self.cart = cart

This is the cart class that will allow us to manage the shopping cart.
We require the cart to be initialized with a request object. We store
the current session USil’lg self.session = request.session O make it
accessible to the other methods of the cart class. First, we try to get
the cart from the current session using

self.session.get(settings.CART sesston_1p). If no cart is present in the
session, we create an empty cart by setting an empty dictionary in
the session. We expect our cart dictionary to use product IDs as
keys and a dictionary with quantity and price as the value for each
key. By doing so, we can guarantee that a product is not added more
than once in the cart; this way we also simplify the way to retrieve
cart items.

Let's create a method to add products to the cart or update their
quantity. Add the following add() and save() methods to the cart class:

class Cart(object):
...
def add(self, product, quantity=1, update_quantity=False):

Add a product to the cart or update its quantity.
product_id = str(product.id)
if product_id not in self.cart:

self.cart[product_id] = {'quantity': O,

'price': str(product.price)}

if update_quantity:

self.cart[product_id]['quantity'] = quantity
else:

self.cart[product_id]['quantity'] += quantity
self.save()

def save(self):
mark the session as "modified" to make sure it gets saved
self.session.modified = True

The add() method takes the following parameters as input:

® product: The product instance to add or update in the cart.

e quantity: An optional integer with the product quantity. This
defaults to 1.

e update quantity: This is a boolean that indicates whether the
quantity needs to be updated with the given quantity (rrue),
or whether the new quantity has to be added to the existing
quantity (raise).

We use the product ID as a key in the cart's content dictionary. We
convert the product ID into a string because Django uses JSON to
serialize session data, and JSON only allows string key names. The
product ID is the key and the value that we persist is a dictionary
with quantity and price figures for the product. The product's price
is converted from decimal into a string in order to serialize it.
Finally, we call the save() method to save the cart in the session.

The save() method marks the session as modified using session.modified
= true. This tells Django that the session has changed and needs to
be saved.

We also need a method for removing products from the cart. Add
the following method to the cart class:

class Cart(object):
...
def remove(self, product):

Remove a product from the cart.

product_id = str(product.id)

if product_id in self.cart:
del self.cart[product_id]
self.save()

The remove() method removes a given product from the cart
dictionary and calls the save() method to update the cart in the
session.

We will have to iterate through the items contained in the cart and
access the related product instances. To do so, you can define an
iter () method in your class. Add the following method to the cart
class:

class Cart(object):

...

def _ iter_ (self):
Iterate over the items in the cart and get the products
from the database.
product_ids = self.cart.keys()
get the product objects and add them to the cart
products = Product.objects.filter(id__in=product_ids)

cart = self.cart.copy()
for product in products:
cart[str(product.id)]['product'] = product

for item in cart.values():
item['price'] = Decimal(item['price'])
item['total price'] = item['price'] * item['quantity']
yield item

In the __iter_ () method, we retrieve the rroduct instances that are
present in the cart to include them in the cart items. We copy the
current cart in the cart variable and add the product instances to it.
Finally, we iterate over the cart items, converting the item's price
back into decimal, and add a tota1_price attribute to each item. Now,
we can easily iterate over the items in the cart.

We also need a way to return the number of total items in the cart.
When the 1en() function is executed on an object, Python calls its
1en () method to retrieve its length. We are going to define a
custom _1en_ () method to return the total number of items stored
in the cart. Add the following 1en () method to the

cart class:

class Cart(object):
...
def _ len_ (self):

Count all items in the cart.

return sum(item['quantity'] for item in self.cart.values())

We return the sum of the quantities of all the cart items.

Add the following method to calculate the total cost of the items in
the cart:

class Cart(object):
...
def get_total price(self):
return sum(Decimal(item['price']) * item['quantity'] for item in
self.cart.values())

And finally, add a method to clear the cart session:

class Cart(object):
...
def clear(self):
remove cart from session
del self.session[settings.CART_SESSION_ID]
self.save()

Our cart class is now ready to manage shopping carts.

Creating shopping cart views

Now that we have a cart class to manage the cart, we need to create
the views to add, update, or remove items from it. We need to create
the following views:

¢ Aview to add or update items in a cart, which can handle
current and new quantities
¢ A view to remove items from the cart

e Aview to display cart items and totals

Adding items to the cart

In order to add items to the cart, we need a form that allows the
user to select a quantity. Create a forns.py file inside the cart
application directory and add the following code to it:

from django import forms
PRODUCT_QUANTITY_CHOICES = [(i, str(i)) for i in range(1, 21)]

class CartAddProductForm(forms.Form):
gquantity = forms.TypedChoiceField(
choices=PRODUCT_QUANTITY_CHOICES,
coerce=int)
update = forms.BooleanField(required=False,
initial=False,
widget=forms.HiddenInput)

We will use this form to add products to the cart. Our
cartAddproductForm class contains the following two fields:

e quantity: This allows the user to select a quantity between 1-
20. We use a TypedChoiceField field with coerce=int to convert the

input into an integer.

e update: This allows you to indicate whether the quantity has to
be added to any existing quantity in the cart for this product
(ra1se), or whether the existing quantity has to be updated
with the given quantity (ruve). We use a niddentnput widget for
this field since we don't want to display it to the user.

Let's create a view for adding items to the cart. Edit the vieus.py file
of the cart application and add the following code to it:

from django.shortcuts import render, redirect, get_object_or_404
from django.views.decorators.http import require_POST

from shop.models import Product

from .cart import Cart

from .forms import CartAddProductForm

@require_POST
def cart_add(request, product_id):
cart = Cart(request)
product = get_object_or_404(Product, id=product_id)
form = CartAddProductForm(request.POST)
if form.is_valid():
cd = form.cleaned_data
cart.add(product=product,
quantity=cd['quantity'],
update_quantity=cd['update'])
return redirect('cart:cart_detail')

This is the view for adding products to the cart or updating
quantities for existing products. We use the require_rost decorator to
allow only rost requests, since this view is going to change data. The
view receives the product ID as a parameter. We retrieve the product
instance with the given ID and validate cartaddproductrorm. If the form
is valid, we either add or update the product in the cart. The view
redirects to the cart_detair URL that will display the content of the
cart. We are going to create the cart_detai1 view shortly.

We also need a view to remove items from the cart. Add the
following code to the views.py file of the cart application:

def cart_remove(request, product_id):
cart = Cart(request)
product = get_object_or_404(Product, id=product_id)
cart.remove(product)
return redirect('cart:cart_detail')

The cart_remove View receives the product ID as a parameter. We
retrieve the product instance with the given ID and remove the
product from the cart. Then, we redirect the user to the cart_detai1
URL.

Finally, we need a view to display the cart and its items. Add the
following view to the views.py file of the cart application:

def cart_detail(request):
cart = Cart(request)
return render(request, 'cart/detail.html', {'cart': cart})

The cart_detai1 view gets the current cart to display it.

We have created views to add items to the cart, update quantities,
remove items from the cart, and display the cart content. Let's add
URL patterns for these views. Create a new file inside the cart
application directory and name it uris.py. Add the following URLSs to
it:

from django.urls import path
from . import views

app_name = 'cart'

urlpatterns = [
path('', views.cart_detail, name='cart_detail'),
path('add/<int:product_id>/",
views.cart_add,
name='cart_add'),
path('remove/<int:product_id>/",
views.cart_remove,
name='cart_remove'),

Edit the main ur1s.py file of the myshop project and add the following
URL pattern to include the cart URLs:

urlpatterns = [
path('admin/', admin.site.urls),
path('cart/', include('cart.urls',6 namespace='cart')),
path('', include('shop.urls', namespace='shop')),

Make sure that you include this URL pattern before the shop.uris

pattern, since it's more restrictive than the latter.

Building a template to display
the cart

The cart_add and cart_remove Views don't render any templates, but we
need to create a template for the cart_detair view to display cart items
and totals.

Create the following file structure inside the cart application
directory:

templates/
cart/
detail.html

Edit the cart/detaii.ntm1 template and add the following code to it:

{% extends "shop/base.html" %}
{% load static %}

{% block title %}
Your shopping cart
{% endblock %}

{% block content %}
<hi>Your shopping cart</h1>
<table class="cart">

<thead>
<tr>
<th>Image</th>
<th>Product</th>
<th>Quantity</th>
<th>Remove</th>
<th>Unit price</th>
<th>Price</th>
</tr>
</thead>
<tbody>

{% for item in cart %}
{% with product=item.product %}
<tr>
<td>

<img src="{% if product.image %}{{ product.image.url }}
{% else %}{% static "img/no_image.png" %}{% endif %}">

</td>
<td>{{ product.name }}</td>
<td>{{ item.quantity }}</td>
<td><a href="{% url "cart:cart_remove" product.id
%3}">Remove</td>
<td class="num">${{ item.price }}</td>
<td class="num">${{ item.total price }}</td>
</tr>
{% endwith %}
{% endfor %}
<tr class="total">
<td>Total</td>
<td colspan="4"></td>
<td class="num">${{ cart.get_total price }}</td>
</tr>
</tbody>
</table>
<p class="text-right">
<a href="{% url "shop:product_list" %}" class="button
light">Continue shopping
Checkout
</p>
{% endblock %}

This is the template that is used to display the cart content. It
contains a table with the items stored in the current cart. We allow
users to change the quantity of the selected products using a form
that is posted to the cart_add view. We also allow users to remove
items from the cart by providing a Remove link for each of them.

Adding products to the cart

Now, we need to add an Add to cart button to the product detail
page. Edit the views.py file of the shop application, and add
cartAddproductform to the product_detail view as follows:

from cart.forms import CartAddProductForm

def product_detail(request, id, slug):
product = get_object_or_404(Product, id=id,
slug=slug,
available=True)
cart_product_form = CartAddProductForm()
return render(request,
'shop/product/detail.html’,
{'product': product,
'cart_product_form': cart_product_form})

Edit the shop/product/detail.html template of the shop application, and
add the following form to the product's price as follows:

<p class="price">${{ product.price }}</p>

<form action="{% url "cart:cart_add" product.id %}" method="post">
{{ cart_product_form }}
{% csrf_token %}
<input type="submit" value="Add to cart">

</form>

{{ product.description|linebreaks }}

Make sure the development server is running with the command
python manage.py runserver. NOW, Ope€n http://127.0.0.1:8000/ in your browser
and navigate to a product's detail page. It now contains a form to
choose a quantity before adding the product to the cart. The page
will look like this:

My shop

Your cart is empty.

Red tea

Tea

Quantity: 1 Add to cart

Choose a quantity and click on the Add to cart button. The form is
submitted to the cart_add View via rost. The view adds the product to
the cart in the session, including its current price and the selected
quantity. Then, it redirects the user to the cart detail page, which
will look like the following screenshot:

Your shopping cart

Image Product Quantity = Remove Unitprice Price

‘ Redtea 2 Remove $455 $91.0

$91.0

Continue shopping

Updating product quantities In
the cart

When users see the cart, they might want to change product
quantities before placing an order. We are going to allow users to
change quantities from the cart detail page.

Edit the views.py file of the cart application and change the cart_detai1
view to this:

def cart_detail(request):
cart = Cart(request)
for item in cart:
item['update_quantity form'] = CartAddProductForm(
initial={'quantity': item['quantity'],
'update': True})
return render(request, 'cart/detail.html', {'cart': cart})

We create an instance of cartadderoductrorm for each item in the cart to
allow changing product quantities. We initialize the form with the
current item quantity and set the update field to true so that when we
submit the form to the cart_add view, the current quantity is replaced
with the new one.

Now, edit the cart/detaii.ntmi template of the cart application and find
the following line:

<td>{{ item.quantity }}</td>

Replace the previous line with the following code:

<td>
<form action="{% url "cart:cart_add" product.id %}" method="post">

{{ item.update_quantity_form.quantity }}
{{ item.update_quantity_form.update }}
<input type="submit" value="Update">
{% csrf_token %}
</form>
</td>

Open http://127.0.0.1:8000/cart/ in your browser. You will see a form to
edit the quantity for each cart item, shown as follows:

Your shopping cart

Image Product Quantity Remove Unitprice Price

Redtea 2 [Remove $455 910

Continue shopping

Change the quantity of an item and click on the Update button to
test the new functionality. You can also remove an item from the
cart by clicking the Remove link.

Creating a context processor
for the current cart

You might have noticed that the message Your cart is empty is
displayed in the header of the site, even when the cart contains
items. We should display the total number of items in the cart and
the total cost instead. Since this has to be displayed in all pages, we
will build a context processor to include the current cart in the
request context, regardless of the view that processes the request.

Context processors

A context processor is a Python function that takes the request object
as an argument and returns a dictionary that gets added to the
request context. They come in handy when you need to make
something available globally to all templates.

By default, when you create a new project using the startproject
command, your project contains the following template context
processors, in the context_processors Option inside the rempiates setting;:

® django.template.context_processors.debug. This sets the boolean debug
and sq1_queries variables in the context representing the list of
SQL queries executed in the request.

® django.template.context_processors.request. This sets the request

variable in the context.

® django.contrib.auth.context_processors.auth: This sets the user

variable in the request.

® django.contrib.messages.context_processors.messages. This sets a messages
variable in the context containing all messages that have
been generated using the messages framework.

Django also enables django.template.context_processors.csrf tO avoid cross-
site request forgery attacks. This context processor is not present in
the settings, but it is always enabled and cannot be turned off for
security reasons.

You can see the list of all built-in context processors at https://docs.dja

https://docs.djangoproject.com/en/2.0/ref/templates/api/#built-in-template-context-processors

ngoproject.com/en/2.0/ref/templates/api/#built-in-template-context-processors.

Setting the cart into the
request context

Let's create a context processor to set the current cart into the
request context. We will be able to access the cart in any template.

Create a new file inside the cart application directory and name it
context_processors.py. Context Processors can reside anywhere in your
code, but creating them here will keep your code well organized.
Add the following code to the file:

from .cart import Cart

def cart(request):
return {'cart': Cart(request)}

A context processor is a function that receives the request Object as a
parameter and returns a dictionary of objects that will be available
to all the templates rendered using requestcontext. In our context
processor, we instantiate the cart using the request object and make it
available for the templates as a variable named cart.

Edit the settings.py file of your project and add
cart.context_processors.cart tO the context_processors OptiOIl inside the
TempLATEs Setting as follows:

TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [],
'APP_DIRS': True,
'"OPTIONS': {
'context_processors': [
...

'cart.context_processors.cart',
1
+
+

The cart context processor will be executed every time a template is
rendered using Django's requestcontext. The cart variable will be set in
the context of your templates.

Context processors are executed in all the requests that use requestcontext. You
might want to create a custom template tag instead of a context processor if
your functionality is not needed in all templates, especially if it involves
database queries.

Now, edit the shop/base.ntm1 template of the shop application and find
the following lines:

<div class="cart">
Your cart is empty.
</div>

Replace the previous lines with the following code:

<div class="cart">
{% with total_items=cart]|length %}
{% if cart|length > 0 %}
Your cart:

{{ total items }} item{{ total_items|pluralize }},
${{ cart.get_total price }}

{% else %}
Your cart is empty.
{% endif %}
{% endwith %}
</div>

Reload your server using the command python manage.py runserver. Open
http://127.0.0.1:8000/ iN Yyour browser and add some products to the
cart.

In the header of the website, you can see the total number of items

in the cart and the total cost, as follows:

My shop

Your cart: 2 items, $91.0

Registering customer orders

When a shopping cart is checked out, you need to save an order into
the database. Orders will contain information about customers and
the products they are buying.

Create a new application for managing customer orders using the
following command:

python manage.py startapp orders

Edit the settings.py file of your project and add the new application to
the staLLep_apps setting as follows:

INSTALLED_APPS = [
...
'orders.apps.OrdersConfig',

You have activated the orders application.

Creating order models

You will need a model to store the order details, and a second model
to store items bought, including their price and quantity. Edit the
models.py file of the orders application and add the following code to it:

from django.db import models
from shop.models import Product

class Order(models.Model):
first_name = models.CharField(max_length=50)
last_name = models.CharField(max_length=50)
email = models.EmailField()
address = models.CharField(max_length=250)
postal _code = models.CharField(max_length=20)
city = models.CharField(max_length=100)
created = models.DateTimeField(auto_now_add=True)
updated = models.DateTimeField(auto_now=True)
paid = models.BooleanField(default=False)

class Meta:
ordering = ('-created',)

def __str_ (self):
return 'Order {}'.format(self.id)

def get_total cost(self):
return sum(item.get_cost() for item in self.items.all())

class OrderItem(models.Model):
order = models.ForeignKey(Order,
related_name='items',
on_delete=models.CASCADE)
product = models.ForeignKey(Product,
related_name='order_items',
on_delete=models.CASCADE)
price = models.DecimalField(max_digits=10, decimal_places=2)
guantity = models.PositiveIntegerField(default=1)

def __str_ (self):

return '{}'.format(self.id)

def get_cost(self):
return self.price * self.quantity

The order model contains several fields to store customer
information and a paid boolean field, which defaults to raise. Later
on, we are going to use this field to differentiate between paid and
unpaid orders. We also define a get_tota1_cost() method to obtain the
total cost of the items bought in this order.

The orderrten model allows us to store the product, quantity, and
price paid for each item. We include get_cost() to return the cost of

the item.

Run the next command to create initial migrations for the orders
application:

python manage.py makemigrations

You will see the following output:

Migrations for 'orders':
orders/migrations/0001_initial.py
- Create model Order
- Create model OrderItem

Run the following command to apply the new migration:

python manage.py migrate

Your order models are now synced to the database.

Including order models in the
administration site

Let's add the order models to the administration site. Edit the
admin.py file of the orders application to make it look like this:

from django.contrib import admin
from .models import Order, OrderItem

class OrderItemInline(admin.TabularInline):
model = OrderItem
raw_id_fields = ['product']

@admin.register(Order)
class OrderAdmin(admin.ModelAdmin):
list_display = ['id', 'first_name', 'last_name', 'email',
'address', 'postal code', 'city', 'paid',
'created', 'updated']
list_filter = ['paid', 'created', ‘'updated']
inlines = [OrderItemInline]

We use a model1niine class for the orderrtem model to include it as an
inline in the orderadnin class. An inline allows you to include a model
on the same edit page its related model.

Run the development server with the command python manage. py
runserver, and then OPE€N http://127.0.0.1:8000/admin/orders/order/add/ in your
browser. You will see the following page:

Add order

First name;

Last name;

Address:

Postal code:

City:

) Paid

ORDER ITEMS

PRODUCT
L
L
L

+ Add another Order item

PRICE

x>

QUANTITY

<>

DELETE?

Save and add another [l Saveand continue editing i SAVE

Creating customer orders

We will use the order models we created to persist the items
contained in the shopping cart when the user finally places an
order. A new order will be created following these steps:

Present users an order form to fill in their data

2. Create a new order instance with the data entered, and create
an associated orderrtem instance for each item in the cart

3. Clear all the cart content and redirect users to a success page

First, we need a form to enter the order details. Create a new file
inside the orders application directory and name it forms.py. Add the
following code to it:

from django import forms
from .models import Order

class OrderCreateForm(forms.ModelForm):
class Meta:
model = Order
fields = ['first_name', 'last_name', 'email', 'address',
'postal _code', 'city']

This is the form that we are going to use for creating new order
objects. Now, we need a view to handle the form and create a new
order. Edit the vieus. py file of the orders application and add the
following code to it:

from django.shortcuts import render
from .models import OrderItem

from .forms import OrderCreateForm
from cart.cart import Cart

def order_create(request):
cart = Cart(request)
if request.method == 'POST':
form = OrderCreateForm(request.POST)
if form.is_valid():
order = form.save()
for item in cart:
OrderItem.objects.create(order=order,
product=item['product'],
price=item['price'],
quantity=item['quantity'])
clear the cart
cart.clear()
return render(request,
'orders/order/created.html’,
{'order': order})
else:
form = OrderCreateForm()
return render(request,
'orders/order/create.html’,
{'cart': cart, 'form': form})

In the order_create view, we will obtain the current cart from the
session with cart = cart(request). Depending on the request method,

we will perform the following tasks:

¢ GET request: Instantiates the ordercreaterorn form and

renders the orders/order/create.html template.

¢ POST request: Validates the data sent in the request. If the

data is valid, we create a new order in the database

using order = form.save(). We iterate over the cart items and

create an orderrten for each of them. Finally, we clear the cart

content and render the template orders/order/created.html.

Create a new file inside the orders application directory and name it

ur1s.py. Add the following code to it:

from django.urls import path

from . import views
app_name = 'orders'

urlpatterns = [
path('create/', views.order_create, name='order_create'),

]

This is the URL pattern for the order_create view. Edit the uris.py file of
myshop and include the following pattern. Remember to place it
before the shop.ur1s pattern:

path('orders/', include('orders.urls', namespace='orders')),

Edit the cart/detai1.ntm1 template of the cart application and edit this
line:

Checkout

Add the order_create URL as fOHOWS:

Checkout

Users can now navigate from the cart detail page to the order form.
We still need to define templates for placing orders. Create the
following file structure inside the orders application directory:

templates/
orders/
order/
create.html
created.html

Edit the orders/order/create.htm1 template and include the fOHOWiIlg
code:

{% extends "shop/base.html" %}

{% block title %}
Checkout
{% endblock %}

{% block content %}
<h1>Checkout</h1>

<div class="order-info">
<h3>Your order</h3>

{% for item in cart %}

{{ item.quantity }}x {{ item.product.name }}
${{ item.total price }}
</1li>
{% endfor %}

<p>Total: ${{ cart.get_total_price }}</p>
</div>
<form action="." method="post" class="order-form">

{{ form.as_p }}
<p><input type="submit" value="Place order"></p>

{% csrf_token %}
</form>
{% endblock %}

This template displays the cart items, including totals, and the form
to place an order.

Edit the orders/order/created.ntm1 template and add the following code:

{% extends "shop/base.html" %}

{% block title %}
Thank you
{% endblock %}

{% block content %}
<hi>Thank you</h1>
<p>Your order has been successfully completed. Your order number is
{{ order.id }}.</p>

{% endblock %}

This is the template that we render when the order is successfully
created.

Start the web development server to track new files. Open
http://127.0.0.1:8000/ iN Yyour browser, add a couple of products to the
cart, and continue to the checkout page. You will see a page like the
one following;:

My shop

Your cart: 3 items, $112.2

Checkout

First name:
Your order

o 1x Tea powder $21.2

Last name: o 2xRedtea $91.0
Total: $112.2

Email:
Address:
Postal code:
City:

Place order

Fill in the form with the valid data and click on the Place order

button. The order will be created and you will see a success page
like this:

Thank you

Your order has been successfully completed. Your order number is 1.

Now, go to the administration site.

Launching asynchronous tasks
with Celery

Everything you execute in a view affects response times. In many
situations, you might want to return a response to the user as
quickly as possible and let the server execute some process
asynchronously. This is especially relevant for time-consuming
processes or processes subject to failure, which might need a retry
policy. For example, a video sharing platform allows users to upload
videos but requires a long time to transcode uploaded videos. The
site might return a response to users to inform them that the
transcoding will start soon, and start transcoding the video
asynchronously. Another example is sending emails to users. If your
site sends email notifications from a view, the SMTP connection
might fail or slow down the response. Launching asynchronous
tasks is essential to avoid blocking the code execution.

Celery is a distributed task queue that can process vast amounts of
messages. It does real-time processing but also supports task
scheduling. Using Celery, not only can you create asynchronous
tasks easily and let them be executed by workers as soon as
possible, but you can also schedule them to run at a specific time.

You can find the Celery documentation at http://docs.celeryproject.org/e
n/latest/index.html.

http://docs.celeryproject.org/en/latest/index.html

Installing Celery

Let's install Celery and integrate it into our project. Install Celery
via pip using the following command:

pip install celery==4.1.0

Celery requires a message broker in order to handle requests from
an external source. The broker takes care of sending messages to
Celery workers, which process tasks as they receive them. Let's
install a message broker.

Installing RabbitMQ

There are several options to choose as a message broker for Celery,
including key/value stores such as Redis, or an actual message
system such as RabbitMQ. We will configure Celery with RabbitMQ),
since it's the recommended message worker for Celery.

If you are using Linux, you can install RabbitMQ from the shell
using the following command:

apt-get install rabbitmq

If you need to install RabbitMQ on macOS X or Windows, you can
find standalone versions at https://www.rabbitmg.com/download.html.

After installing it, launch RabbitMQ using the following command
from the shell:

rabbitmq-server

You will see output that ends with the following line:

Starting broker... completed with 10 plugins.

RabbitMQ is running and ready to receive messages.

https://www.rabbitmq.com/download.html

Adding Celery to your project

You have to provide a configuration for the Celery instance. Create a
new file next to the settings.py file of myshop and name it celery.py. This
file will contain the Celery configuration for your project. Add the
following code to it:

import os
from celery import Celery

set the default Django settings module for the 'celery' program.
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'myshop.settings')

app = Celery('myshop')

app.config_from_object('django.conf:settings', namespace='CELERY')
app.autodiscover_tasks()

In this code, we do the following:

1. We set the psanco_settines_moouLe variable for the Celery
command-line program.

2. We create an instance of the application with app =
celery('myshop').

3. We load any custom configuration from our project settings
using the config_from_object() method. The namespace attribute
specifies the prefix that Celery-related settings will have in
our settings.py file. By setting the ceLery namespace, all Celery
settings need to include the cecerv_ prefix in their name (for
example, CELERY_BROKER_URL).

4. Finally, we tell Celery to auto-discover asynchronous tasks
for our applications. Celery will look for a tasks.py file in each

application directory of apps added to 1nstaLLep_apes in order
to load asynchronous tasks defined in it.

You need to import the ceiery module in the _init_.py file of your
project to make sure it is loaded when Django starts. Edit the
myshop/__init__.py file and add the following code to it:

import celery
from .celery import app as celery_app

Now, you can start programming asynchronous tasks for your
applications.

The ceLery_arwavs_eacer Setting allows you to execute tasks locally in a
synchronous way instead of sending them to the queue. This is useful for
running unit tests or executing the application in your local environment
without running Celery.

Adding asynchronous tasks to
your application

We are going to create an asynchronous task to send an email
notification to our users when they place an order. The convention
is to include asynchronous tasks for your application in a tasks
module within your application directory.

Create a new file inside the orders application and name it tasks.py.
This is the place where Celery will look for asynchronous tasks. Add
the following code to it:

from celery import task
from django.core.mail import send_mail
from .models import Order

@task
def order_created(order_id):

Task to send an e-mail notification when an order is
successfully created.

order = Order.objects.get(id=order_id)

subject = 'Order nr. {}'.format(order.id)
message = 'Dear {},\n\nYou have successfully placed an order.\
Your order id is {}.'.format(order.first_name,
order.1id)

mail sent = send_mail(subject,
message,
'admin@myshop.com',
[order.email])
return mail_sent

We define the order_created task by using the task decorator. As you
can see, a Celery task is just a Python function decorated with task.
Our task function receives an order_id parameter. It's always

recommended to pass only IDs to task functions and lookup objects
when the task is executed. We use the send_mai1() function provided
by Django to send an email notification to the user that placed the
order.

You learned how to configure Django to use your SMTP server in cha
pter 2, Enhancing Your Blog with Advanced Features. If you don't
want to set up email settings, you can tell Django to write emails to
the console by adding the following setting to the settings.py file:

EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'

Use asynchronous tasks not only for time-consuming processes, but also for
other processes that are subject to failure, which do not take so much time to
be executed, but which are subject to connection failures or require a retry

policy.

Now we have to add the task to our order_create VIEW. Edit the views. py
file of the orders application, import the task, and call the order_created
asynchronous task after clearing the cart as follows:

from .tasks import order_created

def order_create(request):
...
if request.method == 'POST':
oo
if form.is_valid():
...
cart.clear()
launch asynchronous task
order_created.delay(order.id)

We call the de1ay() method of the task to execute it asynchronously.
The task will be added to the queue and will be executed by a
worker as soon as possible.

Open another shell and start the Celery worker from your project
directory, using the following command:

celery -A myshop worker -1 info

The Celery worker is now running and ready to process tasks. Make
sure the Django development server is also running. Open
http://127.0.0.1:8000/ iN Yyour browser, add some products to your
shopping cart, and complete an order. In the shell, you started the
Celery worker and you will see an output similar to this one:

[2017-12-17 17:43:11,462: INFO/MainProcess] Received task:
orders.tasks.order_created[e990ddae-2e30-4e36-b0e4-78bbd4f2738e]

[2017-12-17 17:43:11,685: INFO/ForkPoolWorker-4] Task
orders.tasks.order_created[e990ddae-2e30-4e36-b0e4-78bbd4f2738e] succeeded in
0.22019841300789267s: 1

The task has been executed and you will receive an email
notification for your order.

Monitoring Celery

You might want to monitor the asynchronous tasks that are
executed. Flower is a web-based tool for monitoring Celery. You can
install Flower using this command:

pip install flower==0.9.2

Once installed, you can launch Flower by running the following
command from your project directory:

celery -A myshop flower

Open http://localhost:5555/dashboard in your browser. You will be able to
see the active Celery workers and asynchronous task statistics:

o et Tt Bkr Mo gt Dus ot

Aeie: Processed Pl Slcoseded: Refrec:

St

Worke Neme Saus ' Aclie Pl Fab Swoeeded Refied Loadeag

[—

oy Meolesehonied 0 0 I 102408

Showing 101 of i

You can find documentation for Flower at nttps://flower.readthedocs.io/.

https://flower.readthedocs.io/

Summary

In this chapter, you created a basic shop application. You created a
product catalog and built a shopping cart using sessions. You
implemented a custom context processor to make the cart available
to your templates and created a form for placing orders. You also
learned how to launch asynchronous tasks with Celery.

In the next chapter, you will learn how to integrate a payment
gateway into your shop, add custom actions to the administration
site, export data in CSV format, and generate PDF files dynamically.

Managing Payments and
Orders

In the previous chapter, you created a basic online shop with a
product catalog and a shopping cart. You also learned how to
launch asynchronous tasks with Celery. In this chapter, you will
learn how to integrate a payment gateway into your site to let users
pay by credit card. You will also extend the administration site to
export orders to CSV format and you will generate PDF invoices.

In this chapter, you will learn to:

Integrate a payment gateway into your project

Export orders to CSV files

Create custom views for the administration site

Generate PDF invoices dynamically

Integrating a payment gateway

A payment gateway allows you to process payments online. Using a
payment gateway, you can manage customer's orders and delegate
payment processing to a reliable, secure third party. You won't have
to worry about processing credit cards in your own system.

There are several payment gateway providers to choose from. We
are going to integrate Braintree, which is used by popular online
services such as Uber or Airbnb. Braintree provides an API that
allows you to process online payments with multiple payment
methods such as a credit card, PayPal, Android Pay, and Apple Pay.
You can learn more about Braintree at https://www.braintreepayments.com/.

Braintree provides different integration options. The simplest is the
Drop-in integration, which contains a pre-formatted payment form.
However, in order to customize the behavior and experience of our
checkout, we are are going to use the advanced Hosted

Fields integration. You can learn more about the Hosted Fields
integration at nttps://developers.braintreepayments.com/guides/hosted-fields/over

view/javascript/v3.

Certain payment fields on the checkout page, such as the credit card
number, CVV number, or expiration date, must be hosted securely.
The Hosted Fields integration hosts the checkout fields on the
payment gateway's domain and renders an iframe to present the
fields to the users. This provides you with the ability to customize
the look and feel of the payment form, while ensuring that you are
compliant with Payment Card Industry (PCI) requirements.
Since you can customize the look and feel of the form fields, users
won't notice the iframe.

https://www.braintreepayments.com/
https://developers.braintreepayments.com/guides/hosted-fields/overview/javascript/v3

Creating a Braintree sandbox
account

You need a Braintree account to integrate the payment gateway into
your site. Let's create a sandbox account to test the Braintree API.
Open https://www.braintreepayments.com/sandbox in your browser. You will
see a form like the following one:

Sign up for the sandbox

Full name

TeSt EVG r Ything‘ Firt name e
Br aintr ee Company name

Entering our sandbox allows you to get a feel for the
}) . lihere is your business located?
Braintree experience before applying for a merchant

account or going to production. Spain '

Email address

Already in the sandbox? Sign in.

me@example.com

Try the sandbox

Fill in the details to create a new sandbox account. You will receive

https://www.braintreepayments.com/sandbox

an email from Braintree with a link to complete your account setup.
Follow the link and complete your account setup. Once you are
done, login at nttps://sandbox.braintreegateway.com/login. Your merchant ID
and private/public keys will be displayed like this:

sandbox Keys & Configuration

Here re the keysto your Sandbor Accourt, Once you're ready to sart taking payments with a production

Braintree Account you'l have to update your code, replacing tese with your producton Braintree Account keys,

Merchant D: OxtfhnTav733jank
Public Key: buastikubdtly
Private Key: OEOTAAREROINOROLRAIARARIANOR

You will need this information to authenticate requests to the
Braintree API. Always keep the private key secret.

https://sandbox.braintreegateway.com/login

Installing the Braintree Python
module

Braintree provides a Python module that simplifies dealing with its
API. The source code is located at https://github.com/braintree/braintree_py
thon. We are going to integrate the payment gateway into our project
using the braintree module.

Install the braintree module from the shell using the following
command:

pip install braintree==3.45.0

Add the following settings to the settings.py file of your project:

Braintree settings

BRAINTREE_MERCHANT_ID = 'XXX' # Merchant ID
BRAINTREE_PUBLIC_KEY = 'XXX' # Public Key
BRAINTREE_PRIVATE_KEY = 'XXX' # Private key

from braintree import Configuration, Environment

Configuration.configure(
Environment.Sandbox,
BRAINTREE_MERCHANT_ID,
BRAINTREE_PUBLIC_KEY,
BRAINTREE_PRIVATE_KEY

Replace BRAINTREE_MERCHANT_ID, BRAINTREE_PUBLIC_KEY, 11 BRAINTREE_PRIVATE_KEY
values with the ones of your account.

Note that we use environment.sandvox_for integrating the sandbox. Once you go
live and create a real account, you will need to change this to
Environment . Production. Braintree will provide you with a new merchant ID and

https://github.com/braintree/braintree_python

private/public keys for the production environment.

Let's integrate the payment gateway into the checkout process.

Integrating the payment
gateway

The checkout process will work as follows:

1. Add items to the shopping cart
2. Check out the shopping cart
3. Enter credit card details and pay

We are going to create a new application to manage
payments. Create a new application in your project using the
following command:

python manage.py startapp payment

Edit the settings.py file of your project and add the new application to
the staLLep_apps setting as follows:

INSTALLED_APPS = [
...
'payment . apps.PaymentConfig',

The payment application is now active.
After clients place an order, we need to redirect them to the

payment process. Edit the vieus.py file of the orders application and
include the following imports:

from django.urls import reverse

from django.shortcuts import render, redirect

In the same file, replace the following lines of the order_create view:

launch asynchronous task

order_created.delay(order.id)

return render(request,
'orders/order/created.html’',
locals())

Replace them with the following:

launch asynchronous task
order_created.delay(order.id)

set the order in the session
request.session['order_id'] = order.id

redirect for payment

return redirect(reverse('payment:process'))

With this code, after successfully creating an order, we set the order
ID in the current session using the order_id session key. Then, we
redirect the user to the payment:process URL, which we are going to
implement later.

Remember that you need to run Celery in order for the order_created
task to be queued and executed.

Every time an order is created in Braintree, a unique transaction
identifier is generated. We will add a new field to the order model of
the orders application to store the transaction ID. This will allow us
to link each order with its related Braintree transaction.

Edit the mode1s.py file of the orders application and add the following
field to the order model:

class Order(models.Model):
...
braintree_id = models.CharField(max_length=150, blank=True)

Let's sync this field with the database. Use the following command
to generate migrations:

python manage.py makemigrations
You will see the following output:

Migrations for 'orders':
orders/migrations/0002_order_braintree_id.py
- Add field braintree_id to order

Apply the migration to the database with the following command:

python manage.py migrate

You will see output that ends with the following line:

Applying orders.0002_order_braintree_id... OK

The model changes are now synced with the database. Now you are
able to store the Braintree transaction ID for each order. Let's
integrate the payment gateway.

Integrating Braintree using
Hosted Fields

The Hosted Fields integration allows you to create your own
payment form using custom styles and layout. An iframe is added
dynamically to the page using the Braintree JavaScript SDK. The
iframe includes the Hosted Fields payment form. When the
customer submits the form, Hosted Fields collects the card details
securely and attempts to tokenize them. If tokenization succeeds,
you can send the generated token nonce to your view to make a
transaction using the Python braintree module.

We will create a view for processing payments. The whole checkout
process will work as follows:

1. In the view, a client token is generated using the braintree
Python module. This token is used in the next step to
instantiate the Braintree JavaScript client; it's not the
payment token nonce.

2. The view renders the checkout template. The template loads
the Braintree JavaScript SDK using the client token and
generates the iframe with the hosted payment form fields.

3. Users enter their credit card details and submit the form. A
payment token nonce is generated with the Braintree
JavaScript client. We send the token to our view with a post
request.

4. The payment view receives the token nonce and we use it to
generate a transaction using the braintree Python module.

Let's start with the payment checkout view. Edit the views.py file of
the payment application and add the following code to it:

import braintree
from django.shortcuts import render, redirect, get_object_or_404
from orders.models import Order

def payment_process(request):
order_id = request.session.get('order_id")
order = get_object_or_404(0rder, id=order_id)

if request.method == 'POST':
retrieve nonce
nonce = request.POST.get('payment_method_nonce', None)
create and submit transaction
result = braintree.Transaction.sale({
'amount': '{:.2f}'.format(order.get_total cost()),
'payment_method_nonce': nonce,
'options': {
'submit_for_settlement': True

1)

if result.is_success:
mark the order as paid
order.paid = True
store the unique transaction id
order.braintree_id = result.transaction.id
order.save()
return redirect('payment:done')
else:
return redirect('payment:canceled')
else:
generate token
client_token = braintree.ClientToken.generate()
return render(request,
'payment/process.html’,
{'order': order,
'client_token': client_token})

The payment_process view manages the checkout process. In this VieW,
take the following actions:

1. We get the current order from the order_ia session key, which
was set previously in the order_create VIEW.

2. We retrieve the order object for the given ID or return a 404 not

round error if not found.

. When the view is loaded with a rost request, we retrieve the

payment_method_nonce O generate a new
transaction using braintree.Transaction.sale(). We pass the
following parameters to it:

1. amount: The total amount to charge the customer.

2. payment_method_nonce: The token nonce generated by
Braintree for the payment. It will be generated in the
template using the Braintree JavaScript SDK.

3. options: We send the submit_for_settlement OptiOl’l
with true so that the transaction is automatically
submitted for settlement.

. If the transaction is successfully processed, we mark the

order as paid by setting its paid attribute to true and we store
the unique transaction ID returned by the gateway in the
braintree_id attribute. We redirect the user to the payment:done
URL if the payment was successful otherwise to

payment:canceled.

. If the view was loaded with a cer request, we generate a client

token that we will use in the template to instantiate the
Braintree JavaScript client.

Let's create basic views to redirect users when the payment has
been successful, or when it has been canceled for any reason. Add
the following code to the views.py file of the payment application:

def payment_done(request):
return render(request, 'payment/done.html')

def payment_canceled(request):
return render(request, 'payment/canceled.html')

Create a new file inside the payment application directory and name it
ur1s.py. Add the following code to it:

from django.urls import path
from . import views

app_name = 'payment'

urlpatterns = [
path('process/', views.payment_process, name='process'),
path('done/', views.payment_done, name='done'),
path('canceled/', views.payment_canceled, name='canceled'),

These are the URLs for the payment workflow. We have included
the following URL patterns:

e process: The view that processes the payment

e done: The view to redirect the user if the payment is
successful

e canceled: The view to redirect the user if the payment is not
successful

Edit the main ur1s.py file of the myshop project and include the URL
patterns for the payment application as follows:

urlpatterns = [
...
path('payment/', include('payment.urls', namespace='payment')),
path('', include('shop.urls', namespace='shop')),

Remember to place it before the shop.ur1s pattern to avoid an
undesired pattern match.

Create the following file structure inside the payment application
directory:

templates/
payment/
process.html
done.html
canceled.html

Edit the payment/process.html template and add the following code to it:

{% extends "shop/base.html" %}
{% block title %}Pay by credit card{% endblock %}

{% block content %}
<hi>Pay by credit card</h1>
<form action="." id="payment" method="post">

<label for="card-number">Card Number</label>
<div id="card-number" class="field"></div>

<label for="cvv'">CVV</label>
<div id="cvv" class="field"></div>

<label for="expiration-date">Expiration Date</label>
<div id="expiration-date" class="field"></div>

<input type="hidden" id="nonce" name="payment_method_nonce" value="">
{% csrf_token %}
<input type="submit" value="Pay">

</form>

<!-- Load the required client component. -->

<script src="https://js.braintreegateway.com/web/3.29.0/js/client.min.js">
</script>

<!-- Load Hosted Fields component. -->

<script src="https://js.braintreegateway.com/web/3.29.0/js/hosted-
fields.min.js"></script>
<script>

var form = document.querySelector('#payment');

var submit = document.querySelector('input[type="submit"]"');

braintree.client.create({
authorization: '{{ client_token }}'
}, function (clientErr, clientInstance) {
if (clientErr) {
console.error(clientErr);
return;

braintree.hostedFields.create({
client: clientInstance,

styles: {
'input': {'font-size': '13px'},
'input.invalid': {'color': 'red'},
'input.valid': {'color': 'green'}

+H

fields: {

number: {selector: '#card-number'},
cvv: {selector: '#cvv'},
expirationDate: {selector: '#expiration-date'}
}
}, function (hostedFieldsErr, hostedFieldsInstance) {
if (hostedFieldskErr) {
console.error(hostedFieldsErr);
return;

submit.removeAttribute('disabled');

form.addEventListener('submit', function (event) {
event.preventDefault();

hostedFieldsInstance.tokenize(function (tokenizeErr, payload) {
if (tokenizeErr) {
console.error(tokenizeErr);
return;
by
// set nonce to send to the server
document.getElementById('nonce').value = payload.nonce;
// submit form
document.getElementById('payment').submit();
3);
}, false);
1)
1)

</script>
{% endblock %}

This is the template that displays the payment form and processes

the payment. We define <div> containers instead of <input> elements
for the credit card input fields: the credit card number, CVV
number, and expiration date. This is how we specify the fields that
the Braintree JavaScript client will render in the iframe. We also
include an <input> element named payment_method_nonce that we will use
to send the token nonce to our view once generated by the Braintree
JavaScript client.

In our template, we load the Braintree JavaScript SDK ciient.min.js
and the Hosted Fields component hosted-fields.min.js. Then, we
execute the following JavaScript code:

1. We instantiate the Braintree JavaScript client with
the braintree.client.create() method, using the ciient_token
generated by the payment_process view.

2. We instantiate the Hosted Fields component with
the braintree.hostedrields.create() method.

3. We specify custom CSS styles for the input fields.

4. We specify the id selectors for the fields: card-
number, cvv, aNd expiration-date.

5. We add an event listener for the submit action of the form.
When the form is submitted, the fields are tokenized using
the Braintree SDK and the token nonce is set in
the payment_method_nonce field. Then, the form is submitted so
that our view receives the nonce to process the payment.

Edit the payment/done.htm1 template and add the following code to it:

{% extends "shop/base.html" %}

{% block content %}
<hi>Your payment was successful</hi1>

<p>Your payment has been processed successfully.</p>
{% endblock %}

This is the template for the page that the user is redirected to
following a successful payment.

Edit the payment/canceled.html template and add the following code to it:

{% extends "shop/base.html" %}

{% block content %}
<hi>Your payment has not been processed</h1>
<p>There was a problem processing your payment.</p>
{% endblock %}

This is the template for the page that the user is redirected to when
the transaction is not successful. Let's try the payment process.

Testing payments

Open a shell and run RabbitMQ with the following command:

rabbitmq-server

Open another shell and start the Celery worker from your project
directory with the following command:

celery -A myshop worker -1 info

Open one more shell and start the development server with this
command:

python manage.py runserver

Open nttp://127.0.0.1:8000/ in your browser, add some products to the
shopping cart, and fill in the checkout form. When you click the
PLACE ORDER button, the order will be persisted to the database,
the order ID will be saved in the current session, and you will be
redirected to the payment process page.

The payment process page retrieves the order from the session and
renders the Hosted Fields form in an iframe, as follows:

Pay by credit card

Card Number
cvv

Expiration Date

Pay

You can take a look at the HTML source code to see the generated
HTML.

Braintree provides a list of successful and unsuccessful credit cards
so that you can test all possible scenarios. You can find a list of
credit cards for testing at nttps://developers.braintreepayments.com/guides/cred
it-cards/testing-go-live/python. We are going to use the VISA test card
4111 1111 1111 1111, Which returns a successful purchase. We are going
to use CVV 123 and any future expiration date, such as 12/24. Enter
the credit card details as follows:

https://developers.braintreepayments.com/guides/credit-cards/testing-go-live/python

Pay by credit card

Card Number
4111 1111 111 MM

Cvv
12

Expiration Date
12/ 20

Pay

Click on the Pay button. You will see the following page:

My shop

Your payment was successful

Your payment has been processed successfully.

The transaction has been successfully processed. Now you can log
in to your account at nttps://sandbox.braintreegateway.com/login. Under
Transactions, you will be able to see the transaction like this:

https://sandbox.braintreegateway.com/login

D TonsactionDete~—~—~~ Type s Customer~ Peyment Amourt

Iformatio
[]
/OAYI01 074523 Submited For Vish
(il U 0 EUR
DM CST Cettlment L1111

NOW, Op€n http://127.0.0.1:8000/admin/orders/order/ in your browser. The
order should now be marked as paid and contain the related
Braintree transaction ID:

Paid

Braintree id: 2bwkx5bb

Congratulations! You have implemented a payment gateway to
process credit cards.

Going live

Once you have tested your environment, you can create a real
Braintree account at https://www.braintreepayments.com. Once you are
ready for moving into production, remember to change your live
environment credentials in the settings.py file of your project and

USe braintree.Environment.Production tO Set up your environment. All steps
to g0 live are summarized at https://developers.braintreepayments.com/start/g

o-live/python .

https://www.braintreepayments.com
https://developers.braintreepayments.com/start/go-live/python

Exporting orders to CSV files

Sometimes, you might want to export the information contained in
a model to a file so that you can import it in any other system. One
of the most widely used formats to export/import data is Comma-
Separated Values (CSV). A CSV file is a plain text file consisting
of a number of records. There is usually one record per line, and
some delimiter character, usually a literal comma, separates the
record fields. We are going to customize the administration site to
be able to export orders to CSV files.

Adding custom actions to the
administration site

Django offers you a wide range of options to customize the
administration site. We are going to modify the object list view to
include a custom admin action.

An admin action works as follows: a user selects objects from the
admin's object list page with checkboxes, then selects an action to
perform on all of the selected items, and executes the action. The
following screenshot shows where actions are located in the
administration site:

Select user to change

Q
Action] R U Go | 0of 1 selected
r U_‘ Delete selected users . MAIL ADDRESS

admin

Create custom admin actions to allow staff users to apply actions to multiple
elements at once.

You can create a custom action by writing a regular function that
receives the following parameters:

e The current mode1adnin being displayed

e The current request object as an ttprequest instance

¢ A QuerySet for the objects selected by the user

This function will be executed when the action is triggered from the
administration site.

We are going to create a custom admin action to download a list of
orders as a CSV file. Edit the admin.py file of the orders application and
add the following code before the orderadnin class:

import csv
import datetime
from django.http import HttpResponse

def export_to_csv(modeladmin, request, queryset):
opts = modeladmin.model._meta
response = HttpResponse(content_type="'text/csv')
response['Content-Disposition'] = 'attachment; '\
'filename={}.csv'.format(opts.verbose_name)
writer = csv.writer(response)

fields = [field for field in opts.get_fields() if not field.many_to_many\
and not field.one_to_many]
Write a first row with header information
writer.writerow([field.verbose_name for field in fields])
Write data rows
for obj in queryset:
data_row = []
for field in fields:
value = getattr(obj, field.name)
if isinstance(value, datetime.datetime):
value = value.strftime('%d/%m/%Y")
data_row.append(value)
writer.writerow(data_row)
return response
export_to_csv.short_description = 'Export to CSV'

In this code, we perform the following tasks:

1. We create an instance of nttpresponse, including a custom

text/csv content type, to tell the browser that the response has
to be treated as a CSV file. We also add a content-pisposition
header to indicate that the HTTP response contains an
attached file.

. We create a CSV writer object that will write on the response
object.

. We get the node1 fields dynamically using the get_fie1ds()
method of the model meta options. We exclude many-to-
many and one-to-many relationships.

. We write a header row including the field names.

. We iterate over the given QuerySet and write a row for each
object returned by the QuerySet. We take care of formatting
datetime Objects because the output value for CSV has to be a
string.

. We customize the display name for the action in the
template by setting a short_description attribute to the function.

We have created a generic admin action that can be added to any
ModelAdmin class.

Finally, add the new export_to_csv admin action to the orderadnin class
as follows:

class OrderAdmin(admin.ModelAdmin):

actions = [export_to_csv]

Open http://127.0.0.1:8000/admin/orders/order/ in your browser. The
resulting admin action should look like this:

Select order to change

Action: [Export to CSV #] Go | 10f 19 selected
ID FIRSTNAME LASTNAME EMAIL ADDRESS

19 Antonio Melé antonio.mele@gmail.com Bank Street
18 Django Reinhardt email@domain.com Music Street

Select some orders and choose the Export to CSV action from the
select box, then click the Go button. Your browser will download the
generated CSV file named order.csv. Open the downloaded file using
a text editor. You should see content with the following format,
including a header row and a row for each order object you selected:

ID, first name,last name,email, address,postal
code,city,created, updated, paid, braintree id
3,Antonio, Melé, antonio.mele@gmail.com,Bank Street,WS
J11, London, 25/02/2018, 25/02/2018, True, 2bwkx5hb6

As you can see, creating admin actions is pretty straightforward.
You can learn more about generating CSV files with Django at nttps:/

/docs.djangoproject.com/en/2.0/howto/outputting-csv/.

https://docs.djangoproject.com/en/2.0/howto/outputting-csv/

Extending the admin site with
custom views

Sometimes, you may want to customize the administration site
beyond what is possible through configuring modeiadnin, creating
admin actions, and overriding admin templates. If this is the case,
you need to create a custom admin view. With a custom view, you
can build any functionality you need. You just have to make sure
that only staff users can access your view and that you maintain the
admin look and feel by making your template extend an admin
template.

Let's create a custom view to display information about an order.
Edit the views.py file of the orders application and add the following
code to it:

from django.contrib.admin.views.decorators import staff_member_required
from django.shortcuts import get_object_or_404
from .models import Order

@staff_member_required
def admin_order_detail(request, order_id):
order = get_object_or_404(0rder, id=order_id)
return render(request,
'admin/orders/order/detail.html’,
{'order': order})

The starf_member_required decorator checks that both the is_active and
is_staff fields of the user requesting the page are set to True. In this
view, we get the order Object with the given ID and render a template
to display the order.

NOW, edit the urls.py file of the orders application and add the
following URL pattern to it:

path('admin/order/<int:order_id>/"', views.admin_order_detail,
name="'admin_order_detail'),

Create the following file structure inside the tempiates/ directory of
the orders application:

admin/
orders/
order/
detail.html

Edit the detai1.nem1 template and add the following content to it:

{% extends "admin/base_site.html" %}
{% load static %}

{% block extrastyle %}

<link rel="stylesheet" type="text/css" href="{% static "css/admin.css" %}"
/>
{% endblock %}

{% block title %}
Order {{ order.id }} {{ block.super }}
{% endblock %}

{% block breadcrumbs %}
<div class="breadcrumbs">
Home ›
Orders
›
0Order {{
order.id }}
› Detail
</div>
{% endblock %}

{% block content %}
<hi>0rder {{ order.id }}</h1>
<ul class="object-tools">

Print order
</1i>

<table>

<tr>
<th>Created</th>
<td>{{ order.created }}</td>
</tr>
<tr>
<th>Customer</th>
<td>{{ order.first_name }} {{ order.last_name }}</td>
</tr>
<tr>
<th>E-mail</th>
<td>{{ order.email }}</td>
</tr>
<tr>
<th>Address</th>
<td>{{ order.address }}, {{ order.postal code }} {{ order.city }}</td>
</tr>
<tr>
<th>Total amount</th>
<td>${{ order.get_total_cost }}</td>
</tr>
<tr>
<th>Status</th>
<td>{% if order.paid %}Paid{% else %}Pending payment{% endif %}</td>
</tr>
</table>

<div class="module">
<div class="tabular inline-related last-related">
<table>
<h2>Items bought</h2>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
<th>Quantity</th>
<th>Total</th>
</tr>
</thead>
<tbody>
{% for item in order.items.all %}
<tr class="row{% cycle "1" "2" %}">
<td>{{ item.product.name }}</td>
<td class="num">${{ item.price }}</td>
<td class="num">{{ item.quantity }}</td>
<td class="num">${{ item.get_cost }}</td>
</tr>
{% endfor %}
<tr class="total">
<td colspan="3">Total</td>
<td class="num">${{ order.get_total cost }}</td>

</tr>
</tbody>
</table>
</div>
</div>
{% endblock %}

This is the template to display an order detail on the administration
site. This template extends the adnin/base_site.ntm1 template of
Django's administration site, which contains the main HTML
structure and CSS styles of the admin. We load the custom static file

css/admin.css.

In order to use static files, you need to get them from the code that
came with this chapter. Copy the static files located in the static/
directory of orders appiication and add them to the same location in
your project.

We use the blocks defined in the parent template to include our own
content. We display information about the order and the items
bought.

When you want to extend an admin template, you need to know its
structure and identify existing blocks. You can find all admin
terrqplates at nttps://github.com/django/django/tree/2.0/django/contrib/admin/temp

lates/admin.

You can also override an admin template if you need to. To override
an admin template, copy it into your temp1ates directory keeping the
same relative path and filename. Django's administration site will
use your custom template instead of the default one.

Finally, let's add a link to each order object in the list display page of
the administration site. Edit the admin.py file of the orders application
and add the following code to it, above the orderadnin class:

from django.urls import reverse
from django.utils.safestring import mark_safe

https://github.com/django/django/tree/2.0/django/contrib/admin/templates/admin

def order_detail(obj):
return mark_safe('View"'.format(
reverse('orders:admin_order_detail', args=[obj.id])))

This is a function that takes an order object as an argument and
returns an HTML link for the admin_order_detaiir URL. Django escapes
HTML output by default. We have to use the mark_safe function to
avoid auto-escaping.

Use the nark_sare function to avoid HTML-escaping. When you use mark_safe,

make sure to escape input that has come from the user to avoid cross-site
scripting.

Then, edit the orderadnin class to display the link:

class OrderAdmin(admin.ModelAdmin):
list_display = ['id',
'first_name',
...
'updated’',
order_detail]

Open http://127.0.0.1:8000/admin/orders/order/ in your browser. Each row
now includes a View link as follows:

PAID CREATED v UPDATED ORDER DETAIL
V] Feb. 6,2018,1:35a.m. Feb.6,2018,1:45a.m. View

Click on the View link for any order to load the custom order detail
page. You should see a page like the following one:

Django administration

Home > Orders » Order 19 Detail

Order 19

Created Feb. 6,2018,1:35 a.m.

Customer Antonio Melé
E-mail antonio.mele@gmail.com
Address Jazz Street, 28027 Madrid

Total amount $21.2

Status Paid
PRODUCT PRICE QUANTITY TOTAL
Tea powder §21.2 1 Se12

Total $§21.2

Generating PDF invoices
dynamically

Now that we have a complete checkout and payment system, we can
generate a PDF invoice for each order. There are several Python
libraries to generate PDF files. One popular library to generate
PDFs with Python code is Reportlab. You can find information
about how to output PDF files with Reportlab at nttps://docs.djangoproje
ct.com/en/2.0/howto/outputting-pdf/.

In most cases, you will have to add custom styles and formatting to
your PDF files. You will find it more convenient to render an HTML
template and convert it into a PDF file, keeping Python away from
the presentation layer. We are going to follow this approach and use
a module to generate PDF files with Django. We will use
WeasyPrint, which is a Python library that can generate PDF files
from HTML templates.

https://docs.djangoproject.com/en/2.0/howto/outputting-pdf/

Installing WeasyPrint

First, install WeasyPrint's dependencies for your OS, which you will
find at http://weasyprint.org/docs/install/#platforms. Then, install
WeasyPrint via pip using the following command:

pip install WeasyPrint==0.42.3

http://weasyprint.org/docs/install/#platforms

Creating a PDF template

We need an HTML document as input for WeasyPrint. We are
going to create an HTML template, render it using Django, and pass
it to WeasyPrint to generate the PDF file.

Create a new template file inside the templates/orders/order/ directory of
the orders application and name it par.ntm1. Add the following code to
it:

<html>
<body>
<h1>My Shop</h1>
<p>
Invoice no. {{ order.id }}</br>

{{ order.created|date:"M d, Y" }}

</p>

<h3>Bill to</h3>
<p>
{{ order.first_name }} {{ order.last_name }}

{{ order.email }}

{{ order.address }}

{{ order.postal code }}, {{ order.city }}
</p>

<h3>Items bought</h3>
<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
{% for item in order.items.all %}

<tr class="row{% cycle "1" "2" %}">
<td>{{ item.product.name }}</td>
<td class="num">${{ item.price }}</td>
<td class="num">{{ item.quantity }}</td>
<td class="num">${{ item.get_cost }}</td>
</tr>
{% endfor %}
<tr class="total">
<td colspan="3">Total</td>
<td class="num">${{ order.get_total cost }}</td>
</tr>
</tbody>
</table>

{% if order.paid %}Paid{% else %}Pending payment{% endif %}

</body>
</html>

This is the template for the PDF invoice. In this template, we
display all order details and an HTML <tab1e> element including the
products. We also include a message to display if the order has been
paid or the payment is still pending.

Rendering PDF files

We are going to create a view to generate PDF invoices for existing
orders using the administration site. Edit the vieus.py file inside the
orders application directory and add the following code to it:

from django.conf import settings

from django.http import HttpResponse

from django.template.loader import render_to_string
import weasyprint

@staff_member_required
def admin_order_pdf(request, order_id):
order = get_object_or_404(0rder, id=order_id)
html = render_to_string('orders/order/pdf.html"',
{'order': order})
response = HttpResponse(content_type='application/pdf")
response['Content-Disposition'] = 'filename=\
"order_{}.pdf"'.format(order.id)
weasyprint.HTML(string=html).write_pdf(response,
stylesheets=[weasyprint.CSS(
settings.STATIC_ROOT + 'css/pdf.css')])
return response

This is the view to generate a PDF invoice for an order. We use the
staff_member_required decorator to make sure only staff users can access
this view. We get the order object with the given ID and we use the
render_to_string() function provided by Django to render
orders/order/pdf.html. The rendered HTML is saved in the ntm1 variable.
Then, we generate a new nttpresponse Object specifying the
application/pdf content type and iIlCllldiIlg the Content-Disposition header
to specify the filename. We use WeasyPrint to generate a PDF file
from the rendered HTML code and write the file to the uttpresponse
object. We use the static file css/pdar.css to add CSS styles to the
generated PDF file. We load it from the local path by using the
statc_root Setting. Finally, we return the generated response.

If you are missing the CSS styles, remember to copy the static files
located in the static/ directory of the snop application to the same
location of your project.

Since we need to use the starzc_roor setting, we have to add it to our

project. This is the project's path for static files to reside. Edit the
settings.py file of the myshop project and add the following setting:

STATIC_ROOT = os.path.join(BASE_DIR, 'static/')

Then, run the following command:

python manage.py collectstatic

You should see output that ends likes this:

120 static files copied to 'code/myshop/static'.

The coi1ectstatic command copies all static files from your
applications into the directory defined in the starzc_roor setting. This
allows each application to provide its own static files using a statics
directory containing them. You can also provide additional static
files sources in the statcrries pirs setting. All of the directories
specified in the staticrrLes_p1rs list will also be copied to the static_roor
directory when coiiectstatic is executed. Whenever you

execute collectstatic again, you will be asked if you want to override
the existing static files.

Edit the uris.py file inside the orders application directory and add the
following URL pattern to it:

urlpatterns = [
...
path('admin/order/<int:order_id>/pdf/"',
views.admin_order_pdf,
name='admin_order_pdf'),

Now, we can edit the admin list display page for the order model to
add a link to the PDF file for each result. Edit the admin.py file inside
the orders application and add the following code above the orderadnin
class:

def order_pdf(obj):
return mark_safe('PDF"'.format(
reverse('orders:admin_order_pdf', args=[obj.id])))
order_pdf.short_description = 'Invoice'

If you specify a short_description attribute for your callable, Django will
use it for the name of the column.

Add order_pdf tO the list_display attribute of the orderadnin class as
follows:

class OrderAdmin(admin.ModelAdmin):
list_display = ['id',
...
order_detail,
order_pdf]

Open http://127.0.0.1:8000/admin/orders/order/ in your browser. Each row
should now include a PDF link like this:

UPDATED ORDER DETAIL INVOICE

Feb. 11,2018, 3:17 p.m. View PDF

Click on the PDF link for any order. You should see a generated
PDF file like the following one for orders that have not been paid
yet:

My Shop

Invoice no. 16
Feb 01, 2018

Bill to

Antonio Mele
antonio.mele@gmail.com
Jazz Street

28033, Madrid

Items bought

Product Quantity

Green tea $30 1 $30

For paid orders, you will see the following PDF file:

My Shop

Invoice no. 19
Feb 06, 2018

Bill to

Antonio Melé
antonio.mele@gmail.com
Jazz Street

28027, Madrid

Items bought

Product Price Quantity Cost

Tea powder $21.2 1 $21.2

Sending PDF files by emaill

When a payment is successful, we will send an automatic email to
our customers including the generated PDF invoice. Edit

the views.py file of the payment application and add the following
imports to it:

from django.template.loader import render_to_string
from django.core.mail import EmailMessage

from django.conf import settings

import weasyprint

from io import BytesIO

Then, in the payment_process VieW, add the following code after the
order.save() line with the same indentation level as follows:

def payment_process(request):
...
if request.method == 'POST':
...
if result.is_success:
...
order.save()
create invoice e-mail
subject = 'My Shop - Invoice no. {}'.format(order.id)
message = 'Please, find attached the invoice for your recent\
purchase.'
email = EmailMessage(subject,
message,
'admin@myshop.com',
[order.email])
generate PDF
html = render_to_string('orders/order/pdf.html', {'order':
order})
out = BytesIO()
stylesheets=[weasyprint.CSS(settings.STATIC_ROOT +
'css/pdf.css')]
weasyprint.HTML(string=html) .write_pdf(out,
stylesheets=stylesheets)

attach PDF file

email.attach('order_{}.pdf'.format(order.id),
out.getvalue(),
'application/pdf"')

send e-mail

email.send()

return redirect('payment:done')
else:
return redirect('payment:canceled')
else:
...

We use the emaiimessage class provided by Django to create an emai1
object. Then, we render the template into the ntm1 variable. We
generate the PDF file from the rendered template and we output it
to a sytesto instance, which is an in-memory bytes buffer. Then, we
attach the generated PDF file to the emaiivessage Object using

the attach() method, including the contents of the out buffer, and
finally we send the email.

Remember to set up your SMTP settings in the settings.py file of the
project to send emails. You can refer to chapter 2, Enhancing Your
Blog with Advanced Features to see a working example for an
SMTP configuration.

Now, you can complete a new payment process in order to receive
the PDF invoice into your email.

Summary

In this chapter, you integrated a payment gateway into your project.
You customized the Django administration site and learned how to
generate CSV and PDF files dynamically.

The next chapter will give you an insight into the
internationalization and localization of Django projects. You will
also create a coupon system and build a product recommendation
engine.

Extending Your Shop

In the previous chapter, you learned how to integrate a payment
gateway into your shop. You also learned how to generate CSV and
PDF files. In this chapter, you will add a coupon system to your
shop. You will learn how internationalization and localization work,
and you will build a recommendation engine.

This chapter will cover the following points:

e Creating a coupon system to apply discounts

Adding internationalization to your project

Using Rosetta to manage translations

Translating models using django-parler

Building a product recommendation engine

Creating a coupon system

Many online shops give out coupons to customers that can be
redeemed for discounts on their purchases. An online coupon
usually consists of a code that is given to users, valid for a specific
time frame. The code can be redeemed one or multiple times.

We are going to create a coupon system for our shop. Our coupons
will be valid for clients that enter the coupon in a specific time
frame. The coupons will not have any limitations in terms of the
number of times they can be redeemed, and they will be applied to
the total value of the shopping cart. For this functionality, we will
need to create a model to store the coupon code, a valid time frame,
and the discount to apply.

Create a new application inside the myshop project using the following
command:

python manage.py startapp coupons

Edit the settings.py file of myshop and add the application to the
nsTALLED_Apps Setting as follows:

INSTALLED_APPS = [
...
'coupons. apps.CouponsConfig',

The new application is now active in our Django project.

Building the coupon models

Let's start by creating the coupon model. Edit the mode1s.py file of the
coupons application and add the following code to it:

from django.db import models
from django.core.validators import MinValueValidator, \
MaxValuevValidator

class Coupon(models.Model):
code = models.CharField(max_length=50,
unique=True)
valid_from = models.DateTimeField()
valid_to = models.DateTimeField()
discount = models.IntegerField(
validators=[MinValueValidator(0),
MaxValueValidator(100)])
active = models.BooleanField()

def __str_ (self):
return self.code

This is the model that we are going to use to store coupons. The
coupon Model contains the following fields:

¢ code: The code that users have to enter in order to apply the
coupon to their purchase.

e valid_from: The datetime value that indicates when the coupon
becomes valid.

e valid_to: The datetime value that indicates when the coupon
becomes invalid.

e discount: The discount rate to apply (this is a percentage, so it

takes values from o to 100). We use validators for this field to
limit the minimum and maximum accepted values.

e active: A Boolean that indicates whether the coupon is active.

Run the following command to generate the initial migration for the
coupons application:

python manage.py makemigrations

The output should include the following lines:

Migrations for 'coupons':
coupons/migrations/0001_initial.py:
- Create model Coupon

Then, we execute the next command to apply migrations:

python manage.py migrate

You should see an output that includes the following line:

Applying coupons.0001_initial... OK

The migrations are now applied in the database. Let's add the coupon
model to the administration site. Edit the admin.py file of the coupons
application and add the following code to it:

from django.contrib import admin
from .models import Coupon

class CouponAdmin(admin.ModelAdmin):
list_display = ['code', 'valid_from', 'valid_to',
'discount', 'active']
list_filter = ['active', 'valid_from', 'valid_to']
search_fields = ['code']

admin.site.register(Coupon, CouponAdmin)

The coupon model is now registered in the administration site. Ensure
that your local server is running with the command python manage. py
runserver. Open http://127.0.0.1:8000/admin/coupons/coupon/add/ in your
browser. You should see the following form:

Django administration WELCOME, ADMIN. VIEW SITE/ CHANGE PASSHORD / LOG OUT

Home> Coupons Coupons » Add coupon

Add coupon

Code:

Valid from: e oty @
Time: Now! ()

Valdto Date: Today @
Time: Now! ()

Discount;

7 Active

Save and add another § Save and continue editing | SAVE

Fill in the form to create a new coupon that is valid for the current
date and make sure that you check the Active checkbox and click
the SAVE button.

Applying a coupon to the
shopping cart

We can store new coupons and make queries to retrieve existing
coupons. Now we need a way for customers to apply coupons to

their purchases. The functionality to apply a coupon would be as
follows:

1. The user adds products to the shopping cart.

2. The user can enter a coupon code in a form displayed in the
shopping cart detail page.

3. When a user enters a coupon code and submits the form, we
look for an existing coupon with the given code that is
currently valid. We have to check that the coupon code
matches the one entered by the user that the active attribute
is True, and that the current datetime is between the vaiid_from
and vaiid_to values.

4. If a coupon is found, we save it in the user's session and
display the cart, including the discount applied to it and the
updated total amount.

5. When the user places an order, we save the coupon to the
given order.

Create a new file inside the coupons application directory and name it
forms.py. Add the following code to it:

from django import forms

class CouponApplyForm(forms.Form):
code = forms.CharField()

This is the form that we are going to use for the user to enter a
coupon code. Edit the views.py file inside the coupons application and
add the following code to it:

from django.shortcuts import render, redirect

from django.utils import timezone

from django.views.decorators.http import require_POST
from .models import Coupon

from .forms import CouponApplyForm

@require_POST
def coupon_apply(request):
now = timezone.now()
form = CouponApplyForm(request.POST)
if form.is_valid():
code = form.cleaned_data['code']
try:
coupon = Coupon.objects.get(code__iexact=code,
valid_from__lte=now,
valid_to__gte=now,
active=True)
request.session['coupon_id'] = coupon.id
except Coupon.DoesNotExist:
request.session['coupon_id'] = None
return redirect('cart:cart_detail')

The coupon_app1y View validates the coupon and stores it in the user's
session. We apply the require_rost decorator to this view to restrict it
to rost requests. In the view, we perform the following tasks:

1. We instantiate the couponappiyrorm form using the posted data
and we check that the form is valid.

2. If the form is valid, we get the code entered by the user from
the form's cieaned_data dictionary. We try to retrieve the coupon
object with the given code. We use the iexact field lookup to
perform a case-insensitive exact match. The coupon has to
be currently active (active=true) and valid for the current

datetime. We use Django's timezone.now() function to get the
current time zone-aware datetime and we compare it with
the valid_from and vaiid_to fields performing ite (less than or
equal to) and gte (greater than or equal to) field lookups,
respectively.

3. We store the coupon ID in the user's session.

4. We redirect the user to the cart_detair URL to display the cart
with the coupon applied.

We need a URL pattern for the coupon_app1y view. Create a new file
inside the coupons application directory and name it uris.py. Add the
following code to it:

from django.urls import path
from . import views

app_name = 'coupons'
urlpatterns = [

path('apply/', views.coupon_apply, name='apply'),
]

Then, edit the main uris.py of the myshop project and include the coupons
URL patterns as follows:

urlpatterns = [

...
path('coupons/', include('coupons.urls', namespace='coupons')),
path('', include('shop.urls', namespace='shop')),

Remember to place this pattern before the snop.uris pattern.

Now, edit the cart.py file of the cart application. Include the following
import:

from coupons.models import Coupon

Add the following code to the end of the _init_ () method of the cart
class to initialize the coupon from the current session:

class Cart(object):
def __init_ (self, request):
...
store current applied coupon
self.coupon_id = self.session.get('coupon_id')

In this code, we try to get the coupon_id session key from the current
session and store its value in the cart object. Add the following
methods to the cart object:

class Cart(object):
...
@property
def coupon(self):
if self.coupon_id:
return Coupon.objects.get(id=self.coupon_id)
return None

def get_discount(self):
if self.coupon:
return (self.coupon.discount / Decimal('1600')) \
* self.get_total price()
return Decimal('0"')

def get_total price_after_discount(self):
return self.get_total price() - self.get_discount()

These methods are as follows:

e coupon(): We define this method as property. If the cart contains
a coupon_id attribute, the coupon 0bject with the given ID is
returned.

e get discount(): If the cart contains a coupon, we retrieve its
discount rate and return the amount to be deducted from

the total amount of the cart.

® get_total price_ after_discount(): We return the total amount of
the cart after deducting the amount returned by the
get_discount() method.

The cart class is now prepared to handle a coupon applied to the
current session and apply the corresponding discount.

Let's include the coupon system in the cart's detail view. Edit the
views.py file of the cart application and add the following import at the
top of the file:

from coupons.forms import CouponApplyForm

Further down, edit the cart_detai1 view and add the new form to it as
follows:

def cart_detail(request):
cart = Cart(request)
for item in cart:
item['update_quantity_form'] = CartAddProductForm(
initial={'quantity': item['quantity'],
'update': True})
coupon_apply_form = CouponApplyForm()

return render(request,
'cart/detail.html’,
{'cart': cart,
'coupon_apply_form': coupon_apply form})

Edit the cart/detai1.ntm1 template of the cart application and locate the
following lines:

<tr class="total">
<td>Total</td>
<td colspan="4"></td>
<td class="num">${{ cart.get_total price }}</td>

</tr>
Replace them with the following:

{% if cart.coupon %}
<tr class="subtotal">
<td>Subtotal</td>
<td colspan="4"></td>
<td class="num">${{ cart.get_total price|floatformat:"2" }}</td>
</tr>
<tr>
<td>
"{{ cart.coupon.code }}" coupon
({{ cart.coupon.discount }}% off)
</td>
<td colspan="4"></td>
<td class="num neg">
- ${{ cart.get_discount|floatformat:"2" }}
</td>
</tr>
{% endif %}
<tr class="total">
<td>Total</td>
<td colspan="4"></td>
<td class="num">
${{ cart.get_total_price_after_discount|floatformat:"2" }}
</td>
</tr>

This is the code for displaying an optional coupon and its discount
rate. If the cart contains a coupon, we display a first row, including
the total amount of the cart as the subtotal. Then we use a second
row to display the current coupon applied to the cart. Finally, we
display the total price including any discount by calling the

get_total price_after_discount() method of the cart object.

In the same file, include the following code after the </tabie> HTML
tag:

<p>Apply a coupon:</p>

<form action="{% url "coupons:apply" %}" method="post">
{{ coupon_apply form }}
<input type="submit" value="Apply">

{% csrf_token %}
</form>

This will display the form to enter a coupon code and apply it to the
current cart.

Open nttp://127.0.0.1:8000/ iN your browser, add a product to the cart,
and apply the coupon you created by entering its code in the form.
You should see that the cart displays the coupon discount as
follows:

Your shopping cart

Image Product Quantity Remove Unitprice Price

Tapowdsr 1 [j Remove @12 §212

Subtotal $21.20

"SUMMER" coupon (10% off) -§2.12

Total $19.08

Apply a coupon:

Code: Apply

Continue shopping ~ IMITHGI

Let's add the coupon to the next step of the purchase process. Edit
the orders/order/create.ntm1 template of the orders application and
locate the following lines:

{% for item in cart %}

{{ item.quantity }}x {{ item.product.name }}
${{ item.total_price }}
</1i>

{% endfor %}

Replace them with the following code:

{% for item in cart %}

{{ item.quantity }}x {{ item.product.name }}
${{ item.total price|floatformat:"2" }}
</1i>
{% endfor %}
{% if cart.coupon %}

"{{ cart.coupon.code }}" ({{ cart.coupon.discount }}% off)
- ${{ cart.get_discount|floatformat:"2" }}
</1i>
{% endif %}

The order summary should now include the coupon applied, if there
is one. Now find the following line:

<p>Total: ${{ cart.get_total_price }}</p>

Replace it with the following:

<p>Total: ${{ cart.get_total_price_after_discount|floatformat:"2" }}</p>

By doing so, the total price will also be calculated by applying the
discount of the coupon.

Open http://127.0.0.1:8000/0rders/create/ in your browser. You should see
that the order summary includes the applied coupon as follows:

Your order

e 1x Tea powder $21.20
e "SUMMER" (10% off) -$2.12

Total: $19.08

Users can now apply coupons to their shopping cart. However, we
still need to store coupon information in the order that is created
when users check out the cart.

Applying coupons to orders

We are going to store the coupon that was applied to each order.
First, we need to modify the order model to store the related coupon
object, if there is any.

Edit the mode1s.py file of the orders application and add the following
imports to it:

from decimal import Decimal

from django.core.validators import MinValueValidator, \
MaxValuevValidator

from coupons.models import Coupon

Then, add the following fields to the order model:

class Order(models.Model):
...

coupon = models.ForeignKey(Coupon,
related_name='orders',
null=True,
blank=True,
on_delete=models.SET_NULL)

discount = models.IntegerField(default=0,

validators=[MinValueValidator(0),
MaxValueValidator(1600)])

These fields allow us to store an optional coupon for the order and
the discount percentage applied with the coupon. The discount is
stored in the related coupon Object, but we include it in the order model
to preserve it if the coupon is modified or deleted. We set on_delete to
models.seT_nuLL SO that if the coupon gets deleted, the coupon field is set
to nu11.

We need to create a migration to include the new fields of the order

model. Run the following command from the command line:
python manage.py makemigrations

You should see an output like the following:

Migrations for 'orders':
orders/migrations/0003_auto_20180307_2202.py:
- Add field coupon to order
- Add field discount to order

Apply the new migration with the following command:
python manage.py migrate orders

You should see a confirmation indicating that the new migration
has been applied. The order model field changes are now synced with
the database.

Go back to the mode1s.py file and change the get_total_cost() method of
the order model as follows:

class Order(models.Model):
...
def get_total cost(self):
total cost = sum(item.get_cost() for item in self.items.all())
return total _cost - total cost * \
(self.discount / Decimal('100'))

The get_tota1 cost() method of the order model will now take into
account the discount applied if there is one.

Edit the views. py file of the orders application and modlfy the

order_create View to save the related coupon and its discount when
creating a new order. Find the following line:

order = form.save()

I
Replace it with the following:

order = form.save(commit=False)
if cart.coupon:
order.coupon = cart.coupon
order.discount = cart.coupon.discount
order.save()

In the new code, we create an order object using the save() method of
the ordercreaterorm form. We avoid saving it to the database yet by
using commit=raise. If the cart contains a coupon, we store the related
coupon and the discount that was applied. Then we save the order
object to the database.

Make sure the development server is running with the command

python manage.py runserver.

Open nttp://127.0.0.1:8000/ iN your browser and complete a purchase
using the coupon you created. When you finish a successful
purchase, you can go 1O http://127.0.0.1:8000/admin/orders/order/ and check
that the order object contains the coupon and the applied discount
as follows:

Braintree d: 031natzb

Coupon: SUMMER 3 #+ x

Discount; 10

ORDER ITEMS
PRODUCT PRICE QUANTITY DELETE?
1
R ; 0
3 Q, Tea powder i : [-

You can also modify the admin order detail template and the order
PDF bill to display the applied coupon the same way we did for the
cart.

Next, we are going to add internationalization to our project.

Adding internationalization and
localization

Django offers full internationalization and localization support. It
allows you to translate your application into multiple languages and
it handles locale-specific formatting for dates, times, numbers, and
time zones. Let's clarify the difference between internationalization
and localization. Internationalization (frequently abbreviated to
118n) is the process of adapting software for the potential use of
different languages and locales, so that it isn't hardwired to a
specific language or locale. Localization (abbreviated to 110n) is
the process of actually translating the software and adapting it to a
particular locale. Django itself is translated into more than 50
languages using its internationalization framework.

Internationalization with
Django

The internationalization framework allows you to easily mark
strings for translation both in Python code and in your templates. It
relies on the GNU gettext toolset to generate and manage message
files. A message file is a plain text file that represents a language.
It contains a part, or all, of the translation strings found in your
application and their respective translations for a single language.
Message files have the .o extension.

Once the translation is done, message files are compiled to offer
rapid access to translated strings. The compiled translation files
have the .no extension.

Internationalization and
localization settings

Django provides several settings for internationalization. The
following settings are the most relevant ones:

e use_11sn: A Boolean that specifies whether Django's
translation system is enabled. This is True by default.

e use_L1on: A Boolean indicating whether localized formatting is
enabled. When active, localized formats are used to
represent dates and numbers. This is raise by default.

e use_Tz: A Boolean that specifies whether datetimes are time
zone-aware. When you create a project with the startproject
command, this is set to True.

o ancuace_cooe: The default language code for the project. This is
in standard language ID format, for example, 'en-us' for
American English, or ren-go' for British English. This setting
requires use_t1sn to be set to True in order to take effect. You
can find a list of valid language IDs at

http://www.il8nguy.com/unicode/language-identifiers.html.

e ancuaces: A tuple that contains available languages for the
project. They come in two tuples of a language code and
language name. You can see the list of available languages
at django.conf.global_settings. When you choose which languages
your site will be available in, you set Lancuaces to a subset of

http://www.i18nguy.com/unicode/language-identifiers.html

that list.

o ocaLe_paThs: A list of directories where Django looks for
message files containing translations for this project.

o T1ve_zone: A string that represents the time zone for the
project. This is set to 'urc' when you create a new project
using the startproject command. You can set it to any other
time Zone, such as 'Europe/Madrid’.

These are some of the internationalization and localization settings
available. You can find the full list at https://docs.djangoproject.com/en/2.0/
ref/settings/#globalization-i18n-110n.

https://docs.djangoproject.com/en/2.0/ref/settings/#globalization-i18n-l10n

Internationalization
management commands

Django includes the following management commands to manage
translations:

® nakemessages: This runs over the source tree to find all strings
marked for translation and creates or updates the .po
message files in the 1ocale directory. A single .po file is created
for each language.

® compilemessages. This compiles the existing .po IMessage files to
.mo files that are used to retrieve translations.

You will need the gettext toolkit to be able to create, update, and
compile message files. Most Linux distributions include the gettext
toolkit. If you are using macOS X, probably the simplest way to
install it is via Homebrew at nttps://brew.shs with the command brew
install gettext. YOU might also need to force link it with the command
brew link gettext --force. For Wil’ldOWS, follow the steps at nttps://docs.dja

ngoproject.com/en/2.0/topics/il8n/translation/#gettext-on-windows.

https://brew.sh/
https://docs.djangoproject.com/en/2.0/topics/i18n/translation/#gettext-on-windows

How to add translations to a
Django project

Let's take a look at the process to internationalize our project. We
will need to do the following:

1. Mark strings for translation in our Python code and our
templates

2. Run the makemessages command to create or update message
files that include all translation strings from our code

3. Translate the strings contained in the message files and
compile them using the compilemessages management command

How Django determines the
current language

Django comes with a middleware that determines the current
language based on request data. This is the Localemiddieware
middleware that resides in django.middleware.locale. LocaleMiddleware
performs the following tasks:

1. If you are using iis_patterns, that is, you use translated URL
patterns, it looks for a language prefix in the requested URL
to determine the current language.

2. If no language prefix is found, it looks for an existing
LANGUAGE_sEssTon_Key 1N the current user's session.

3. If the language is not set in the session, it looks for an
existing cookie with the current language. A custom name
for this cookie can be pI‘OVided in the Lancuace_cookTE NaME
setting. By default, the name for this cookie is django_1anguage.

4. If no cookie is found, it looks for the accept-Language HTTP
header of the request.

5. If the accept-Language header does not specify a language,
Django uses the language defined in the Lansuace_cooe setting.

By default, Django will use the language defined in the Lansuace_cooe
setting unless you are using Localemiddieware. The process described
here only applies when using this middleware.

Preparing our project for
Internationalization

Let's prepare our project to use different languages. We are going to
create an English and a Spanish version for our shop. Edit the
settings.py file of your project and add the following Lansuaces setting to
it. Place it next to the Lancuace_cope setting:

LANGUAGES = (
('en', 'English'),
('es', 'Spanish'),

The Lancuaces setting contains two tuples that consist of a language
code and a name. Language codes can be locale-specific, such as en-
us OT en-gb, OT generic, such as en. With this setting, we specify that
our application will only be available in English and Spanish. If we
don't define a custom Lancuaces setting, the site will be available in all
the languages that Django is translated into.

Make your Lancuace_cooe setting look as follows:

LANGUAGE_CODE = 'en'

Add 'django.middleware.locale.LocaleMiddleware' tO the wipoLeware setting.
Make sure that this middleware comes after sessionmiddieware because
Localemiddleware Needs to use session data. It also has to be placed
before commonviddieware because the latter needs an active language to
resolve the requested URL. The wrooceware setting should now look as
follows:

MIDDLEWARE = [

'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.locale.LocaleMiddleware',
'django.middleware.common.CommonMiddleware',

...

The order of middleware classes is very important because each middleware
can depend on data set by other middleware executed previously.
Middleware is applied for requests in order of appearance in wrooieware, and in
reverse order for responses.

Create the following directory structure inside the main project
directory, next to the manage. py file:

locale/
en/
es/

The 10ca1e directory is the place where message files for your
application will reside. Edit the settings.py file again and add the
following setting to it:

LOCALE_PATHS = (
os.path.join(BASE_DIR, 'locale/'),

)

The rocaLe_raths setting specifies the directories where Django has to
look for translation files. Locale paths that appear first have the
highest precedence.

When you use the nakemessages command from your project directory,
message files will be generated in the 10caie/ path we created.
However, for applications that contain a 1ocales directory, message
files will be generated in that directory.

Translating Python code

To translate literals in your Python code, you can mark strings for
translation using the gettext() function included in
django.utils.translation. This function translates the message and
returns a string. The convention is to import this function as a
shorter alias named _ (underscore character).

You can find all the documentation about translations at https://docs.
djangoproject.com/en/2.0/topics/il8n/translation/.

https://docs.djangoproject.com/en/2.0/topics/i18n/translation/

Standard translations

The following code shows how to mark a string for translation:

from django.utils.translation import gettext as _
output = _('Text to be translated.')

Lazy translations

Django includes lazy versions for all of its translation functions,
which have the suffix 1azy(). When using the lazy functions, strings
are translated when the value is accessed, rather than when the
function is called (this is why they are translated lazily). The lazy
translation functions come in handy when strings marked for
translation are in paths that are executed when modules are loaded.

Using gettext_1azy() instead of gettext(), strings are translated when the value is
accessed rather than when the function is called. Django offers
a lazy version for all translation functions.

Translations including
variables

The strings marked for translation can include placeholders to
include variables in the translations. The following code is an
example of a translation string with a placeholder:

from django.utils.translation import gettext as _

month = _('April'")
day = '14'
output = _('Today is %(month)s %(day)s') % {'month': month,

'day': day}

By using placeholders, you can reorder the text variables. For
example, an English translation of the previous example might be
"Today is April 14", while the Spanish one is "Hoy es 14 de Abril".
Always use string interpolation instead of positional interpolation
when you have more than one parameter for the translation string.
By doing so, you will be able to reorder the placeholder text.

Plural forms in translations

For plural forms, you can use ngettext() and ngettext_1azy(). These
functions translate singular and plural forms depending on an
argument that indicates the number of objects. The following
example shows how to use them:

output = ngettext('there is %(count)d product',
'there are %(count)d products',
count) % {'count': count}

Now that you know the basics about translating literals in our
Python code, it's time to apply translations to our project.

Translating your own code

Edit the settings.py file of your project, 1mport the gettext_lazy()
function, and change the rancuaces setting as follows to translate the
language names:

from django.utils.translation import gettext_lazy as _

LANGUAGES = (
('en', _('English')),
('es', _('Spanish')),

Here, we use the gettext_1azy() function instead of gettext() to avoid a
circular import, thus translating the languages' names when they
are accessed.

Open the shell and run the following command from your project
directory:

django-admin makemessages --all

You should see the following output:

processing locale es
processing locale en

Take a look at the 10caie/ directory. You should see a file structure
like the following;:

en/
LC_MESSAGES/
django.po

es/
LC_MESSAGES/
django.po

A ;o message file has been created for each language. Open
es/LC_MESSAGES/django.po With a text editor. At the end of the file, you
should be able to see the following:

#: myshop/settings.py:117
msgid "English"
msgstr ""

#: myshop/settings.py:118
msgid "Spanish"
msgstr ""

Each translation string is preceded by a comment showing details
about the file and line where it was found. Each translation includes
two strings:

e nsgid: The translation string as it appears in the source code.

e nsgstr: The language translation, which is empty by default.
This is where you have to enter the actual translation for the
given string.

Fill in the nsgstr translations for the given nsgida string as follows:

#: myshop/settings.py:117
msgid "English"
msgstr "Inglés"

#: myshop/settings.py:118
msgid "Spanish"
msgstr "Espafiol"

Save the modified message file, open the shell, and run the
following command:

django-admin compilemessages

If everything goes well, you should see an output like the following:

processing file django.po in myshop/locale/en/LC_MESSAGES
processing file django.po in myshop/locale/es/LC_MESSAGES

The output gives you information about the message files that are
being compiled. Take a look at the 1ocale directory of the myshop
project again. You should see the following files:

en/

es/

LC_MESSAGES/
django.mo
django.po

LC_MESSAGES/
django.mo
django.po

You can see that a .m0 compiled message file has been generated for
each language.

We have translated the language names themselves. Now let's
translate the model field names that are displayed in the site. Edit
the mode1s.py file of the orders application and add names marked for
translation for the order model fields as follows:

from django.utils.translation import gettext_lazy as _

class Order(models.Model):

first_name = models.CharField(_('first name'),
max_length=50)

last_name = models.CharField(_('last name'),
max_length=50)

email = models.EmailField(_('e-mail'))

address = models.CharField(_('address'),

max_length=250)
postal _code = models.CharField(_("'postal code'),
max_length=20)

city = models.CharField(_('city'),
max_length=100)
...

We have added names for the fields that are displayed when a user
1S placing a new order. These are first_name, last_name, email, address,
postal_code, and city. Remember that you can also use the verbose_name
attribute to name the fields.

Create the following directory structure inside the orders application
directory:

locale/
en/
es/

By creating a 1ocaie directory, translation strings of this application
will be stored in a message file under this directory instead of the
main messages file. In this way, you can generate separated
translation files for each application.

Open the shell from the project directory and run the following
command:

django-admin makemessages --all
You should see the following output:

processing locale es
processing locale en

Open the 1ocale/es/Lc_messaces/django. po file of the order application using
a text editor. You will see the translation strings for the order model.
Fill in the following msgstr translations for the given nsgid strings:

#: orders/models.py:10
msgid "first name"

msgstr "nombre"

#: orders/models.py:11
msgid "last name"
msgstr "apellidos"

#: orders/models.py:12
msgid "e-mail"
msgstr "e-mail"

#: orders/models.py:13
msgid "address"
msgstr "direccién"

#: orders/models.py:14
msgid "postal code"
msgstr '"cédigo postal"

#: orders/models.py:15
msgid "city"
msgstr "ciudad"

After you have finished adding the translations, save the file.

Besides a text editor, you can use Poedit to edit translations. Poedit
is a software to edit translations, and it uses gettext. It is available
for Linux, Windows, and macOS X. You can download Poedit from n
ttps://poedit.net/.

Let's also translate the forms of our project. ordercreaterorm of the orders
application does not have to be translated, since it is mode1rorm and it
uses the verbose name attribute of the order model fields for the form
field labels. We are going to translate the forms of cart and coupons
applications.

Edit the forms.py file inside the cart application directory and add a
1abel attribute to the quantity field of the CartAddProductForm, and then
mark this field for translation as follows:

from django import forms
from django.utils.translation import gettext_lazy as _

https://poedit.net/

PRODUCT_QUANTITY_CHOICES = [(i, str(i)) for i in range(1, 21)]

class CartAddProductForm(forms.Form):

gquantity = forms.TypedChoiceField(
choices=PRODUCT_QUANTITY_CHOICES,
coerce=int,
label=_('Quantity'))

update = forms.BooleanField(required=False,
initial=False,
widget=forms.HiddenInput)

Edit the forms. py file of the coupons application and translate the
CouponApplyForm form as follows:

from django import forms
from django.utils.translation import gettext_lazy as _

class CouponApplyForm(forms.Form):
code = forms.CharField(label=_('Coupon'))

We have added a label to the code field and marked it for translation.

Translating templates

Django offers the (% trans % and (% biocktrans %} template tags to
translate strings in templates. In order to use the translation

template tags, you have to add (% 10ad i18n %} at the top of your
template to load them.

The {% trans %} template tag

The % trans %3 template tag allows you to mark a string, a constant,
or variable content for translation. Internally, Django executes
gettext() on the given text. This is how to mark a string for
translation in a template:

{% trans "Text to be translated" %}

You can use as to store the translated content in a variable that you
can use throughout your template. The following example stores the
translated text in a variable called greeting:

{% trans "Hello!" as greeting %}
<h1>{{ greeting }}</h1>

The (% trans %} tag is useful for simple translation strings, but it
cannot handle content for translation that includes variables.

The {% blocktrans %} template
tag

The {% b1ocktrans %} template tag allows you to mark content that
includes literals and variable content using placeholders. The
following example shows you how to use the (% biocktrans %} tag,
including a nane variable in the content for translation:

{% blocktrans %}Hello {{ name }}!{% endblocktrans %}

You can use with to include template expressions such as accessing
object attributes or applying template filters to variables. You
always have to use placeholders for these. You cannot access
expressions or object attributes inside the biocktrans block. The
following example shows you how to use with to include an object
attribute to which the caprirst filter is applied:

{% blocktrans with name=user.name|capfirst %}
Hello {{ name }}!
{% endblocktrans %}

Use the (% biocktrans %3 tag instead of % trans % When you need to include
variable content in your translation string.

Translating the shop templates

Edit the shop/base.ntm1 template of the shop application. Make sure that
you load the i1sn tag at the top of the template and mark strings for
translation as follows:

{% load il8n %}
{% load static %}
<IDOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>
{% block title %}{% trans "My shop" %}{% endblock %}
</title>
<link href="{% static "css/base.css" %}" rel="stylesheet">
</head>
<body>
<div id="header">
{% trans "My shop" %}
</div>
<div id="subheader">
<div class="cart">
{% with total items=cart|length %}
{% if cart|length > 0 %}
{% trans "Your cart" %}:

{% blocktrans with total_items_plural=total items|pluralize
total price=cart.get_total price %}
{{ total items }} item{{ total _items_plural }},
${{ total_price }}
{% endblocktrans %}

{% else %}
{% trans "Your cart is empty." %}
{% endif %}
{% endwith %}
</div>
</div>
<div id="content">
{% block content %}

{% endblock %}
</div>
</body>
</html>

Notice the (% biocktrans %} tag to display the cart's summary. The
cart's summary was previously as follows:

{{ total_items }} item{{ total_items|pluralize }},
${{ cart.get_total_price }}

We used % biocktrans with ... %} to set up placeholders for

total items|pluralize (template tag apphed here) and
cart.get_total price (object method called here), I'esulting in the
following;:

{% blocktrans with total_ items_plural=total_items|pluralize
total _price=cart.get_total price %}

{{ total_items }} item{{ total_items_plural }},

${{ total_price }}
{% endblocktrans %}

Next, edit the shop/product/detail.ntmi template of the shop application
and load the i1sn tags at the top of it, but after the (% extends %} tag,
which always has to be the first tag in the template:

{% load i118n %}

Then, find the following line:

<input type="submit" value="Add to cart">

Replace it with the following:

<input type="submit" value="{% trans "Add to cart" %}">

Now, translate the orders application templates. Edit the

orders/order/create.html ternplate Of the orders application and mark text
for translation, as follows:

{% extends "shop/base.html" %}
{% load il8n %}

{% block title %}
{% trans "Checkout" %}
{% endblock %}

{% block content %}
<h1>{% trans "Checkout" %}</h1>

<div class="order-info">
<h3>{% trans "Your order" %}</h3>

{% for item in cart %}

{{ item.quantity }}x {{ item.product.name }}
${{ item.total price }}
</1li>
{% endfor %}
{% if cart.coupon %}

{% blocktrans with code=cart.coupon.code
discount=cart.coupon.discount %}
"{{ code }}" ({{ discount }}% off)
{% endblocktrans %}
- ${{ cart.get_discount|floatformat:"2" }}
</1li>
{% endif %}

<p>{% trans "Total" %}: ${{
cart.get_total price_after_discount|floatformat:"2" }}</p>
</div>

<form action="." method="post" class="order-form">
{{ form.as_p }}
<p><input type="submit" value="{% trans "Place order" %}"></p>
{% csrf_token %}
</form>
{% endblock %}

Take a look at the following files in the code that accompany this
chapter to see how strings have been marked for translation:

e The shop application: Template shop/product/list.html
L4 The orders application: Template orders/order/created.html

e The cart application: Template cart/detail.htmi

Let's update the message files to include the new translation strings.
Open the shell and run the following command:

django-admin makemessages --all

The .po files are inside the 1ocaie directory of the myshop project and
you'll see that the orders application now contains all the strings that
we marked for translation.

Edit the .po translation files of the project and the orders application
and include Spanish translations in the nsgstr. You can also use the

translated .po files in the source code that accompanies this chapter.

Run the following command to compile the translation files:
django-admin compilemessages
You will see the following output:

processing file django.po in myshop/locale/en/LC_MESSAGES
processing file django.po in myshop/locale/es/LC_MESSAGES
processing file django.po in myshop/orders/locale/en/LC_MESSAGES
processing file django.po in myshop/orders/locale/es/LC_MESSAGES

A .no file containing compiled translations has been generated for
each .po translation file.

Using the Rosetta translation
interface

Rosetta is a third-party application that allows you to edit
translations using the same interface as the Django administration
site. Rosetta makes it easy to edit .po files and it updates compiled
translation files. Let's add it to our project.

Install Rosetta via pip using this command:
pip install django-rosetta==0.8.1

Then, add 'rosetta' to the 1nstaLLep apps setting in your
project's settings.py file as follows:

INSTALLED_APPS = [
o,
'rosetta’,

You need to add Rosetta's URLSs to your main URL configuration.
Edit the main ur1s.py file of your project and add the following URL
pattern to it:

urlpatterns = [
...
path('rosetta/', include('rosetta.urls')),
path('', include('shop.urls', namespace='shop')),

Make sure you place it before the shop.ur1s pattern to avoid undesired
pattern match.

Open http://127.0.0.1:8000/admin/ and log in with a superuser. Then,
navigate to nttp://127.0.0.1:8000/rosetta/ in your browser. In

the Filter menu, click THIRD PARTY to display all the available
message files, including those that belong to

the orders application. You should see a list of existing languages as
follows:

A0seta

Home)Linguae eecin

Fter 2705 DIANGO @
b

APLCKTON PROGRESS ~ NESSAGES TRAWSLTED RUZDY OBSOLETE FE

Mshop h 0 000 userfnenwohemyshonfocaefenC JESSAGES engopo

(nds 0 000 srfnenohemyshon/ordr ocaeenLC VESSAGES engopo

APPLCKTION PROGRESS NESSAGES TRANSLATED RUZEY OBSOLETE AL

Wy 0 1000 e/ e/myshoyocales L MESSAGES dengo0
Odes W% 18000 Moo/ e/myshofrc ol L MESSAGES angogo

fsete % BT 1 Nselendenvchedphond e
pikageosealoelle/LC JESSHGES angopo

Click the Myshop link under the Spanish section to edit Spanish
translations. You should see a list of translation strings as follows:

o v (D) CIEIED) G @

Q Go

ORIGINAL SPANISH CIFUZZY OCCURRENCES(S)
' , cart/forms.py:12
ity Cantidad i
4
Coupon .) coupons/forms.py:6
Cupon
4
English ! T myshop/settings.py:117
Inglés
4
Spanish y 7 myshop/settings.py:118
Espafiol
/4
My shop . 7 shop/templates/shop/base.html:7
Mitienda y shop/templates/shop/base.html ;12
Your cart 7 shop/templates/shop/base.html:18
Tu carro

You can enter the translations under the Spanish column. The
OCCURRENCES(S) column displays the files and line of code
where each translation string was found.

Translations that include placeholders will appear as follows:

, shop/templotes/shop/base.ntal 20
0

Htotal_ttens)s temk
(total_ttens plural)s, |
S(gq pme) S%(lolal_pnce)s

Rosetta uses a different background color to display placeholders.
When you translate content, make sure you keep placeholders
untranslated. For example, take the following string:

%(total items)s item%(total items_plural)s, $%(total price)s

It is translated into Spanish as follows:

%(total _items)s producto%(total_items_plural)s, $%(total price)s

You can take a look at the source code that comes along with this
chapter to use the same Spanish translations for your project.

When you finish editing translations, click the Save and translate
next block button to save the translations to the .po file. Rosetta
compiles the message file when you save translations, so there is no
need for you to run the compiiemessages command. However, Rosetta
requires write access to the 1ocaie directories to write the message
files. Make sure that the directories have valid permissions.

If you want other users to be able to edit translations, open
http://127.0.0.1:8000/admin/auth/group/add/ in your browser and create a
new group named transiators. Then, access
http://127.0.0.1:8000/admin/auth/user/ t0 edit the users to whom you want
to grant permissions so that they can edit translations. When
editing a user, under the Permissions section, add the transiators
group to the Chosen Groups for each user. Rosetta is only available
to superusers or users that belong to the transiators group.

You can read Rosetta's documentation at https://django-rosetta.readthedo

cs.io/en/latest/.

When you add new translations in your production environment, if you
serve Django with a real web server, you will have to reload your server
after running the compilemessages command, or after saving the translations
with Rosetta for changes to take effect.

https://django-rosetta.readthedocs.io/en/latest/

Fuzzy translations

You might have noticed that there is a FUZZY column in Rosetta.
This is not a Rosetta feature; it is provided by gettext. If the fuzzy
flag is active for a translation, it will not be included in the compiled
message files. This flag marks translation strings that need to be
reviewed by a translator. When .o files are updated with new
translation strings, it is possible that some translation strings are
automatically flagged as fuzzy. This happens when gettext finds some
nsgid that has been slightly modified. gettext pairs it with what it
thinks was the old translation and flags it as fuzzy for review. The
translator should then review fuzzy translations, remove the fuzzy
flag, and compile the translation file again.

URL patterns for
Internationalization

Django offers internationalization capabilities for URLs. It includes
two main features for internationalized URLs:

e Language prefix in URL patterns: Adding a language
prefix to URLSs to serve each language version under a
different base URL

¢ Translated URL patterns: Translating URL patterns so
that every URL is different for each language

A reason for translating URLs is to optimize your site for search
engines. By adding a language prefix to your patterns, you will be
able to index a URL for each language instead of a single URL for all
of them. Furthermore, by translating URLSs into each language, you
will provide search engines with URLs that will rank better for each
language.

Adding a language prefix to
URL patterns

Django allows you to add a language prefix to your URL patterns.
For example, the English version of your site can be served under a
path starting /en/, and the Spanish version ses;.

To use languages in URL patterns, you have to use the

Localemiddleware provided by Django. The framework will use it to
identify the current language from the requested URL. You added it
previously to the mooLeware setting of your project, so you don't need
to do it now.

Let's add a language prefix to our URL patterns. Edit the main
urls.py file of the myshop project and add i18n_patterns() dS follows:

from django.conf.urls.il8n import il18n_patterns

urlpatterns = il8n_patterns(
path('admin/', admin.site.urls),
path('cart/', include('cart.urls', namespace='cart')),
path('orders/', include('orders.urls', namespace='orders')),
path('payment/', include('payment.urls', namespace='payment')),
path('coupons/', include('coupons.urls', namespace='coupons')),
path('rosetta/', include('rosetta.urls')),
path('', include('shop.urls', namespace='shop')),

You can combine non-translatable standard URL patterns and
patterns under i1sn_patterns SO that some patterns include a language
prefix and others don't. However, it's best to use translated URLSs
only to avoid the possibility that a carelessly translated URL
matches a non-translated URL pattern.

Run the development server and open nttp://127.0.0.1:8000/ iN your
browser. Django will perform the steps described previously in
the How Django determines the current language section to
determine the current language, and it will redirect you to the
requested URL, including the language prefix. Take a look at the
URL in your browser; it should now look like nhttp://127.0.0.1:8000/en/.
The current language is the one set by the accept-Language header of
your browser if it is Spanish or English, otherwise the default
Lancuace_cooe (English) defined in your settings.

Translating URL patterns

Django supports translated strings in URL patterns. You can use a
different translation for each language for a single URL pattern.
You can mark URL patterns for translation the same way you would
do with literals, using the ugettext_1azy() function.

Edit the main uris.py file of the myshop project and add translation
strings to the regular expressions of the URL patterns for the cart,
orders, payment, and coupons applications as follows:

from django.utils.translation import gettext_lazy as _

urlpatterns = i18n_patterns(
path(_('admin/'), admin.site.urls),
path(_('cart/"'), include('cart.urls', namespace='cart')),
path(_('orders/'), include('orders.urls', namespace='orders')),
path(_('payment/'), include('payment.urls', namespace='payment')),
path(_('coupons/'), include('coupons.urls', namespace='coupons')),
path('rosetta/', include('rosetta.urls')),
path('"', include('shop.urls', namespace='shop')),

Edit the uris.py file of the orders application and mark URL patterns
for translation as follows:

from django.utils.translation import gettext_lazy as _

urlpatterns = [
path(_('create/'), views.order_create, name='order_create'),
...

Edit the uris.py file of the payment application and change the code to
the following;:

from django.utils.translation import gettext_lazy as _

urlpatterns = [
path(_('process/'), views.payment_process, name='process'),
path(_('done/"'), views.payment_done, name='done'),
path(_('canceled/"'), views.payment_canceled, name='canceled'),

We don't need to translate the URL patterns of the shop application
since they are built with variables and do not include any other
literals.

Open the shell and run the next command to update the message
files with the new translations:

django-admin makemessages --all

Make sure the development server is running. Open
http://127.0.0.1:8000/en/rosetta/ 1N your browser and click the MyShOp
link under the Spanish section. Now you will see the URL patterns
for translation. You can click on Untranslated only to only see the
strings that have not been translated yet. You can now translate the
URLs.

Allowing users to switch
language

Since we are serving content that is available in multiple languages,
we should let our users switch the site's language. We are going to
add a language selector to our site. The language selector will
consist of a list of available languages, which are displayed using
links.

Edit the shop/base.ntm1 template of the shop application and find the
following lines:

<div id="header">
{% trans "My shop" %}
</div>

Replace them with the following code:

<div id="header">
{% trans "My shop" %}

{% get_current_language as LANGUAGE_CODE %}
{% get_available_languages as LANGUAGES %}
{% get_language_info_list for LANGUAGES as languages %}
<div class="languages'">
<p>{% trans "Language" %}:</p>
<ul class="languages">
{% for language in languages %}

<a href="/{{ language.code }}/"
{% if language.code == LANGUAGE_CODE %} class="selected"{% endif
%}>
{{ language.name_local }}

</1i>
{% endfor %}

</div>
</div>

This is how we build our language selector:

1. First, we load the internationalization tags using {% 1oad i1sn
%}

2. We use the (% get_current_1anguage %} tag to retrieve the current
language

3. We get the languages defined in the Lancuaces setting using
the (% get_available languages %} template tag

4. We use the tag (% get_1anguage_info_1ist %} to provide easy access
to the language attributes

5. We build an HTML list to display all available languages and
we add a serected class attribute to the current active language

We use the template tags provided by iisn, based on the languages
available in the settings of your project. Now open
http://127.0.0.1:8000/ N your browser and take a look. You should see
the language selector in the top right-hand corner of the site as
follows:

Nitinda g g g

Tucaoest vl

o Poduco
(areqoris
Tea O G
AL
(regneg
0

Users can now easily switch to their preferred language.

Translating models with
django-parler

Django does not provide a solution for translating models out of the
box. You have to implement your own solution to manage content
stored in different languages, or use a third-party module for model
translation. There are several third-party applications that allow
you to translate model fields. Each of them takes a different
approach to storing and accessing translations. One of these
applications is django-parier. This module offers a very effective way to
translate models and it integrates smoothly with Django's
administration site.

django-parler generates a separate database table for each model that
contains translations. This table includes all the translated fields
and a foreign key for the original object that the translation belongs
to. It also contains a language field, since each row stores the
content for a single language.

Installing django-parler

Install django-parier Via pip using the following command:

pip install django-parler==1.9.2

Edit the settings.py file of your project and add 'parier' to
the staLLen_apps setting as follows:

INSTALLED_APPS = [
...
'parler’,

Also add the following code to your settings:

PARLER_LANGUAGES = {

None: (
{'code': 'en'},
{'code': 'es'},
)
'default': {

'fallback': 'en',
'hide_untranslated': False,

This setting defines the available languages en and es for django-parier.
We specify the default language en and we indicate that django-parier
should not hide untranslated content.

Translating model fields

Let's add translations for our product catalog. django-parier provides a
TranslatedModel Mmodel class and a Transilatedrields wrapper to translate
model fields. Edit the mode1s.py file inside the shop application
directory and add the following import:

from parler.models import TranslatableModel, TranslatedFields

Then, modify the category model to make the name and s1ug fields
translatable as follows:

class Category(TranslatableModel):
translations = TranslatedFields(
name = models.CharField(max_length=200,
db_index=True),
slug = models.SlugField(max_length=200,
db_index=True,
unique=True)

The category model now inherits from transiatedmode1 instead of
models.Model and both the name and slug fields are included in the
TranslatedFields WI'dapPeEr.

Edit the product model to add translations for the name, s1ug, and
description fields as follows:

class Product(TranslatableModel):
translations = TranslatedFields(
name = models.CharField(max_length=200, db_index=True),
slug = models.SlugField(max_length=200, db_index=True),
description = models.TextField(blank=True)

)

category = models.ForeignKey(Category,

related_name="'products")
image = models.ImageField(upload_to="'products/%Y/%m/%d",
blank=True)
price = models.DecimalField(max_digits=10, decimal_places=2)
available = models.BooleanField(default=True)
created = models.DateTimeField(auto_now_add=True)
updated = models.DateTimeField(auto_now=True)

django-parler manages translations by generating another model for
each translatable model. In the following , you can see the fields of
the product model and what the generated producttransiation model will
look like:

id ProductTranslation
category

image

price

available slug

created description

updated Taguage_code
translations master

The productTransiation model generated by django-parler includes the name,
slug, and description translatable fields, d language_code ﬁeld, and
Foreignkey fOr the master product Object. There is a one-to-many
relationship from product tO ProductTranslation. A ProductTranslation object
will exist for each available language of each prodauct object.

Since Django uses a separate table for translations, there are some
Django features that we cannot use. It is not possible to use a
default ordering by a translated field. You can filter by translated
fields in queries, but you cannot include a translatable field in the
ordering Meta OptiOHS.

Edit the mode1s.py file of the shop application and comment out the
ordering attribute Of the Category Meta class:

class Category(TranslatableModel):
...
class Meta:
ordering = ('name',)
verbose_name = 'category'
verbose_name_plural = 'categories'

We also have to comment out the ordering and index_together attributes
of the product veta class. The current version of django-parier does not

provide Support to validate index_together. Comment out the product meta
class as follows:

class Product(TranslatableModel):
...

class Meta:
ordering = ('-name',)
index_together = (('id', 'slug'),)

You can read more about django-parier module's compatibility with
Django at nttps://django-parler.readthedocs.io/en/latest/compatibility.html.

https://django-parler.readthedocs.io/en/latest/compatibility.html

Integrating translations in the
administration site

django-parler integrates smoothly with the Django administration site.
It includes a Transiatabieadmin class that overrides the mode1admin class
provided by Django to manage model translations.

Edit the admin.py file of the shop application and add the following
import to it:

from parler.admin import TranslatableAdmin

Modify the categoryadmin and productadmin classes to inherit from
Translatableadnin Instead of mode1admin. django-parler doesn't support the
prepopulated_fields attribute, but it does support the
get_prepopulated_fields() method that provides the same functionality.
Let's change this accordingly. Edit the admin.py file to make it look as
follows:

from django.contrib import admin
from .models import Category, Product
from parler.admin import TranslatableAdmin

@admin.register(Category)
class CategoryAdmin(TranslatableAdmin):
list_display = ['name', 'slug']

def get_prepopulated_fields(self, request, obj=None):
return {'slug': ('name',)}

@admin.register(Product)
class ProductAdmin(TranslatableAdmin):
list_display = ['name', 'slug', 'price',
'available', 'created', 'updated']
list_filter = ['available', 'created',6 'updated']

list_editable = ['price', 'available']

def get_prepopulated_fields(self, request, obj=None):
return {'slug': ('name',)}

We have adapted the administration site to work with the new
translated models. We can now sync the database with the model
changes that we made.

Creating migrations for model
translations

Open the shell and run the following command to create a new
migration for the model translations:

python manage.py makemigrations shop --name "translations"

You will see the following output:

Migrations for 'shop':

shop/migrations/0002_translations.py
- Create model CategoryTranslation
- Create model ProductTranslation
- Change Meta options on category
- Change Meta options on product
- Remove field name from category
- Remove field slug from category
- Alter index_together for product (0 constraint(s))
- Add field master to producttranslation
- Add field master to categorytranslation
- Remove field description from product
- Remove field name from product
- Remove field slug from product
- Alter unique_together for producttranslation (1 constraint(s))
- Alter unique_together for categorytranslation (1 constraint(s))

This migration automatically includes the categorytransiation and
ProductTranslation models created dynamically by django-parler. It'S
important to note that this migration deletes the previous existing
fields from our models. This means that we will lose that data and
will need to set our categories and products again in the admin site
after running it.

Run the following command to apply the migration:

python manage.py migrate shop

You will see an output that ends with the following line:

Applying shop.0002_translations... OK

Our models are now synchronized with the database.

Run the development server USil’lg python manage.py runserver and open
http://127.0.0.1:8000/en/admin/shop/category/ in your browser. You will see
that existing categories lost their name and slug due to deleting
those fields and using the translatable models generated by django-
parler instead. Click on a category to edit it. You will see that

the Change category page includes two different tabs, one

for English and one for Spanish translations:

DJ ango administration WELCOME, ADMIN. VIEW SITE / CHANGE PASSWORD / LOG 0UT

Home Shop> Categories» Tea

Change category (English)

Name: Tea

Slug: tea

Save and add another J Saveand continue editing § SAVE

Make sure to fill in a name and slug for all existing categories. Also
add a Spanish translation for each of them and click the

SAVE button. Make sure to save the changes before you change tabs
or you will lose them.

After completing the data for existing categories,

Op€n http://127.0.0.1:8000/en/admin/shop/product/ and edit each of the
products providing an English and Spanish name, slug, and
description.

Adapting views for translations

We have to adapt our shop views to use translation QuerySets. Run
the following command to open the Python shell:

python manage.py shell

Let's take a look at how you can retrieve and query translation
fields. To get the object with translatable fields translated in a
specific language, you can use Django's activate() function as follows:

>>> from shop.models import Product

>>> from django.utils.translation import activate
>>> activate('es')

>>> product=Product.objects.first()

>>> product.name

'Té verde'

Another way to do this is by using the 1anguage() manager provided by
django-parler dS follows:

>>> product=Product.objects.language('en').first()
>>> product.name
'Green tea'

When you access translated fields, they are resolved using the
current language. You can set a different current language for an
object to access that specific translation as follows:

>>> product.set_current_language('es')
>>> product.name

'Té verde'

>>> product.get_current_language()

When performing a QuerySet using riiter(), you can filter using the
related translation objects with the transiations_ syntax as follows:

>>> Product.objects.filter(translations__name='Green tea')
<TranslatableQuerySet [<Product: Té verde>]>

Let's adapt the product catalog views. Edit the vieus.py file of the shop
application and in the product_1ist view, find the following line:

category = get_object_or_404(Category, slug=category_slug)
Replace it with the following ones:

language = request.LANGUAGE_CODE
category = get_object_or_404(Category,
translations__language_code=language,

translations__slug=category_slug)
Then, edit the product_detai1 view and find the following lines:

product = get_object_or_404(Product,
id=id,
slug=slug,
available=True)

Replace them with the following code:

language = request.LANGUAGE_CODE

product = get_object_or_404(Product,
id=id,
translations__language_code=language,
translations__slug=slug,
available=True)

The product_list and product_detail ViIewsS are now adapted to retrieve
objects using translated fields. Run the development server and
open http://127.0.0.1:8000/es/ iN your browser. You should see the

product list page, including all products translated into Spanish:
Mitienda Language: English espaiiol

Tu carro esta vacio.

Productos

Categorias
T8 NOIMAGE
AVAILABLE
Té verde Té 100 Té en polvo
X0 455 §21.2

Now each product's URL is built using the siug field translated into
the current language. For example, the URL for a product in
Spanish is nttp://127.0.0.1:8000/es/2/te-rojo/, Whereas in English the
URL iS nttp://127.0.0.1:8000/en/2/red-tea/. If you navigate to a product
detail page, you will see the translated URL and the contents of the
selected language, as shown in the following example:

Mitienda Language: English espario

Tu carro esta vacio.
Té rojo
Té

45,5

Cantidad: 1 [SLLEEIEL

EI 46 pu-¢rh es conocido en Occidents también como té rojo (en chino: &

2, pinyin: pirehd) y su nombre proviene ds la region de Pu'er de Yumnan
China, de donde procede. Se trata de un 1§ inusual en Ching, Siendo este el
mayor productor del 1 rojo o pu-erh del mundo.

If you want to know more about django-parier, you can find the full
documentation at https://django-parler.readthedocs.io/en/latest/.

You have learned how to translate Python code, templates, URL
patterns, and model fields. To complete the internationalization
and localization process, we need to use localized formatting for
dates, times, and numbers as well.

https://django-parler.readthedocs.io/en/latest/

Format localization

Depending on the user's locale, you might want to display dates,
times, and numbers in different formats. The localized formatting
can be activated by changing the use_r1on Setting to true in the
settings.py file of your project.

When use_L1on is enabled, Django will try to use a locale-specific
format whenever it outputs a value in a template. You can see that
decimal numbers in the English version of your site are displayed
with a dot separator for decimal places, while in the Spanish version
they are displayed using a comma. This is due to the locale formats
specified for the es locale by Django. You can take a look at the
Spanish formatting configuration at nttps://github.com/django/django/blob/
stable/2.0.x/django/conf/locale/es/formats.py.

Normally, you will set the use_L1on setting to True and let Django apply
the format localization for each locale. However, there might be
situations in which you don't want to use localized values. This is
especially relevant when outputting JavaScript or JSON that has to
provide a machine-readable format.

Django offers a (% 1ocalize %} template tag that allows you to turn
on/off localization for template fragments. This gives you control
over localized formatting. You will have to load the 110n tags to be
able to use this template tag. The following is an example of how to
turn localization on and off in a template:

{% load 116n %}

{% localize on %}

{{ value }}
{% endlocalize %}

https://github.com/django/django/blob/stable/2.0.x/django/conf/locale/es/formats.py

{% localize off %}

{{ value }}
{% endlocalize %}

Django also offers the 1ocalize and uniocalize template filters to force
or avoid localization of a value. These filters can be applied as
follows:

{{ value|localize }}
{{ value|unlocalize }}

You can also create custom format files to specify locale formatting.
You can find further information about format localization at nttps://

docs.djangoproject.com/en/2.0/topics/i18n/formatting/.

https://docs.djangoproject.com/en/2.0/topics/i18n/formatting/

Using django-localflavor to
validate form fields

django-localflavor 1S @ third-party module that contains a collection of
specific utils, such as form fields or model fields that are specific for
each country. It's very useful to validate local regions, local phone
numbers, identity card numbers, social security numbers, and so
on. The package is organized into a series of modules named after
ISO 3166 country codes.

Install django-1ocaifiavor using the following command:

pip install django-localflavor==2.0

Edit the settings.py file of your project and add 1ocaifiavor to
the nstaLLep_apps setting as follows:

INSTALLED_APPS = [
o,
'localflavor’',

We are going to add the United States's zip code field so that a valid
U.S. zip code is required to create a new order.

Edit the forms. py file of the orders application and make it look as
follows:

from django import forms
from .models import Order
from localflavor.us.forms import USZipCodeField

class OrderCreateForm(forms.ModelForm):

postal code = USZipCodeField()
class Meta:
model = Order
fields = ['first_name', 'last_name', 'email', 'address',
'postal _code', 'city']

We import the uszipcoderieid field from the us package of 1ocaifiavor and
use it for the postal_code field of the ordercreaterorm form.

Run the development server and open
http://127.0.0.1:8000/en/orders/create/ in your browser. Fill in all fields,
enter a three-letter postal code, and then submit the form. You will
get the following validation error that is raised by uszipcodeFie1d:

Enter a zip code in the format XXXXX or XXXXX-XXXX.

This is just a brief example of how to use a custom field from
localflavor in your own project for validation purposes. The local
components provided by 1ocaifiavor are very useful to adapt your
application to specific countries. You can read the django-1ocaifiavor
documentation and see all available local components for each
COU.IltI'y at nttps://django-localflavor.readthedocs.io/en/latest/.

Next, we are going to build a recommendation engine into our shop.

https://django-localflavor.readthedocs.io/en/latest/

Building a recommendation
engine

A recommendation engine is a system that predicts the preference
or rating that a user would give to an item. The system selects
relevant items for the users based on their behavior and the
knowledge it has about them. Nowadays, recommendation systems
are used in many online services. They help users by selecting the
stuff they might be interested in from the vast amount of available
data that is irrelevant to them. Offering good recommendations
enhances user engagement. E-commerce sites also benefit from
offering relevant product recommendations by increasing their
average sale.

We are going to create a simple, yet powerful, recommendation
engine that suggests products that are usually bought together. We
will suggest products based on historical sales, thus identifying
products that are usually bought together. We are going to suggest
complementary products in two different scenarios:

¢ Product detail page: We will display a list of products
that are usually bought with the given product. This will be
displayed as: Users who bought this also bought X, Y, Z. We
need a data structure that allows us to store the number of
times that each product has been bought together with the
product being displayed.

e Cart detail page: Based on the products users add to the
cart, we are going to suggest products that are usually
bought together with these ones. In this case, the score we

calculate to obtain related products has to be aggregated.

We are going to use Redis to store products that are purchased
together. Remember that you already used Redis in chapter s,
Tracking User Actions. If you haven't installed Redis yet, you can
find installation instructions in that chapter.

Recommending products
based on previous purchases

Now, we will recommend products to users based on what they
have added to the cart. We are going to store a key in Redis for each
product bought on our site. The product key will contain a Redis
sorted set with scores. We will increment the score by 1 for each
product bought together every time a new purchase is completed.

When an order is successfully paid for, we store a key for each
product bought, including a sorted set of products that belong to the
same order. The sorted set allows us to give scores for products that
are bought together.

Remember to install redis-py in your environment using the
following command:

pip install redis==2.10.6

Edit the settings.py file of your project and add the following settings
to it:

REDIS_HOST = 'localhost'
REDIS_PORT = 6379
REDIS_DB = 1

These are the settings required to establish a connection with the
Redis server. Create a new file inside the shop application directory
and name it recommender. py. Add the following code to it:

import redis
from django.conf import settings

from .models import Product

connect to redis

r = redis.StrictRedis(host=settings.REDIS_HOST,
port=settings.REDIS_PORT,
db=settings.REDIS_DB)

class Recommender(object):

def get_product_key(self, id):
return 'product:{}:purchased_with'.format(id)

def products_bought(self, products):
product_ids = [p.id for p in products]
for product_id in product_ids:
for with_id in product_ids:
get the other products bought with each product
if product_id !'= with_id:
increment score for product purchased together
r.zincrby(self.get_product_key(product_id),
with_id,
amount=1)

This is the recommender class that will allow us to store product
purchases and retrieve product suggestions for a given product or
products. The get_product_key() method receives an ID of a product
object and builds the Redis key for the sorted set where related
pI‘OdU.CtS are stored, which looks like product:[id]:purchased_with.

The products_bought () method receives a list of rroduct Objects that have
been bought together (that is, belong to the same order). In this
method, we perform the following tasks:

1. We get the product IDs for the given rroduct objects.

2. We iterate over the product IDs. For each ID, we iterate over
the product IDs and skip the same product so that we get the
products that are bought together with each product.

3. We get the Redis product key for each product bought using
the get_product_id() method. For a product with an ID of 33, this
method returns the key product:33:purchased_with. This is the key

for the sorted set that contains the product IDs of products
that were bought together with this one.

4. We increment the score of each product ID contained in the
sorted set by 1. The score represents the times another
product has been bought together with the given product.

So we have a method to store and score the products that were
bought together. Now we need a method to retrieve the products
that are bought together for a list of given products. Add the
fOHOWiIlg suggest_products_for() method to the recommender class:

def suggest_products_for(self, products, max_results=6):
product_ids = [p.id for p in products]
if len(products) == 1:
only 1 product
suggestions = r.zrange(
self.get_product_key(product_ids[0]),
0, -1, desc=True)[:max_results]
else:
generate a temporary key
flat_ids = ''.join([str(id) for id in product_ids])
tmp_key = 'tmp_{}'.format(flat_ids)
multiple products, combine scores of all products
store the resulting sorted set in a temporary key
keys = [self.get_product_key(id) for id in product_ids]
r.zunionstore(tmp_key, keys)
remove ids for the products the recommendation is for
r.zrem(tmp_key, *product_ids)
get the product ids by their score, descendant sort
suggestions = r.zrange(tmp_key, 0, -1,
desc=True)[:max_results]
remove the temporary key
r.delete(tmp_key)
suggested_products_ids = [int(id) for id in suggestions]

get suggested products and sort by order of appearance
suggested_products =

list(Product.objects.filter(id__in=suggested_products_ids))
suggested_products.sort(key=lambda x: suggested_products_ids.index(x.1id))
return suggested_products

The suggest_products_for() method receives the following parameters:

® products: This is a list of rroduct Objects to get
recommendations for. It can contain one or more products.

® nmax_results: This is an integer that represents the maximum
number of recommendations to return.

In this method, we perform the following actions:

1. We get the product IDs for the given rroduct Objects.

2. If only one product is given, we retrieve the ID of the
products that were bought together with the given product,
ordered by the total number of times that they were bought
together. To do so, we use Redis' zranee command. We limit
the number of results to the number specified in the
max_results attribute (s by default).

3. If more than one product is given, we generate a temporary
Redis key built with the IDs of the products.

4. We combine and sum all scores for the items contained in
the sorted set of each of the given products. This is done
using the Redis' zuntonstore command. The zunronstore
command performs a union of the sorted sets with the given
keys, and stores the aggregated sum of scores of the
elements in a new Redis key. You can read more about this
command at nttps://redis.io/commands/zuntonsTore. We save the
aggregated scores in the temporary key.

5. Since we are aggregating scores, we might obtain the same
products we are getting recommendations for. We remove
them from the generated sorted set using the zrem command.

6. We retrieve the IDs of the products from the temporary key,

https://redis.io/commands/ZUNIONSTORE

ordered by their score using the zrance command. We limit
the number of results to the number specified in the
max_results attribute. Then we remove the temporary key.

7. Finally, we get the rroduct Objects with the given IDs and we
order the products in the same order as them.

For practical purposes, let's also add a method to clear the
recommendations. Add the following method to the recommender class:

def clear_purchases(self):
for id in Product.objects.values_list('id', flat=True):
r.delete(self.get_product_key(id))

Let's try our recommendation engine. Make sure you include
several product Objects in the database and initialize the Redis server
using the following command from the shell in your Redis
directory:

src/redis-server

Open another shell, and run the following command to open the
Python shell:

python manage.py shell

Make sure to have at least four different products in your database.
Retrieve four different products by their name:

>>> from shop.models import Product

>>> black_tea = Product.objects.get(translations__name='Black tea')
>>> red_tea = Product.objects.get(translations__name='Red tea')

>>> green_tea = Product.objects.get(translations__name='Green tea')
>>> tea_powder = Product.objects.get(translations__name='Tea powder')

Then, add some test purchases to the recommendation engine:

>>> from shop.recommender import Recommender
>>> r = Recommender ()
.products_bought([black _tea, red_tea])
.products_bought ([black _tea, green_tea])

r
>>> r
r
>>> r.products_bought([red_tea, black_tea, tea_powder])
r
r
r

>>>

>>> r.products_bought([green_tea, tea_ powder])
.products_bought ([black tea, tea_powder])
.products_bought([red_tea, green_tea])

>>>
>>>

We have stored the following scores:

black_tea: red_tea (2), tea_powder (2), green_tea (1)
red_tea: black_tea (2), tea_powder (1), green_tea (1)
green_tea: black_tea (1), tea_powder (1), red_tea(1)
tea_powder: black_tea (2), red_tea (1), green_tea (1)

Let's activate a language to retrieve translated products and get
product recommendations to buy together with a given single
product:

>>> from django.utils.translation import activate

>>> activate('en')

>>> r.suggest_products_for([black_tea])

[<Product: Tea powder>, <Product: Red tea>, <Product: Green tea>]
>>> r.suggest_products_for([red_tea])

[<Product: Black tea>, <Product: Tea powder>, <Product: Green tea>]
>>> r.suggest_products_for([green_tea])

[<Product: Black tea>, <Product: Tea powder>, <Product: Red tea>]
>>> r.suggest_products_for([tea_powder])

[<Product: Black tea>, <Product: Red tea>, <Product: Green tea>]

You can see that the order for reccommended products is based on
their score. Let's get recommendations for multiple products with
aggregated scores:

>>> r.suggest_products_for([black _tea, red_tea])
[<Product: Tea powder>, <Product: Green tea>]

>>> r.suggest_products_for([green_tea, red_tea])
[<Product: Black tea>, <Product: Tea powder>]

>>> r.suggest_products_for([tea_powder, black tea])
[<Product: Red tea>, <Product: Green tea>]

You can see that the order of the suggested products matches the
aggregated scores. For example, products suggested for biack_tea and
red_tea A€ tea_powder (2+1) and green_tea (1+1).

We have verified that our recommendation algorithm works as
expected. Let's display recommendations for products on our site.

Edit the views.py file of the shop application. Add the functionality to
retrieve a maximum of four recommended products in the
product_detail view as follows:

from .recommender import Recommender

def product_detail(request, id, slug):

language = request.LANGUAGE_CODE

product = get_object_or_404(Product,
id=id,
translations__language_code=language,
translations__slug=slug,
available=True)

cart_product_form = CartAddProductForm()

r = Recommender ()
recommended_products = r.suggest_products_for([product], 4)

return render(request,
'shop/product/detail.html’,
{'product': product,
'cart_product_form': cart_product_form,
'recommended_products': recommended_products})

Edit the shop/product/detail.html template of the shop application and add
the fOHOWiIlg code after {{ product.description|linebreaks }}:

{% if recommended_products %}
<div class="recommendations">
<h3>{% trans "People who bought this also bought" %}</h3>
{% for p in recommended_products %}
<div class="item">

<img src="{% if p.image %}{{ p.image.url }}{% else %}
{% static "img/no_image.png" %}{% endif %}">

<p>{{ p.name }}</p>
</div>
{% endfor %}
</div>
{% endif %}

Run the development server and open nttp://127.0.0.1:8000/en/ IN yOUr
browser. Click on any product to view its details. You should see
that recommended products are displayed below the product, as
shown in the following screenshot:

Tea powder
Tea

$21.2

Quantity: 1 Add to cart

People who bought this also bought

NO IMAGE
AVAILABLE

Black tea Red tea Green tea

We are also going to include product recommendations in the cart.
The recommendation will be based on the products that the user
has added to the cart.

Edit views.py inside the cart application, import the recommender class,
and edit the cart_detai1 view to make it look as follows:

from shop.recommender import Recommender

def cart_detail(request):
cart = Cart(request)
for item in cart:
item['update_quantity_form'] = CartAddProductForm(
initial={'quantity': item['quantity'],
'update': True})

coupon_apply_form = CouponApplyForm()

r = Recommender ()

cart_products = [item['product'] for item in cart]

recommended_products = r.suggest_products_for(cart_products,
max_results=4)

return render(request,
'cart/detail.html’,
{'cart': cart,
'coupon_apply_form': coupon_apply_form,
'recommended_products': recommended_products})

Edit the cart/detai1.ntm1 template of the cart application and add the
following code just after the </tabie> HTML tag:

{% if recommended_products %}
<div class="recommendations cart">
<h3>{% trans "People who bought this also bought" %}</h3>
{% for p in recommended_products %}
<div class="item">

<img src="{% if p.image %}{{ p.image.url }}{% else %}
{% static "img/no_image.png" %}{% endif %}">

<p>{{ p.name }}</p>
</div>
{% endfor %}
</div>

{% endif %}

Open nttp://127.0.0.1:8000/en/ in your browser and add a couple of
products to your cart. When you navigate to
http://127.0.0.1:8000/en/cart/, yOU Should see the aggregated product
recommendations for the items in the cart as follows:

Your shopping cart

Image Product Quantity Remove Unitprice Price

Teapowder 1 [Remove 212 $212

Green tea 1 Remove $30 $30

§51.20
People who bought this also bought Apply a coupon:
Coupon:
NO IMAGE
AVAILABLE
, Continue shopping

Black tea Red tea

Congratulations! You have built a complete recommendation
engine using Django and Redis.

Summary

In this chapter, you created a coupon system using sessions. You
learned how internationalization and localization work. You also
built a recommendation engine using Redis.

In the next chapter, you will start a new project. You will build an e-
learning platform with Django using class-based views and you will
create a custom content management system.

Building an E-Learning
Platform

In the previous chapter, you added internationalization to your
online shop project. You also built a coupon system and a product
recommendation engine. In this chapter, you will create a new
project. You will build an e-learning platform, creating a custom
Content Management System (CMS).

In this chapter, you will learn how to:

e Create fixtures for your models

e Use model inheritance

¢ Create custom model fields

e Use class-based views and mixins
e Build formsets

e Manage groups and permissions

e Create a CMS

Setting up the e-learning
project

Our final practical project will be an e-learning platform. In this
chapter, we are going to build a flexible CMS that allows instructors
to create courses and manage their contents.

First, create a virtual environment for your new project and activate
it with the following commands:

mkdir env
virtualenv env/educa
source env/educa/bin/activate

Install Django in your virtual environment with the following
command:

pip install Django==2.0.5

We are going to manage image uploads in our project, so we also
need to install ri110w with the following command:

pip install Pillow==5.1.0

Create a new project using the following command:

django-admin startproject educa

Enter the new educa directory and create a new application using the
following commands:

cd educa
django-admin startapp courses

Edit the settings.py file of the educa project and add courses to
the staLLen_apps setting as follows:

INSTALLED_APPS = [
'courses.apps.CoursesConfig',
'django.contrib.admin"',
'django.contrib.auth’',
'django.contrib.contenttypes’',
'django.contrib.sessions',
'django.contrib.messages’,
'django.contrib.staticfiles',

The courses application is now active for the project. Let's define the
models for courses and course contents.

Building the course models

Our e-learning platform will offer courses on various subjects. Each
course will be divided into a configurable number of modules, and
each module will contain a configurable number of contents. There
will be contents of various types: text, file, image, or video. The
following example shows what the data structure of our course
catalog will look like:

Subject 1
Course 1
Module 1
Content 1 (image)
Content 2 (text)
Module 2
Content 3 (text)
Content 4 (file)
Content 5 (video)

Let's build the course models. Edit the models.py file of the courses
application and add the following code to it:

from django.db import models
from django.contrib.auth.models import User

class Subject(models.Model):
title = models.CharField(max_length=200)
slug = models.SlugField(max_length=200, unique=True)

class Meta:
ordering = ['title']

def __str_ (self):
return self.title

class Course(models.Model):
owner = models.ForeignKey(User,

related_name='courses_created',
on_delete=models.CASCADE)
subject = models.ForeignKey(Subject,
related_name='courses',
on_delete=models.CASCADE)
title = models.CharField(max_length=200)
slug = models.SlugField(max_length=200, unique=True)
overview = models.TextField()
created = models.DateTimeField(auto_now_add=True)

class Meta:
ordering = ['-created']

def __str__ (self):
return self.title

class Module(models.Model):
course = models.ForeignKey(Course,
related_name="modules',
on_delete=models.CASCADE)
title = models.CharField(max_length=200)
description = models.TextField(blank=True)

def __str_ (self):
return self.title

These are the initial subject, course, and moduie models. The course model
fields are as follows:

e owner: The instructor that created this course.

e subject: The subject that this course belongs to. A roreignkey
field that points to the subject model.

e title: The title of the course.
e s1ug: The slug of the course. This will be used in URLs later.

® overview: ThiS IS a Textrield column to include an overview of
the course.

e created: The date and time when the course was created. It

will be automatically set by Django when creating new
objects because of auto_now_add=True.

Each course is divided into several modules. Therefore, the module
model contains a roreignkey field that points to the course model.

Open the shell and run the following command to create the initial
migration for this app:

python manage.py makemigrations

You will see the following output:

Migrations for 'courses':
0001_initial.py:
- Create model Course
- Create model Module
- Create model Subject
- Add field subject to course

Then, run the following command to apply all migrations to the
database:

python manage.py migrate

You should see output including all applied migrations, including
those of Django. The output will contain the following line:

Applying courses.0001_initial... OK

The models of our courses app have been synced to the database.

Registering the models in the
administration site

Let's add the course models to the administration site. Edit the
admin.py file inside the courses application directory and add the
following code to it:

from django.contrib import admin
from .models import Subject, Course, Module

@admin.register(Subject)

class SubjectAdmin(admin.ModelAdmin):
list_display = ['title', 'slug']
prepopulated_fields = {'slug': ('title',)}

class ModuleInline(admin.StackedInline):
model = Module

@admin.register(Course)

class CourseAdmin(admin.ModelAdmin):
list_display = ['title', 'subject', 'created']
list_filter = ['created', 'subject']
search_fields = ['title', 'overview']
prepopulated_fields = {'slug': ('title',)}
inlines = [ModuleInline]

The models for the course application are now registered in the
administration site. Remember, we use the eadmin.register() decorator
to register models in the administration site.

Using fixtures to provide initial
data for models

Sometimes you might want to pre-populate your database with
hardcoded data. This is useful to automatically include initial data
in the project setup instead of having to add it manually. Django
comes with a simple way to load and dump data from the database
into files that are called fixtures.

Django supports fixtures in JSON, XML, or YAML formats. We are
going to create a fixture to include several initial subject Objects for

our project.

First, create a superuser using the following command:

python manage.py createsuperuser

Then, run the development server using the following command:

python manage.py runserver

Open http://127.0.0.1:8000/admin/courses/subject/ n your browser. Create
several subjects using the administration site. The list display page
should look as follows:

DJ&HQO adm\mstration VELONE NIV STECRAGEPSSHRD L0801

Mo o S

e Db Dofdodes

e o 3l

. Nemas maeneis
* Mus Mt

| Phyi s

" Poganning U
i

Run the following command from the shell:
python manage.py dumpdata courses --indent=2

You will see output similar to the following:

"model": "courses.subject",
"pk": 1,
"fields": {
"title": "Mathematics",
"slug": "mathematics"

}

"model": "courses.subject",
"pk": 2,
"fields": {

"title": "Music",

"slug": "music"

}

"model": "courses.subject",
"pk": 3,
"fields": {
"title": "Physics",
"slug": "physics"

}

"model": "courses.subject",
"pk": 4,
"fields": {
"title": "Programming",
"slug": "programming"

}

The dumpdata command dumps data from the database into the
standard output, serialized in JSON format by default. The
resulting data structure includes information about the model and
its fields for Django to be able to load it into the database.

You can limit the output to the models of an application by
providing the application names to the command or specifying
single models for outputting data using the app.mode1 format. You can
also specify the format using the --format flag. By default, dumpdata

outputs the serialized data to the standard output. However, you
can indicate an output file using the --output flag. The --indent flag
allows you to specify indentation. For more information on dumpdata
parameters, Ir'un python manage.py dumpdata --help.

Save this dump to a fixtures file into a rixtures/ directory in the orders
application using the following commands:

mkdir courses/fixtures
python manage.py dumpdata courses --indent=2 --
output=courses/fixtures/subjects.json

Run the development server and use the administration site to
remove the subjects you created. Then, load the fixture into the
database using the following command:

python manage.py loaddata subjects.json

All subject objects included in the fixture are loaded into the
database.

By default, Django looks for files in the rixtures/ directory of each
application, but you can specify the complete path to the fixture file
for the 10addata command. You can also use the rixture_p1rs setting to
tell Django additional directories to look for fixtures.

Fixtures are not only useful for setting up initial data, but also to provide
sample data for your application or data required for your tests.

You can read about how to use fixtures for testing at https://docs.django
project.com/en/2.0/topics/testing/tools/#fixture-loading.

If you want to load fixtures in model migrations, take a look at
Django's documentation about data migrations. You can find the
documentation for migrating data at https://docs.djangoproject.com/en/2.0/

topics/migrations/#data-migrations.

https://docs.djangoproject.com/en/2.0/topics/testing/tools/#fixture-loading
https://docs.djangoproject.com/en/2.0/topics/migrations/#data-migrations

Creating models for diverse
content

We plan to add different types of content to the course modules
such as texts, images, files, and videos. We need a versatile data
model that allows us to store diverse content. In chapter 6, Tracking
User Actions, you have learned the convenience of using generic
relations to create foreign keys that can point to objects of any
model. We are going to create a content model that represents the
modules' contents and define a generic relation to associate any
kind of content.

Edit the mode1s.py file of the courses application and add the following
imports:

from django.contrib.contenttypes.models import ContentType
from django.contrib.contenttypes.fields import GenericForeignKey

Then, add the following code to the end of the file:

class Content(models.Model):

module = models.ForeignKey(Module,
related_name='contents',
on_delete=models.CASCADE)

content_type = models.ForeignKey(ContentType,

on_delete=models.CASCADE)
object_id = models.PositiveIntegerField()
item = GenericForeignKey('content_type', 'object_id')

This is the content model. A module contains multiple contents, so we
define a roreignkey field to the modurie model. We also set up a generic
relation to associate objects from different models that represent
different types of content. Remember that we need three different

fields to set up a generic relationship. In our content model, these are:

® content_type. A ForeignKey field to the ContentType model

® object_id: This is PositiveIntegerField tO Store the prirnary key of
the related object

® item: A GenericForeignKey field to the related object by Combining
the two previous fields

Only the content_type and object_id fields have a corresponding column
in the database table of this model. The iten field allows you to
retrieve or set the related object directly, and its functionality is
built on top of the other two fields.

We are going to use a different model for each type of content. Our
content models will have some common fields, but they will differ
in the actual data they can store.

Using model inheritance

Django supports model inheritance. It works in a similar way to
standard class inheritance in Python. Django offers the following
three options to use model inheritance:

¢ Abstract models: Useful when you want to put some
common information into several models. No database table
is created for the abstract model.

e Multi-table model inheritance: Applicable when each
model in the hierarchy is considered a complete model by
itself. A database table is created for each model.

¢ Proxy models: Useful when you need to change the
behavior of a model, for example, by including additional
methods, changing the default manager, or using different
meta options. No database table is created for proxy models.

Let's take a closer look at each of them.

Abstract models

An abstract model is a base class in which you define fields you
want to include in all child models. Django doesn't create any
database table for abstract models. A database table is created for
each child model, including the fields inherited from the abstract
class and the ones defined in the child model.

To mark a model as abstract, you need to include abstract=True in its
veta class. Django will recognize that it is an abstract model and will
not create a database table for it. To create child models, you just
need to subclass the abstract model.

The following example shows an abstract content model and a child
Text model:

from django.db import models

class BaseContent(models.Model):
title = models.CharField(max_length=100)
created = models.DateTimeField(auto_now_add=True)

class Meta:
abstract = True

class Text(BaseContent):
body = models.TextField()

In this case, Django would create a table for the rext model only,
including the titie, created, and body fields.

Multi-table model inheritance

In multi-table inheritance, each model corresponds to a database
table. Django creates a onetoonerield field for the relationship in the
child's model to its parent.

To use multi-table inheritance, you have to subclass an existing
model. Django will create a database table for both the original
model and the sub-model. The following example shows multi-table
inheritance:

from django.db import models

class BaseContent(models.Model):
title = models.CharField(max_length=100)
created = models.DateTimeField(auto_now_add=True)

class Text(BaseContent):
body = models.TextField()

Django would include an automatically generated onetoonerie1d field
in the rext model and create a database table for each model.

Proxy models

Proxy models are used to change the behavior of a model, for
example, by including additional methods or different meta
options. Both models operate on the database table of the original
model. To create a proxy model, add proxy=True to the veta class of the

model.

The following example illustrates how to create a proxy model:

from django.db import models
from django.utils import timezone

class BaseContent(models.Model):
title = models.CharField(max_length=100)
created = models.DateTimeField(auto_now_add=True)

class OrderedContent(BaseContent):
class Meta:
proxy = True
ordering = ['created']

def created_delta(self):
return timezone.now() - self.created

Here, we define an orderedcontent model that is a proxy model for the
content Model. This model provides a default ordering for QuerySets
and an additional created_de1ta() method. Both models, content and
orderedcontent, Operate on the same database table, and objects are
accessible via the ORM through either model.

Creating the content models

The content model of our courses application contains a generic
relation to associate different types of content to it. We will create a
different model for each type of content. All content models will
have some fields in common and additional fields to store custom
data. We are going to create an abstract model that provides the
common fields for all content models.

Edit the mode1s.py file of the courses application and add the following
code to it:

class ItemBase(models.Model):
owner = models.ForeignKey(User,
related_name='%(class)s_related',
on_delete=models.CASCADE)
title = models.CharField(max_length=250)
created = models.DateTimeField(auto_now_add=True)
updated = models.DateTimeField(auto_now=True)

class Meta:
abstract = True

def __str_ (self):
return self.title

class Text(ItemBase):
content = models.TextField()

class File(ItemBase):
file = models.FileField(upload_to="'files"')

class Image(ItemBase):
file = models.FileField(upload_to="images')

class Video(ItemBase):
url = models.URLField()

In this code, we define an abstract model named rtemsase. Therefore,
we have set abstract=True in its meta class. In this model, we define the
owner, title, created, and updated fields. These common fields will be used
for all types of content. The owner field allows us to store which user
created the content. Since this field is defined in an abstract class,
we need different reiated name for each sub-model. Django allows us
to specify a placeholder for the mode1 class name in the reiated name
attribute as %(c1ass)s. By doing so, reiated_name for each child model will
be generated automatically. Since we use '%(class)s_related' as
related_name, the reverse relation for child models will

be text_related, file_related, image_related, and video_related respectively.

We have defined four different content models, which inherit from
the 1temsase abstract model. These are as follows:

o Text: TO store text content
e rite: To store files, such as PDF
e 1nmage: TO store image files

e video: TO store videos; we use an uririe1d field to provide a
video URL in order to embed it

Each child model contains the fields defined in the rtemsase class in
addition to its own fields. A database table will be created for the
Text, File, Image, aNd video models respectively. There will be no
database table associated to the 1temsase model since it is an abstract
model.

Edit the content model you created previously and modify its
content_type field as follows:

content_type = models.ForeignKey(ContentType,

on_delete=models.CASCADE,
limit_choices_to={'model_ in':(

'text',

'video',
'image',
'file')})

We add a limit_choices_to argument to limit the ContentType ObjeCtS that
can be used for the generic relationship. We use the mode1__in field
lookup to filter the query to the contentType Objects with a mode1
attribute that is "text', 'video', 'image', OT 'file'.

Let's create a migration to include the new models we have added.
Run the following command from the command line:

python manage.py makemigrations
You will see the following output:

Migrations for 'courses':
courses/migrations/0002_content_file_ image_text_video.py
- Create model Content
- Create model File
- Create model Image
- Create model Text
- Create model Video

Then, run the following command to apply the new migration:

python manage.py migrate

The output you see should end with the following line:

Applying courses.0002_content_file image_text_video... OK

We have created models that are suitable to add diverse content to
the course modules. However, there is still something missing in
our models. The course modules and contents should follow a
particular order. We need a field that allows us to order them easily.

Creating custom model fields

Django comes with a complete collection of model fields that you
can use to build your models. However, you can also create your
own model fields to store custom data or alter the behavior of
existing fields.

We need a field that allows us to define an order for objects. An easy
way to specify an order for objects using existing Django fields is by
adding a rositiverntegerrield to your models. Using integers, we can
easily specify the order of objects. We can create a custom order
field that inherits from positiverntegerrie1d and provides additional
behavior.

There are two relevant functionalities that we will build into our
order field:

e Automatically assign an order value when no
specific order is provided: When saving a new object
with no specific order, our field should automatically assign
the number that comes after the last existing ordered object.
If there are two objects with order 1 and 2 respectively, when
saving a third object, we should automatically assign the
order s to it if no specific order has been provided.

e Order objects with respect to other fields: Course
modules will be ordered with respect to the course they
belong to and module contents with respect to the module
they belong to.

Create a new rields.py file inside the courses application directory and
add the following code to it:

from django.db import models
from django.core.exceptions import ObjectDoesNotExist

class OrderField(models.PositiveIntegerField):
def __init_ (self, for_fields=None, *args, **kwargs):
self.for_fields = for_fields
super(OrderField, self)._ init_ (*args, **kwargs)

def pre_save(self, model_instance, add):
if getattr(model_instance, self.attname) is None:
no current value
try:
gs = self.model.objects.all()
if self.for_fields:
filter by objects with the same field values
for the fields in "for_fields"
query = {field: getattr(model_instance, field)\
for field in self.for_fields}
gs = gs.filter(**query)
get the order of the last item
last_item = gs.latest(self.attname)
value = last_item.order + 1
except ObjectDoesNotExist:
value = 0
setattr(model_instance, self.attname, value)
return value
else:
return super(OrderField,
self).pre_save(model _instance, add)

This is our custom orderrield. It inherits from the PositiveIntegerField
field provided by Django. Our orderrie1d field takes an optional
for_fields parameter that allows us to indicate the fields that the
order has to be calculated with respect to.

Our field overrides the pre_save() method of the PositiveIntegerField

field, which is executed before saving the field into the database. In
this method, we perform the following actions:

1. We check if a value already exists for this field in the model

instance. We use seif.attname, Which is the attribute name
given to the field in the model. If the attribute's value is
different than none, we calculate the order we should give it as
follows:

1. We build a QuerySet to retrieve all objects for the
field's model. We retrieve the model class the field
belongs to by accessing seif.model.

2. We filter the QuerySet by the fields' current value for
the model fields that are defined in the for_fie1ds
parameter of the field, if any. By doing so, we
calculate the order with respect to the given fields.

3. We retrieve the object with the highest order with
last_item = gs.latest(self.attname) from the database. If no
object is found, we assume this object is the first one
and assign the order o to it.

4. If an object is found, we add 1 to the highest order
found.

5. We assign the calculated order to the field's value in
the model instance using setattr() and return it.

2. If the model instance has a value for the current field, we
don't do anything.

When you create custom model fields, make them generic. Avoid hardcoding
data that depends on a specific model or field. Your field should work in any
model.

You can find more information about writing custom model fields
at https://docs.djangoproject.com/en/2.0/howto/custom-model-fields/.

https://docs.djangoproject.com/en/2.0/howto/custom-model-fields/

Adding ordering to module and
content objects

Let's add the new field to our models. Edit the mode1s.py file of the
courses application, and import the orderrie1d class and a field to the
wodule Model as follows:

from .fields import OrderField

class Module(models.Model):
...
order = OrderField(blank=True, for_fields=['course'])

We name the new field order, and we specify that the ordering is
calculated with respect to the course by setting for_fields=['course'].
This means that the order for a new module will be assigned adding
1 to the last module of the same course Object. Now, you can edit the
_str__() method of the moduie model to include its order as follows:

class Module(models.Model):
...
def __str_ (self):
return '{}. {}'.format(self.order, self.title)

Module contents also need to follow a particular order. Add an
orderrield field to the content model as follows:

class Content(models.Model):
...
order = OrderField(blank=True, for_fields=['module'])

This time, we specify that the order is calculated with respect to the
module field. Finally, let's add a default ordering for both models. Add

the following veta class to the moduie and content models:

class Module(models.Model):
...
class Meta:
ordering = ['order']

class Content(models.Model):
...
class Meta:
ordering = ['order']

The moduie and content models should now look as follows:

class Module(models.Model):
course = models.ForeignKey(Course,
related_name="modules',
on_delete=models.CASCADE)
title = models.CharField(max_length=200)
description = models.TextField(blank=True)
order = OrderField(blank=True, for_fields=['course'])

class Meta:
ordering = ['order']

def __str__ (self):
return '{}. {}'.format(self.order, self.title)

class Content(models.Model):
module = models.ForeignKey(Module,
related_name='contents',
on_delete=models.CASCADE)
content_type = models.ForeignKey(ContentType,
on_delete=models.CASCADE,
limit_choices_to={'model _in':(
"text',
'video',
'"image',
'file')})
object_id = models.PositiveIntegerField()
item = GenericForeignKey('content_type', 'object_id')
order = OrderField(blank=True, for_fields=['module'])

class Meta:
ordering = ['order']

Let's create a new model migration that reflects the new order
fields. Open the shell and run the following command:

python manage.py makemigrations courses
You will see the following output:

You are trying to add a non-nullable field 'order' to content without a
default; we can't do that (the database needs something to populate existing
rows).
Please select a fix:

1) Provide a one-off default now (will be set on all existing rows with a
null value for this column)

2) Quit, and let me add a default in models.py
Select an option:

Django is telling us that we have to provide a default value for the
new order field for existing rows in the database. If the field had
null=True, it would accept null values and Django would create the
migration automatically instead of asking for a default value. We
can specify a default value or cancel the migration and add a defau1t
attribute to the order field in the node1s.py file before creating the
migration.

Enter 1 and press Enter to provide a default value for existing
records. You will see the following output:

Please enter the default value now, as valid Python

The datetime and django.utils.timezone modules are available, so you can do
e.g. timezone.now

Type 'exit' to exit this prompt

>>>

Enter o so that this is the default value for existing records and press
Enter. Django will ask you for a default value for the moduie model,
too. Choose the first option and enter o as the default value again.
Finally, you will see an output similar to the following one:

Migrations for 'courses':
courses/migrations/0003_auto_20180326_0704.py
- Change Meta options on content
- Change Meta options on module
- Add field order to content
- Add field order to module

Then, apply the new migrations with the following command:

python manage.py migrate

The output of the command will inform you that the migration was
successfully applied, as follows:

Applying courses.0003_auto_20180326_0704... OK

Let's test our new field. Open the shell with the following command:

python manage.py shell

Create a new course as follows:

>>> from django.contrib.auth.models import User

>>> from courses.models import Subject, Course, Module

>>> user = User.objects.last()

>>> subject = Subject.objects.last()

>>> c1 = Course.objects.create(subject=subject, owner=user, title='Course 1',
slug='coursel')

We have created a course in the database. Now, let's add modules to
the course and see how their order is automatically calculated. We
create an initial module and check its order:

>>> m1 = Module.objects.create(course=cl1, title='Module 1')
>>> mil.order
0

orderfield Sets its value to e, since this is the first moduie Object created
for the given course. Now, we create a second module for the same
course:

>>> m2 = Module.objects.create(course=cl1, title='Module 2')
>>> m2.order
1

orderrield calculates the next order value adding 1 to the highest order
for existing objects. Let's create a third module, forcing a specific
order:

>>> m3 = Module.objects.create(course=cl, title='Module 3', order=5)
>>> m3.order
5

If we specify a custom order, the orderrie1d field does not interfere
and the value given to the order is used.

Let's add a fourth module:

>>> m4 = Module.objects.create(course=cl1, title='Module 4')
>>> m4.order
6

The order for this module has been automatically set. Our orderrie1d
field does not guarantee that all order values are consecutive.
However, it respects existing order values and always assigns the
next order based on the highest existing order.

Let's create a second course and add a module to it:

>>> c2 = Course.objects.create(subject=subject, title='Course 2',
slug='course2', owner=user)

>>> m5 = Module.objects.create(course=c2, title='Module 1')

>>> m5.order

0

To calculate the new module's order, the field only takes into
consideration existing modules that belong to the same course.
Since this is the first module of the second course, the resulting
order is o. This is because we specified for_fields=['course'] in the order
field of the moduie model.

Congratulations! You have successfully created your first custom
model field.

Creating a CMS

Now that we have created a versatile data model, we are going to
build the CMS. The CMS will allow instructors to create courses and
manage their contents. We need to provide the following
functionality:

¢ Login to the CMS

List the courses created by the instructor

Create, edit, and delete courses

Add modules to a course and reorder them

Add different types of content to each module and reorder

contents

Adding an authentication
system

We are going to use Django's authentication framework in our
platform. Both instructors and students will be instances of
Django's user model, so they will be able to log in to the site using
the authentication views of django.contrib.auth.

Edit the main ur1s.py file of the educa project and include the 109in and
1ogout Views of Django's authentication framework:

from django.contrib import admin
from django.urls import path
from django.contrib.auth import views as auth_views

urlpatterns = [
path('accounts/login/', auth_views.LoginView.as_view(), name='login'),
path('accounts/logout/', auth_views.LogoutView.as_view(), name='logout'),
path('admin/', admin.site.urls),

Creating the authentication
templates

Create the following file structure inside the courses application
directory:

templates/
base.html
registration/
login.html
logged_out.html

Before building the authentication templates, we need to prepare
the base template for our project. Edit the base.ntm1 template file and
add the following content to it:

{% load staticfiles %}
<IDOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>{% block title %}Educa{% endblock %}</title>
<link href="{% static "css/base.css" %}" rel="stylesheet">
</head>
<body>
<div id="header">
Educa
<ul class="menu">
{% if request.user.is_authenticated %}
Sign out</1li>
{% else %}
Sign in</1li>
{% endif %}

</div>
<div id="content">
{% block content %}
{% endblock %}

</div>

<script src="https://ajax.googleapis.com/ajax/1libs/jquery/
3.3.1/jquery.min.js"></script>
<script>
$(document).ready(function() {
{% block domready %}
{% endblock %}
1)
</script>
</body>
</html>

This is the base template that will be extended by the rest of the
templates. In this template, we define the following blocks:

e title: The block for other templates to add a custom title for
each page.

e content: The main block for content. All templates that extend
the base template should add content to this block.

® domready. Located inside the $document . ready() function oijueI'y.
It allows us to execute code when the DOM has finished
loading.

The CSS styles used in this template are located in the static/
directory of the courses application, in the code that comes along with
this chapter. Copy the static/ directory into the same directory of
your project to use them.

Edit the registration/login.html template and add the following code to
it:

{% extends "base.html" %}

{% block title %}Log-in{% endblock %}

{% block content %}

<hi>Log-in</h1>
<div class="module">
{% if form.errors %}
<p>Your username and password didn't match. Please try again.</p>
{% else %}
<p>Please, use the following form to log-in:</p>
{% endif %}
<div class="login-form">
<form action="{% url 'login' %}" method="post">
{{ form.as_p }}
{% csrf_token %}
<input type="hidden" name="next" value="{{ next }}" />
<p><input type="submit" value="Log-in"></p>
</form>
</div>
</div>
{% endblock %}

This is a standard login template for Django's 10gin View.

Edit the registration/logged_out.html template and add the fOHOWiIlg
code to it:

{% extends "base.html" %}
{% block title %}Logged out{% endblock %}

{% block content %}
<hi>Logged out</h1>
<div class="module">
<p>You have been successfully logged out.
You can log-in again.</p>
</div>
{% endblock %}

This is the template that will be displayed to the user after logout.
Run the development server with the following command:

python manage.py runserver

Open http://127.0.0.1:8000/accounts/login/ n your browser. You should
see the login page like this:

FDUCA Sign out

Logrin

Please, use the following form to log-in:

Username:

Password:

LOG-IN

Creating class-based views

We are going to build views to create, edit, and delete courses. We
will use class-based views for this. Edit the views. py file of the courses
application and add the following code to it:

from django.views.generic.list import ListView
from .models import Course

class ManageCourselListView(ListView):
model = Course
template_name = 'courses/manage/course/list.html’

def get_queryset(self):
gs = super(ManageCourselListView, self).get_queryset()
return gs.filter (owner=self.request.user)

This is the managecourseListview View. It inherits from Django's generic
Listview. We override the get_queryset() method of the view to retrieve
only courses created by the current user. To prevent users from
editing, updating, or deleting courses they didn't create, we will also
need to override the get_queryset() method in the create, update, and
delete views. When you need to provide a specific behavior for
several class-based views, it is recommended to use mixins.

Using mixins for class-based
views

Mixins are a special kind of multiple inheritance for a class. You can
use them to provide common discrete functionality that, added to
other mixins, allows you to define the behavior of a class. There are
two main situations to use mixins:

¢ You want to provide multiple optional features for a class

e You want to use a particular feature in several classes

Django comes with several mixins that provide additional
functionality to your class-based views. You can learn more about
mixins at https://docs.djangoproject.com/en/2.0/topics/class-based-views/mixins/.

We are going to create a mixin class that includes a common
behavior and use it for the course's views. Edit the vieus.py file of the
courses application and modify it as follows:

from django.urls import reverse_lazy

from django.views.generic.list import ListView

from django.views.generic.edit import CreateView, UpdateView, \
DeleteView

from .models import Course

class OwnerMixin(object):
def get_queryset(self):
gs = super(OwnerMixin, self).get_queryset()
return gs.filter (owner=self.request.user)

class OwnerEditMixin(object):
def form_valid(self, form):
form.instance.owner = self.request.user

https://docs.djangoproject.com/en/2.0/topics/class-based-views/mixins/

return super(OwnerEditMixin, self).form_valid(form)

class OwnerCourseMixin(OwnerMixin):
model = Course

class OwnerCourseEditMixin(OwnerCourseMixin, OwnerEditMixin):

fields = ['subject', 'title', 'slug', 'overview']
success_url = reverse_lazy('manage_course_list')
template_name = 'courses/manage/course/form.html’

class ManageCourseListView(OwnerCourseMixin, ListView):
template_name = 'courses/manage/course/list.html’

class CourseCreateView(OwnerCourseEditMixin, CreateView):
pass

class CourseUpdateView(OwnerCourseEditMixin, UpdateView):
pass

class CourseDeleteView(OwnerCourseMixin, DeleteView):
template_name = 'courses/manage/course/delete.html’
success_url = reverse_lazy('manage_course_list')

In this code, we create the ownermixin and ownereditmixin mixins. We will
use these mixins together with the Listview, CreateView, UpdateView, and
peleteview VieWs provided by Django. ownermixin implements the
following method:

e get _queryset(): This method is used by the views to get the base
QuerySet. Our mixin will override this method to filter
objects by the owner attribute to retrieve objects that belong to
the current user (request.user).

ownereditmixin implements the following method:

e rorm_valid(): This method is used by views that use Django's
modelFormMixin MixXin, that is, views with forms or modelforms
such as createview and updateview. form_valid() are executed when
the submitted form is valid. The default behavior for this

method is saving the instance (for modelforms) and
redirecting the user to success_uri. We override this method to
automatically set the current user in the owner attribute of the
object being saved. By doing so, we set the owner for an
object automatically when it is saved.

Our ownermixin class can be used for views that interact with any
model that contains an owner attribute.

We also define an ownercoursemixin class that inherits ownermixin and
provides the following attribute for child views:

¢ node1: The model used for QuerySets. Used by all views.

We define a ownercourseeditmixin mixin with the following attributes:

e rields: The fields of the model to build the model form of the

createview and UpdateView ViEWS.

® success_url: Used by createview and Updateview O redirect the user
after the form is successfully submitted. We use a URL with
the name manage_course_1ist that we are going to create later.

Finally, we create the following views that subclass ownercoursemixin:

e wmanagecourseListview: LiSts the courses created by the user. It

inherits fI'OHl OwnerCourseMixin and ListView.

® coursecreateview: Uses a modelform to create a new course object.
It uses the fields defined in ownercourseeditmixin to build a model
form and also subclasses createview.

e courseupdateview: Allows editing an existing course Object. It

inherits from ownercourseeditmixin and UpdateView.

® CourseDeleteView. Inherits fI’OHl OownerCourseMixin and the generic
DeleteView. Defines success_url tO redirect the user after the
object is deleted.

Working with groups and
permissions

We have created the basic views to manage courses. Currently, any
user could access these views. We want to restrict these views so
that only instructors have permission to create and manage courses.
Django's authentication framework includes a permission system
that allows you to assign permissions to users and groups. We are
going to create a group for instructor users and assign permissions
to create, update, and delete courses.

Run the development server using the command and open
http://127.0.0.1:8000/admin/auth/group/add/ in your browser to create a new
eroup Object. Add the name 1nstructors and choose all permissions of
the courses application except those of the subject model, as follows:

Add group

Name:

Permissions;

Instructors

valable pemissions @

Q |Fiter

amin log entry|Can add logenty
amin|log entry | Gan chenge og ety
admin log entry | Can dlete logenty
aulh | roup Canadd group

aulh | roup] Canchange group

auth group | Can delete group

allh permission | Can add permisson
allh permission| Gan change permission
auth | permisson | Can delete permisson
alth | user| an add user

auth | user | Gan change use

Chooseall §

Hold down "Control" o "Command" on & Mac, to select more than ane.

Chosen ermissons @

courses | content Gan add content
courses | content| Gan change content
courses | content | Can dlete content
00U1SS | cours | Gan add course
00UrsS | course | Gan change course
0OUISeS | cours | Ca delete course
courses[f | Can add e
oourses | fle | Canchangefie
coutses | f | Can dlte fe
COUrSes | mage | Can aod mge
COUrSes | mage | Can change mage

0 Removeal

Save and add another J Save and coniue diting

As you can see, there are three different permissions for each
model: can add, can change, and can delete. After choosing
permissions for this group, click on the SAVE button.

Django creates permissions for models automatically, but you can
also create custom permissions. You can read more about adding

custom permissions at nttps://docs.djangoproject.com/en/2.0/topics/auth/custo

mizing/#custom-permissions.

Open nttp://127.0.0.1:8000/admin/auth/user/add/ and create a new user. Edit
the user and add it to the Instructors group, as follows:

broups

Avalebegroups Chosen grous @

Instructors

Q At

Users inherit the permissions of the groups they belong to, but you
can also add individual permissions to a single user using the
administration site. Users that have is_superuser set to true have all
permissions automatically.

https://docs.djangoproject.com/en/2.0/topics/auth/customizing/#custom-permissions

Restricting access to class-
based views

We are going to restrict access to the views so that only users with
the appropriate permissions can add, change, or delete course
objects. We are going to use the following two mixins provided by
django.contrib.auth tO limit access to views:

® |oginRequiredMixin: Replicates the login_required decorator's

functionality.

® permissionRequiredMixin: Grants access to the view to users that
have a specific permission. Remember that superusers
automatically have all permissions.

Edit the views.py file of the courses application and add the following
import:

from django.contrib.auth.mixins import LoginRequiredMixin, \
PermissionRequiredMixin

Make ownercoursemixin inherit LoginRequiredMixin like this:

class OwnerCourseMixin(OwnerMixin, LoginRequiredMixin):
model = Course
fields = ['subject', 'title', 'slug', 'overview']
success_url = reverse_lazy('manage_course_list')

Then, add a permission_required attribute to the create, update, and
delete views, as follows:

class CourseCreateView(PermissionRequiredMixin,
OwnerCourseEditMixin,
CreateView):
permission_required = 'courses.add_course'

class CourseUpdateView(PermissionRequiredMixin,
OwnerCourseEditMixin,
UpdateView):
permission_required = 'courses.change_course'

class CourseDeleteView(PermissionRequiredMixin,

OwnerCourseMixin,

DeleteView):
template_name = 'courses/manage/course/delete.html’
success_url = reverse_lazy('manage_course_list')
permission_required = 'courses.delete_course'

Permissionrequiredmixin Checks that the user accessing the view has the
permission specified in the permission_required attribute. Our views are
now only accessible to users that have proper permissions.

Let's create URLSs for these views. Create a new file inside the courses
application directory and name it uris.py. Add the following code to
it:

from django.urls import path
from . import views

urlpatterns = [

path('mine/",
views.ManageCourselListView.as_view(),
name='manage_course_list"'),

path('create/',
views.CourseCreateView.as_view(),
name='course_create'),

path('<pk>/edit/"',
views.CourseUpdateView.as_view(),
name='course_edit"'),

path('<pk>/delete/',
views.CourseDeleteView.as_view(),
name='course_delete'),

These are the URL patterns for the list, create, edit, and delete

course views. Edit the main uris.py file of the educa project and
include the URL patterns of the courses application, as follows:

from django.urls import path, include

urlpatterns = [
path('accounts/login/', auth_views.LoginView.as_view(), name='login'),
path('accounts/logout/', auth_views.LogoutView.as_view(), name='logout'),
path('admin/', admin.site.urls),
path('course/', include('courses.urls')),

We need to create the templates for these views. Create the
following directories and files inside the temp1ates/ directory of the
courses application:

courses/
manage/
course/
list.html
form.html
delete.html

Edit the courses/manage/course/list.html template and add the following
code to it:

{% extends "base.html" %}
{% block title %}My courses{% endblock %}

{% block content %}
<h1>My courses</h1>

<div class="module">
{% for course in object_list %}
<div class="course-info">
<h3>{{ course.title }}</h3>
<p>
Edit
Delete
</p>
</div>
{% empty %}

<p>You haven't created any courses yet.</p>
{% endfor %}
<p>
Create new
course
</p>
</div>
{% endblock %}

This is the template for the managecourseristview view. In this template,
we list the courses created by the current user. We include links to
edit or delete each course, and a link to create new courses.

Run the development server using the command python manage.py
runserver.()I)ellI1ttp://127.O.0.1:8000/accounts/login/?next:/course/mine/ ir13n311r
browser and log in with a user that belongs to the nstructors group.
After logging in, you will be redirected to the
http://127.0.0.1:8000/course/mine/ URL and you should see the following

page:

EDUCA

My courses

You haven't created any courses yet.

CREATE NEW COURSE

This page will display all courses created by the current user.

Let's create the template that displays the form for the create and
update course views. Edit the courses/manage/course/form.html template

and write the following code:

{% extends "base.html" %}

{% block title %}
{% if object %}
Edit course "{{ object.title }}"
{% else %}
Create a new course
{% endif %}
{% endblock %}

{% block content %}
<h1>
{% if object %}
Edit course "{{ object.title }}"
{% else %}
Create a new course
{% endif %}
</h1>
<div class="module">
<h2>Course info</h2>
<form action="." method="post">
{{ form.as_p }}
{% csrf_token %}
<p><input type="submit" value="Save course'"></p>
</form>
</div>
{% endblock %}

The form.htm1 template 1s used for both the coursecreateview and
courseupdateview Views. In this template, we check whether an object
variable is in the context. If object exists in the context, we know that
we are updating an existing course, and we use it in the page title.
Otherwise, we are creating a new course Object.

Open http://127.0.0.1:8000/course/mine/ iN your browser and click the
CREATE NEW COURSE button. You will see the following page:

Create a new course

Course info

Subject:

4p

Title:

Slug:

Overview:

SAVE COURSE

Fill in the form and click the SAVE COURSE button. The course will
be saved and you will be redirected to the course list page. It should

look as follows:

EDUCA

My courses

Django course
Edit Delete

CREATE NEW COURSE

Then, click the Edit link for the course you have just created. You
will see the form again, but this time you are editing an existing
course Object instead of creating one.

Finally, edit the courses/manage/course/delete.html template and add the
following code:

{% extends "base.html" %}
{% block title %}Delete course{% endblock %}

{% block content %}
<hi>Delete course "{{ object.title }}"</h1>

<div class="module">
<form action="" method="post">
{% csrf_token %}
<p>Are you sure you want to delete "{{ object }}"?</p>
<input type="submit" class"button" value="Confirm">
</form>
</div>
{% endblock %}

This is the template for the coursepeleteview View. This view inherits

from peieteview provided by Django, which expects user confirmation
to delete an object.

Open your browser and click the Delete link of your course. You
should see the following confirmation page:

EDUCA

Delete course "Django course’

Are you sure you want to delete "Django course"?

CONFIRM

Click the CONFIRM button. The course will be deleted and you will
be redirected to the course list page again.

Instructors can now create, edit, and delete courses. Next, we need
to provide them with CMS to add modules and contents to courses.
We will start by managing course modules.

Managing course modules and
content

We are going to build a system to manage course modules and their
contents. We will need to build forms that can be used for managing
multiple modules per course and different types of content for each
module. Both modules and contents will have to follow a specific
order and we should be able to reorder them using the CMS.

Using formsets for course
modules

Django comes with an abstraction layer to work with multiple forms
on the same page. These groups of forms are known as formsets.
Formsets manage multiple instances of a certain rorm OT Mode1rorm. All
forms are submitted at once and the formset takes care of the initial
number of forms to display, limiting the maximum number of
forms that can be submitted and validating all the forms.

Formsets include an is_vaiid() method to validate all forms at once.
You can also provide initial data for the forms and specify how
many additional empty forms to display.

You can learn more about formsets at https://docs.djangoproject.com/en/2.
0/topics/forms/formsets/ and about model formsets at https://docs.djangoproj

ect.com/en/2.0/topics/forms/modelforms/#model-formsets.

Since a course is divided into a variable number of modules, it
makes sense to use formsets to manage them. Create a forns.py file in
the courses application directory and add the following code to it:

from django import forms
from django.forms.models import inlineformset_factory
from .models import Course, Module

ModuleFormSet = inlineformset_factory(Course,
Module,
fields=['title',
'description'],
extra=2,
can_delete=True)

This is the moduierormset formset. We build it using the

https://docs.djangoproject.com/en/2.0/topics/forms/formsets/
https://docs.djangoproject.com/en/2.0/topics/forms/modelforms/#model-formsets

inlineformset_factory() function provided by Django. Inline formsets are
a small abstraction on top of formsets that simplify working with
related objects. This function allows us to build a model formset
dynamically for the moduie Objects related to a course object.

We use the following parameters to build the formset:

e rields: The fields that will be included in each form of the
formset.

o cxtra: Allows us to set the number of empty extra forms to
display in the formset.

e can_delete: If you set this to rrue, Django will include a Boolean
field for each form that will be rendered as a checkbox input.
It allows you to mark the objects you want to delete.

Edit the views.py file of the courses application and add the following
code to it:

from django.shortcuts import redirect, get_object_or_404
from django.views.generic.base import TemplateResponseMixin, View
from .forms import ModuleFormSet

class CourseModuleUpdateView(TemplateResponseMixin, View):
template_name = 'courses/manage/module/formset.html'
course = None

def get_formset(self, data=None):
return ModuleFormSet(instance=self.course,
data=data)

def dispatch(self, request, pk):
self.course = get_object_or_404(Course,
id=pk,
owner=request.user)
return super(CourseModuleUpdateView,
self).dispatch(request, pk)

def get(self, request, *args, **kwargs):

formset = self.get_formset()
return self.render_to_response({'course': self.course,
'formset': formset})

def post(self, request, *args, **kwargs):
formset = self.get_formset(data=request.POST)
if formset.is_valid():
formset.save()
return redirect('manage_course_list')
return self.render_to_response({'course': self.course,
'formset': formset})

The coursemModuleupdateview View handles the formset to add, update, and
delete modules for a specific course. This view inherits from the
following mixins and views:

® TemplateResponseMixin: This mixin takes charge of rendering
templates and returning an HTTP response. It requires a
template_name attribute that indicates the template to be
rendered and provides the render_to_response() method to pass
it a context and render the template.

e view: The basic class-based view provided by Django.

In this view, we implement the following methods:

e get_formset(): We define this method to avoid repeating the
code to build the formset. We create a moduierornset object for
the given course Object with optional data.

e dispatch(): This method is provided by the view class. It takes
an HTTP request and its parameters and attempts to
delegate to a lowercase method that matches the HTTP
method used: a e request is delegated to the get() method
and a rost request to post(), respectively. In this method, we
use the get_object_or_se4() shortcut function to get the course

object for the given id parameter that belongs to the current
user. We include this code in the dispatch() method because
we need to retrieve the course for both cer and rost requests.
We save it into the course attribute of the view to make it
accessible to other methods.

e get(): Executed for ceT requests. We build an empty
moduleFormset formset and render it to the template together
with the current course object using the render_to_response()
method provided by temp1ateresponsemixin.

¢ post(): Executed for rost requests. In this method, we perform
the following actions:

We build a moduierormset instance using the submitted data.

2, We execute the is_va1id() method of the formset to
validate all of its forms.

3. If the formset is valid, we save it by calling the save()
method. At this point, any changes made, such as
adding, updating, or marking modules for deletion, are
applied to the database. Then, we redirect users to the
manage_course_list URL. If the formset is not valid, we
render the template to display any errors, instead.

Edit the ur1s.py file of the courses application and add the following
URL pattern to it:

path('<pk>/module/",
views.CourseModuleUpdateView.as_view(),
name="'course_module_update'),

Create a new directory inside the courses/manage/ template directory

and name it modute. Create a courses/manage/module/formset.html template
and add the following code to it:

{% extends "base.html" %}

{% block title %}
Edit "{{ course.title }}"
{% endblock %}

{% block content %}
<hi>Edit "{{ course.title }}"</h1>
<div class="module">
<h2>Course modules</h2>
<form action="" method="post">
{{ formset }}
{{ formset.management_form }}
{% csrf_token %}
<input type="submit" class="button" value="Save modules">
</form>
</div>
{% endblock %}

In this template, we create a <form> HTML element, in which we
include fornset. We also include the management form for the
formset with the variable ({ formset.management_form 33. The management
form includes hidden fields to control the initial, total, minimum,
and maximum number of forms. You can see it's very easy to create
a formset.

Edit the courses/manage/course/list.html template and add the following
link for the cou rse_module_update URL below the course edit and delete
links:

Edit

Delete
Edit
modules

We have included the link to edit the course modules. Open
http://127.0.0.1:8000/course/mine/ I your browser. Create a course and
click the Edit modules link for it. You should see a formset as

follows:

Edit "Django course’

Course modules

Title:

Description:

Delete:

Title:

Description:

Delete:
()

SAVE MODULES

The formset includes a form for each vodau1e object contained in the
course. After these, two empty extra forms are displayed because we

set extra=2 fOT modulerormset. When you save the formset, Django will
include another two extra fields to add new modules.

Adding content to course
modules

Now, we need a way to add content to course modules. We have
four different types of content: text, video, image, and file. We can
consider creating four different views to create content, one for each
model. Yet we are going to take a more generic approach and create
a view that handles creating or updating objects of any content
model.

Edit the views.py file of the courses application and add the following
code to it:

from django.forms.models import modelform_factory
from django.apps import apps
from .models import Module, Content

class ContentCreateUpdateView(TemplateResponseMixin, View):
module = None
model = None
obj = None
template_name = 'courses/manage/content/form.html'

def get_model(self, model_name):
if model _name in ['text', 'video', 'image',6 'file']:
return apps.get_model(app_label="'courses"',
model_name=model_name)
return None

def get_form(self, model, *args, **kwargs):
Form = modelform_factory(model, exclude=['owner',
'order’,
'created’,
'updated'])
return Form(*args, **kwargs)

def dispatch(self, request, module_id, model _name, id=None):
self.module = get_object_or_404(Module,

id=module_id,
course__owner=request.user)
self.model = self.get_model(model_name)
if id:
self.obj = get_object_or_404(self.model,
id=id,
owner=request.user)
return super(ContentCreateUpdateView,
self).dispatch(request, module_id, model name, id)

This is the first part of ContentCreateUpdateView. It will allow us to create
and update contents of different models. This view defines the
following methods:

e get_model(): Here, we check that the given model name is one
of the four content models: Text, video, Image, OT File. Then, we
use Django's apps module to obtain the actual class for the given
model name. If the given model name is not one of the valid
ones, we return none.

e get_form(): We build a dynamic form using the mode1form_factory()
function of the form's framework. Since we are going to
build a form for the rext, video, Image, and riie models, we use
the exciude parameter to specify the common fields to exclude
from the form and let all other attributes be included
automatically. By doing so, we don't have to know which
fields to include depending on the model.

e dispatch(): It receives the following URL parameters and
stores the corresponding module, model, and content object
as class attributes:

e module_id: The ID for the module that the content
is/will be associated with.

e model name: The model name of the content to
create/update.

e id: The ID of the object that is being updated. It's none
to create new objects.

Add the fOHOWil’lg get() and post() methods to ContentCreateUpdateView.:

def get(self, request, module_id, model_name, id=None):
form = self.get_form(self.model, instance=self.obj)
return self.render_to_response({'form': form,
'object': self.obj})

def post(self, request, module_id, model_name, id=None):
form = self.get_form(self.model,
instance=self.obj,
data=request.POST,
files=request.FILES)
if form.is_valid():
obj = form.save(commit=False)
obj.owner = request.user
obj.save()
if not id:
new content
Content.objects.create(module=self.module,
item=o0bj)
return redirect('module_content_list', self.module.id)

return self.render_to_response({'form': form,
'object': self.obj})

These methods are as follows:

e get(): Executed when a cer request is received. We build the
model form for the Text, video, Image, O File instance that is
being updated. Otherwise, we pass no instance to create a
new object, since seif.obj iS none if N0 ID is provided.

e post(): Executed when a rost request is received. We build the

modelform passing any submitted data and files to it. Then,
we validate it. If the form is valid, we create a new object and
assign request.user as its owner before saving it to the
database. We check for the id parameter. If no ID is
provided, we know the user is creating a new object instead
of updating an existing one. If this is a new object, we create
a content Object for the given module and associate the new
content to it.

Edit the uris.py file of the courses application and add the following
URL patterns to it:

path('module/<int:module_id>/content/<model_name>/create/',
views.ContentCreateUpdateView.as_view(),
name='module_content_create'),

path('module/<int:module_id>/content/<model_name>/<id>/"',
views.ContentCreateUpdateView.as_view(),
name='module_content_update'),

The new URL patterns are as follows:

® nodule_content_create: 1O create new text, video, image, or file
objects and add them to a module. It includes the moduie_id
and mode1_name parameters. The first one allows linking the
new content object to the given module. The latter specifies
the content model to build the form for.

® nodule_content_update: TO update an existing text, video, image,
or file object. It includes the module_id and mode1 name
parameters and an is parameter to identify the content that
is being updated.

Create a new directory inside the courses/manage/ template directory
and name it content. Create the template courses/manage/content/form.html
and add the following code to it:

{% extends "base.html" %}

{% block title %}
{% if object %}
Edit content "{{ object.title }}"
{% else %}
Add a new content
{% endif %}
{% endblock %}

{% block content %}
<h1>
{% if object %}
Edit content "{{ object.title }}"
{% else %}
Add a new content
{% endif %}
</h1>
<div class="module">
<h2>Course info</h2>
<form action="" method="post" enctype="multipart/form-data">
{{ form.as_p }}
{% csrf_token %}
<p><input type="submit" value="Save content"></p>
</form>
</div>
{% endblock %}

This is the template for the contentcreateupdateview View. In this
template, we check whether an object variable is in the context. If
object €xists in the context, we are updating an existing object.
Otherwise, we are creating a new object.

We include enctype="multipart/form-data" in the <form> HTML element;
because the form contains a file upload for the riie and 1mage content
models.

Run the development server, open nttp://127.0.0.1:8000/course/mine/,
click Edit modules for an existing course, and create a module.

Open the Python shell with the command python manage.py she11 and
obtain the ID of the most recently created module, as follows:

>>> from courses.models import Module
>>> Module.objects.latest('id').id
6

Run the development server and

Op€n http://127.0.0.1:8000/course/module/6/content/image/create/ in your
browser, replacing the module ID by the one you obtained before.
You will see the form to create an mage object, as follows:

Add a new content

Course info

Title:

File:

Choose File No file selected

SAVE CONTENT

Don't submit the form yet. If you try to do so, it will fail because we
haven't defined the module content_1ist URL yet. We are going to create
it in a bit.

We also need a view for deleting contents. Edit the views.py file of the
courses application and add the following code:

class ContentDeleteView(View):

def post(self, request, id):

content = get_object_or_404(Content,
id=id,
module__course__owner=request.user)

module = content.module

content.item.delete()

content.delete()

return redirect('module_content_list', module.id)

The contentpeleteview class retrieves the content 0bject with the given ID;
it deletes the related Text, Video, Image, OT File object; and finally, it
deletes the content Object and redirects the user to the
module_content_list URL to list the other contents of the module.

Edit the ur1s.py file of the courses application and add the following
URL pattern to it:

path('content/<int:id>/delete/"',
views.ContentDeleteView.as_view(),
name='module_content_delete'),

Now, instructors can create, update, and delete contents easily.

Managing modules and
contents

We have built views to create, edit, and delete course modules and
contents. Now, we need a view to display all modules for a course
and list contents for a specific module.

Edit the views.py file of the courses application and add the following
code to it:

class ModuleContentListView(TemplateResponseMixin, View):
template_name = 'courses/manage/module/content_list.html'

def get(self, request, module_id):
module = get_object_or_404(Module,
id=module_id,
course__owner=request.user)

return self.render_to_response({'module': module})

This iS modulecontentListview. This view gets the voduie object with the
given ID that belongs to the current user and renders a template
with the given module.

Edit the uris.py file of the courses application and add the following
URL pattern to it:

path('module/<int:module_id>/"',
views.ModuleContentListView.as_view(),
name='module_content_list'),

Create a new template inside the templates/courses/manage/module/
directory and name it content_1ist.ntmi. Add the following code to it:

{% extends "base.html" %}

{% block title %}
Module {{ module.order|add:1 }}: {{ module.title }}
{% endblock %}

{% block content %}
{% with course=module.course %}
<hi>Course "{{ course.title }}"</h1>
<div class="contents">
<h3>Modules</h3>
<ul id="modules">
{% for m in course.modules.all %}
<1li data-id="{{ m.id }}" {% if m == module %}
class="selected"{% endif %}>

Module {{ m.order|add:1 }}

{{ m.title }}

</1i>
{% empty %}
No modules yet.</1li>
{% endfor %}

<p>
Edit modules</p>
</div>
<div class="module">
<h2>Module {{ module.order|add:1 }}: {{ module.title }}</h2>
<h3>Module contents:</h3>

<div id="module-contents">
{% for content in module.contents.all %}
<div data-id="{{ content.id }}">
{% with item=content.item %}
<p>{{ item }}</p>
Edit
<form action="{% url "module_content_delete" content.id %}"
method="post">
<input type="submit" value="Delete">
{% csrf_token %}
</form>
{% endwith %}
</div>
{% empty %}
<p>This module has no contents yet.</p>

{% endfor %}
</div>
<h3>Add new content:</h3>
<ul class="content-types">

Text</1i>

Image</1i>

Video</1i>

File</1i>

</div>
{% endwith %}
{% endblock %}

This is the template that displays all modules for a course and the
contents of the selected module. We iterate over the course modules
to display them in a sidebar. We iterate over the module's contents
and access content.iten to get the related vext, video, mage, OT File Object.
We also include links to create new text, video, image, or file
contents.

We want to know which type of object each of the item Objects is: Text,
video, Image, OT File. We need the model name to build the URL to edit
the object. Besides this, we could display each item in the template
differently, based on the type of content it is. We can get the model
for an object from the model's veta class, by accessing the object's
_meta attribute. Nevertheless, Django doesn't allow accessing
variables or attributes starting with an underscore in templates to
prevent retrieving private attributes or calling private methods. We
can solve this by writing a custom template filter.

Create the following file structure inside the courses application
directory:

templatetags/
__init__ .py
course.py

Edit the course.py module and add the following code to it:

from django import template
register = template.Library()

@register.filter
def model_name(obj):
try:
return obj._meta.model_name
except AttributeError:
return None

This is the mode1_name template filter. We can apply it in templates as
object |model_name tO get the model name for an object.

Edit the templates/courses/manage/module/content_list.html template and add
the following line below the (% extends %} template tag:

{% load course %}

This will load the course template tags. Then, replace the following
lines:

<p>{{ item }3}</p>
Edit

Replace them with the following ones:

<p>{{ item }} ({{ item|model_name }})</p>
<a href="{% url "module_content_update" module.id item|model_name item.id
%}">Edit

Now, we display the item model in the template and use the model
name to build the link to edit the object. Edit the
courses/manage/course/list.html template and add a link to the
module_content_list URL like this:

Edit modules
{% if course.modules.count > 0 %}

Manage contents
{% endif %}

The new link allows users to access the contents of the first module
of the course, if any.

Open http://127.0.0.1:8000/course/mine/ and click the Manage
contents link for a course that contains at least one module. You
will see a page like the following one:

EDUCA

Course "Django course'

Modules Module 1: Introduction to Django

MODULE 1 Module contents:

Introduction to Django

This module has no contents yet.

Add new content:

Text Image Video File

When you click on a module in the left sidebar, its contents are
displayed in the main area. The template also includes links to add
a new text, video, image, or file content for the module being
displayed. Add a couple of different types of content to the module
and take a look at the result. The contents will appear after Module
contents like in the following example:

EDUCA

Course "Django course'

Modules Module 2: Configuring Django

MODULE 1
Introduction to Django

Module contents:

Setting up Django (text)
MODULE 2

Configuring Django Edit Delete

Example settings.py (image)

Edit Delete

Add new content:

Text Image Video File

Reordering modules and
contents

We need to provide a simple way to reorder course modules and
their contents. We will use a JavaScript drag-n-drop widget to let
our users reorder the modules of a course by dragging them. When
users finish dragging a module, we will launch an asynchronous
request (AJAX) to store the new module order.

Using mixins from django-
braces

django-braces 1S a third-party module that contains a collection of
generic mixins for Django. These mixins provide additional features
for class-based views. You can see a list of all mixins provided by

django-braces at https://django-braces.readthedocs.io/.

We will use the following mixins of django-braces:

o csrrexemptmixin: To avoid checking the CSRF token in the rost
requests. We need this to perform AJAX rost requests
without having to generate a csrf_token.

® JsonRequestResponseMixin.: Parses the request data as JSON and
also serializes the response as JSON and returns an HTTP
response with the appiication/json content type.

Install django-braces via pip using the following command:
pip install django-braces==1.13.0

We need a view that receives the new order of modules' ID encoded
in JSON. Edit the views. py file of the courses application and add the
following code to it:

from braces.views import CsrfExemptMixin, JsonRequestResponseMixin

class ModuleOrderView(CsrfExemptMixin,
JsonRequestResponseMixin,

https://django-braces.readthedocs.io/

View):
def post(self, request):
for id, order in self.request_json.items():
Module.objects.filter (id=1id,
course__owner=request.user).update(order=order)
return self.render_json_response({'saved': 'OK'})

ThlS iS the ModuleOrderView VieW.

We can build a similar view to order a module's contents. Add the
following code to the views.py file:

class ContentOrderView(CsrfExemptMixin,
JsonRequestResponseMixin,
View):
def post(self, request):
for id, order in self.request_json.items():
Content.objects.filter(id=id,

module__course__owner=request.user) \
.update(order=order)

return self.render_json_response({'saved': 'OK'})

NOW, edit the urls.py file of the courses application and add the
following URL patterns to it:

path('module/order/",
views.ModuleOrderView.as_view(),
name='module_order"'),

path('content/order/',
views.ContentOrderView.as_view(),
name='content_order'),

Finally, we need to implement the drag-n-drop functionality in the
template. We will use the jQuery Ul library for this. jQuery Ul is
built on top of jQuery and it provides a set of interface interactions,
effects, and widgets. We will use its sortanie element. First, we need
to load jQuery Ul in the base template. Open the base.ntmi file located
in the tempiates/ directory of the courses application, and add jQuery
UI below the script to load jQuery as follows:

<script
src="https://ajax.googleapis.com/ajax/1libs/jquery/3.3.1/jquery.min.js">
</script>

<script src="https://ajax.googleapis.com/ajax/libs/jqueryui/1.12.1/jquery-
ui.min.js"></script>

We load the jQuery Ul library just after the jQuery framework.
NOW, edit the courses/manage/module/content_list.html template and add the
following code to it at the bottom of the template:

{% block domready %}
$('#modules').sortable({
stop: function(event, ui) {
modules_order = {};
$('#modules').children().each(function(){
// update the order field
$(this).find('.order').text($(this).index() + 1);
// associate the module's id with its order
modules_order[$(this).data('id')] = $(this).index();

1)
$.ajax({
type: 'POST',
url: '{% url "module_order" %}',
contentType: 'application/json; charset=utf-8',
dataType: 'json',
data: JSON.stringify(modules_order)
1)

1)

$('#module-contents').sortable({
stop: function(event, ui) {
contents_order = {};
$('#module-contents').children().each(function(){
// associate the module's id with its order
contents_order[$(this).data('id')] = $(this).index();

1)
$.ajax({
type: 'POST',
url: '"{% url "content_order" %}',
contentType: 'application/json; charset=utf-8"',
dataType: 'json',
data: JSON.stringify(contents_order),
1)

1)
{% endblock %}

This JavaScript code is in the {% biock domready %} block and therefore it
will be included in the $(document).ready() event oijuery that we
defined in the base.ntm1 template. This guarantees that our JavaScript
code is executed once the page has been loaded. We define a sortabie
element for the modules list in the sidebar and a different one for
the module's content list. Both work in a similar manner. In this
code, we perform the following tasks:

1. First, we define a sortanle element for the moduzes HTML
element. Remember that we use #modules, since jQuery uses
CSS notation for selectors.

2. We specify a function for the stop event. This event is
triggered every time the user finishes sorting an element.

3. We create an empty moduies_order dictionary. The keys for this
dictionary will be the modules' ID, and the values will be the
assigned order for each module.

4. We iterate over the #moduie children elements. We recalculate
the displayed order for each module and get its data-id
attribute, which contains the module's ID. We add the ID as
the key of the moduies_order dictionary and the new index of the
module as the value.

5. We launch an AJAX rost request to the content_order URL,
including the serialized JSON data of moduies_order in the
request. The corresponding voduleorderview takes care of
updating the modules' order.

The sortabie element to order contents is quite similar to this one. Go
back to your browser and reload the page. Now, you will be able to
click and drag both modules and contents to reorder them like the

following example:

EDUCA

Course "Django course'

Modules Module 2: Configuring Django

MODULE 1

Setting up Django (text)
MODULE 2

Configuring Django Edit Delete

Example settings.py (image)

Edit Delete

Add new content:

Text Image Video File

Great! Now you can reorder both course modules and module
contents.

Summary

In this chapter, you learned how to create a versatile CMS. You used
model inheritance and created a custom model field. You also
worked with class-based views and mixins. You created formsets
and a system to manage diverse types of content.

In the next chapter, you will create a student registration system.
You will also render different kinds of content, and you will learn
how to work with Django's cache framework.

Rendering and Caching
Content

In the previous chapter, you used model inheritance and generic
relationships to create flexible course content models. You also built
a course management system using class-based views, formsets,
and AJAX ordering for contents. In this chapter, you will:

e Create public views for displaying course information

Build a student registration system

Manage student enrollment in courses

Render diverse course contents

Cache content using the cache framework

We will start by creating a course catalog for students to browse
existing courses and be able to enroll in them.

Displaying courses

For our course catalog, we have to build the following functionality:

e List all available courses, optionally filtered by subject

¢ Display a single course overview

Edit the views.py file of the courses application and add the following
code:

from django.db.models import Count
from .models import Subject

class CourselListView(TemplateResponseMixin, View):
model = Course
template_name = 'courses/course/list.html’

def get(self, request, subject=None):
subjects = Subject.objects.annotate(
total_courses=Count('courses'))
courses = Course.objects.annotate(
total _modules=Count('modules'))
if subject:
subject = get_object_or_404(Subject, slug=subject)
courses = courses.filter(subject=subject)
return self.render_to_response({'subjects': subjects,
'subject': subject,
'courses': courses})

This is the courseListview View. It inherits from TemplateResponseMixin and
view. In this view, we perform the following tasks:

1. We retrieve all subjects, including the total number of
courses for each of them. We use the ORM's annotate()

method with the count() aggregation function to include the
total number of courses for each subject.

2. We retrieve all available courses, including the total number
of modules contained in each course.

3. If a subject slug URL parameter is given, we retrieve the
corresponding subject object and we limit the query to the
courses that belong to the given subject.

4. We use the render_to_response() method provided by
TemplateresponseMixin tO render the objects to a template and
return an HTTP response.

Let's create a detail view for displaying a single course overview.
Add the following code to the views. py file:

from django.views.generic.detail import DetailView

class CourseDetailView(DetailView):
model = Course
template_name = 'courses/course/detail.html’

This view inherits from the generic petaiiview provided by Django.
We specify the mode1 and template_name attributes. Django's DetailView
expects a primary key (pk) or slug URL parameter to retrieve a single
object for the given model. Then, it renders the template specified
in template_name, including the object in the context as object.

Edit the main ur1s.py file of the educa project and add the following
URL pattern to it:

from courses.views import CourselListView

urlpatterns = [
...
path('', CourseListView.as_view(), name='course_list'),

We add the course_1ist URL pattern to the main uris.py file of the
project because we want to display the list of courses in the URL
http://127.0.0.1:8000/ and all other URLSs for the courses application have
the /courses prefix.

Edit the ur1s.py file of the courses application and add the following
URL patterns:

path('subject/<slug:subject>)/",
views.CourselListView.as_view(),
name="'course_list_subject'),

path('<slug:slug>/",
views.CourseDetailView.as_view(),
name="'course_detail'),

We define the following URL patterns:

® course_list_subject: For displaying all courses for a subject

® course_detail: For displaying a single course overview

Let's build templates for the coursetistview and coursepetailview VIEWS.
Create the following file structure inside the templates/courses/
directory of the courses application:

course/
list.html
detail.html

Edit the courses/coursesiist.html template and write the following code:

{% extends "base.html" %}

{% block title %}
{% if subject %}
{{ subject.title }} courses
{% else %}

All courses
{% endif %}
{% endblock %}

{% block content %}
<hi1>
{% if subject %}
{{ subject.title }} courses
{% else %}
All courses
{% endif %}
</h1>
<div class="contents">
<h3>Subjects</h3>
<ul id="modules">
<li {% if not subject %}class="selected"{% endif %}>
All
</1i>
{% for s in subjects %}
<li {% if subject == s %}class="selected"{% endif %}>

{{ s.title }}

{{ s.total_courses }} courses

</1i>
{% endfor %}

</div>

<div class="module">
{% for course in courses %}
{% with subject=course.subject %}
<h3>
{{ course.title }}</h3>
<p>

{{ subject }}.
{{ course.total modules }} modules.
Instructor: {{ course.owner.get_full name }}
</p>
{% endwith %}
{% endfor %}
</div>
{% endblock %}

This is the template for listing the available courses. We create an
HTML list to display all subject objects and build a link to the
course_list_subject URL for each of them. We add a seiectes HTML class
to highlight the current subject, if any. We iterate over every course

object, displaying the total number of modules and the instructor
name.

Run the development server and open nttp://127.0.0.1:8000/ iN your
browser. You should see a page similar to the following one:

FDUCA Sign out

All courses

Subjects Django course

Al Programming. 2 modules. Instructor. Antonio Melé

Mathematics Python for beginners

1 COURSES Programming. 2 modules. Instructor. Laura Marlon

Music Algebra basics

0COURSES Mathematics. 4 modules. Instructor, Laura Marlon

Physics
0 COURSES

Programming
2 COURSES

The left sidebar contains all subjects, including the total number of
courses for each of them. You can click any subject to filter the
courses displayed.

Edit the courses/coursesdetail.htmi template and add the following code
to it:

{% extends "base.html" %}

{% block title %}

{{ object.title }}
{% endblock %}
{% block content %}
{% with subject=course.subject %}
<h1>
{{ object.title }}
</h1>
<div class="module'">
<h2>0verview</h2>
<p>

{{ subject.title }}.
{{ course.modules.count }} modules.
Instructor: {{ course.owner.get_full name }}
</p>
{{ object.overview|linebreaks }}
</div>
{% endwith %}
{% endblock %}

In this template, we display the overview and details for a single
course. Open nttp://127.0.0.1:8000/ in your browser and click one of the
courses. You should see a page with the following structure:

Sign out

Django course

Overview

Programming. 2 modules. Instructor. Antonio Melé

Meet Django. Django is a high-level Python Web framework that encourages rapid development and clean,
pragmatic design. Built by experienced developers, it takes care of much of the hassle of Web development, so you
can focus on writing your app without needing to reinvent the wheel. It's free and open source.

We have created a public area for displaying courses. Next, we need

to allow users to register as students and enroll in courses.

Adding student registration

Create a new application using the following command:

python manage.py startapp students

Edit the settings.py file of the educa project and add the new
application to the nstacien_arps setting, as follows:

INSTALLED_APPS = [
...
'students.apps.StudentsConfig',

Creating a student registration
view

Edit the views.py file of the students application and write the following
code:

from django.urls import reverse_lazy

from django.views.generic.edit import CreateView

from django.contrib.auth.forms import UserCreationForm
from django.contrib.auth import authenticate, login

class StudentRegistrationView(CreateView):
template_name = 'students/student/registration.html'
form_class = UserCreationForm
success_url = reverse_lazy('student_course_list')

def form_valid(self, form):
result = super(StudentRegistrationView,
self).form_valid(form)
cd = form.cleaned_data
user = authenticate(username=cd['username'],
password=cd['passwordl'])
login(self.request, user)
return result

This is the view that allows students to register on our site. We use
the generic createview, which provides the functionality for creating
model objects. This view requires the following attributes:

® template_name: The path of the template to render this view.

e rorm_class: The form for creating objects, which has to be
modelForm. We use Django's usercreationrorm as the registration
form to create user objects.

e success_url: The URL to redirect the user to when the form is
successfully submitted. We reverse the student_course 1ist URL,
which we are going to create in the Accessing the course
contents section for listing the courses students are enrolled
in.

The form_va1id() method is executed when valid form data has been
posted. It has to return an HTTP response. We override this method
to log the user in after successfully signing up.

Create a new file inside the students application directory and name it
ur1s.py. Add the following code to it:

from django.urls import path
from . import views

urlpatterns = [
path('register/',
views.StudentRegistrationView.as_view(),
name="'student_registration'),

Then, edit the main uris.py of the educa project and include the URLSs
for the students application by adding the following pattern to your
URL configuration:

urlpatterns = [
...
path('students/', include('students.urls')),

Create the following file structure inside the students application
directory:

templates/
students/
student/

registration.html

Edit the students/student/registration.html template and add the following
code to it:

{% extends "base.html" %}

{% block title %}
Sign up
{% endblock %}

{% block content %}
<h1>
Sign up
</h1>
<div class="module">
<p>Enter your details to create an account:</p>
<form action="" method="post">
{{ form.as_p }}
{% csrf_token %}
<p><input type="submit" value="Create my account"></p>
</form>
</div>
{% endblock %}

Run the development server and open
http://127.0.0.1:8000/students/register/ n your browser. You should see
the registration form like this:

Sign up

Enter your details to create an account:

Username:

Password:

Your password can't be too similar to your other personal information.
Your password must contain at least 8 characters.

Your password can't be a commonly used password.

Your password can't be entirely numeric.

Password confirmation:

CREATE MY ACCOUNT

Note that the student_course_list URL specified in the success_url
attribute of the studentregistrationview View doesn't exist yet. If you
submit the form, Django won't find the URL to redirect you after a
successful registration. We will create this URL in the Accessing the
course contents section.

Enrolling in courses

After users create an account, they should be able to enroll in courses.
In order to store enrollments, we need to create a many-to-many
relationship between the course and user models.

Edit the mode1s.py file of the courses application and add the following
field to the course model:

students = models.ManyToManyField(User,
related_name='courses_joined',
blank=True)

From the shell, execute the following command to create a
migration for this change:

python manage.py makemigrations

You will see an output similar to this:

Migrations for 'courses':
courses/migrations/0004_course_students.py
- Add field students to course

Then, execute the next command to apply pending migrations:

python manage.py migrate

You should see output that ends with the following line:

Applying courses.0004_course_students... OK

We can now associate students with the courses in which they are
enrolled. Let's create the functionality for students to enroll in
courses.

Create a new file inside the students application directory and name it
forms.py. Add the following code to it:

from django import forms
from courses.models import Course

class CourseEnrollForm(forms.Form):
course = forms.ModelChoiceField(queryset=Course.objects.all(),
widget=forms.HiddenInput)

We are going to use this form for students to enroll in courses. The
course field is for the course in which the user gets enrolled.
Therefore, it's a modelchoicerield. We use a niddentnput widget because we
are not going to show this field to the user. We are going to use this
form in the coursepetaiiview View to display a button to enroll.

Edit the views.py file of the students application and add the following
code:

from django.views.generic.edit import FormView
from django.contrib.auth.mixins import LoginRequiredMixin
from .forms import CourseEnrollForm

class StudentEnrollCourseView(LoginRequiredMixin, FormView):
course = None
form_class = CourseEnrollForm

def form_valid(self, form):
self.course = form.cleaned_data['course']
self.course.students.add(self.request.user)
return super(StudentEnrollCourseView,
self).form_valid(form)

def get_success_url(self):
return reverse_lazy('student_course_detail',
args=[self.course.id])

This is the studentenrolicourseview. View. It handles students enrolling in
courses. The view inherits from the LoginRequiredMixin mixin so that only
logged in users can access the view. It also inherits from Django's
Fornview View since we handle a form submission. We use the
courseenrollrorm form for the form_class attribute and also define a course
attribute for storing the given course object. When the form is valid,
we add the current user to the students enrolled in the course.

The get_success_url() method returns the URL the user will be
redirected to if the form was successfully submitted. This method is
equivalent to the success_ur1 attribute. We reverse the
student_course_detail URL, which we will create in the next Accessing
the course contents section in order to display the course contents.

Edit the uris.py file of the students application and add the following
URL pattern to it:

path('enroll-course/',
views.StudentEnrollCourseView.as_view(),
name="'student_enroll _course'),

Let's add the enroll button form to the course overview page. Edit
the views. py file of the courses application and modlfy CourseDetailview tO
make it look as follows:

from students.forms import CourseEnrollForm

class CourseDetailView(DetailView):
model = Course
template_name = 'courses/course/detail.html’

def get_context_data(self, **kwargs):
context = super(CourseDetailView,
self).get_context_data(**kwargs)
context['enroll_form'] = CourseEnrollForm(
initial={"course':self.object})
return context

We use the get_context_data() method to include the enrollment form

in the context for rendering the templates. We initialize the hidden
course field of the form with the current course object, so that it can
be submitted directly.

Edlt the courses/course/detail.html template and flnd the fOHOWil’lg line:
{{ object.overview|linebreaks }}

Replace it with the following code:

{{ object.overview|linebreaks }}
{% if request.user.is_authenticated %}
<form action="{% url "student_enroll_course" %}" method="post">
{{ enroll _form }}
{% csrf_token %}
<input type="submit" class="button" value="Enroll now">
</form>
{% else %}

Register to enroll

{% endif %}

This is the button for enrolling in courses. If the user is
authenticated, we display the enrollment button, including the
hidden form that points to the student_enro11_course URL. If the user is
not authenticated, we display a link to register in the platform.

Make sure the development server is running, open
http://127.0.0.1:8000/ IN Yyour browser and click a course. If you are
logged in, you should see an ENROLL NOW button placed below
the course overview, as follows:

Overview

Programming. 2 modules. Instructor. Antonio Melé

Meet Django. Django is a high-level Python Web framework that encourages rapid development and clean, pragmatic
design. Built by experienced developers, it takes care of much of the hassle of Web development, so you can focus on
writing your app without needing to reinvent the wheel. It's free and open source.

ENROLL NOW

If you are not logged in, you will see a REGISTER TO
ENROLL button instead.

Accessing the course contents

We need a view for displaying the courses the students are enrolled
in, and a view for accessing the actual course contents. Edit the
views.py file of the students application and add the following code to it:

from django.views.generic.list import ListView
from courses.models import Course

class StudentCourselListView(LoginRequiredMixin, ListView):
model = Course
template_name = 'students/course/list.html'

def get_queryset(self):
gs = super(StudentCourseListView, self).get_queryset()
return gs.filter(students__in=[self.request.user])

This is the view for students to list the courses they are enrolled in.
It inherits from Loginrequiredmixin to make sure that only logged in
users can access the view. It also inherits from the generic vistview
for dlsplaylng a list of course objects. We override the get_queryset()
method for retrieving only the courses the user is enrolled in; we
filter the QuerySet by the student's manyTomanyrie1d field for doing so.

Then, add the following code to the views.py file:

from django.views.generic.detail import DetailView

class StudentCourseDetailView(DetailView):
model = Course
template_name = 'students/course/detail.html’'

def get_queryset(self):
gs = super(StudentCourseDetailView, self).get_queryset()

return gs.filter(students__in=[self.request.user])

def get_context_data(self, **kwargs):

context = super(StudentCourseDetailView,
self).get_context_data(**kwargs)

get course object
course = self.get_object()
if 'module_id' in self.kwargs:

get current module

context['module'] = course.modules.get(

id=self.kwargs['module_id'])

else:

get first module

context['module'] = course.modules.all()[0]
return context

This 1S studentcoursepetailview. We override the get_queryset() method to
limit the base QuerySet to courses in which the user is enrolled. We
also override the get_context_data() method to set a course module in
the context if the moduie_ia URL parameter is given. Otherwise, we set
the first module of the course. This way, students will be able to

navigate through modules inside a course.

Edit the uris.py file of the students application and add the following

URL patterns to it:

path('courses/',
views.StudentCourseListView.as_view(),
name="'student_course_list'),

path('course/<pk>/",
views.StudentCourseDetailView.as_view(),
name="'student_course_detail'),

path('course/<pk>/<module_id>/",
views.StudentCourseDetailView.as_view(),
name="'student_course_detail module'),

Create the following file structure inside the templates/students/
directory of the students application:

course/
detail.html
list.html

Edit the students/course/1ist.htm1 template and add the following code
to it:

{% extends "base.html" %}
{% block title %}My courses{% endblock %}

{% block content %}
<h1>My courses</h1>

<div class="module">
{% for course in object_list %}
<div class="course-info">
<h3>{{ course.title }}</h3>
<p>
Access contents</p>
</div>
{% empty %}
<p>
You are not enrolled in any courses yet.
Browse courses
to enroll in a course.
</p>
{% endfor %}
</div>
{% endblock %}

This template displays the courses the user is enrolled in.
Remember that when a new student successfully registers with the
platform, they will be redirected to the student_course_1ist URL. Let's
also redirect students to this URL when they log in to the platform.

Edit the settings.py file of the educa project and add the following code
to it:

from django.urls import reverse_lazy
LOGIN_REDIRECT_URL = reverse_lazy('student_course_list')

This is the setting used by the auth module to redirect the user to
after a successful login if no next parameter is present in the
request. After successful login, students will be redirected to

the student_course_1ist URL to view the courses that they are enrolled

1m.

Edit the students/course/detail.html template and add the following code
to it:

{% extends "base.html" %}

{% block title %}
{{ object.title }}
{% endblock %}

{% block content %}
<h1>
{{ module.title }}
</h1>
<div class="contents">
<h3>Modules</h3>
<ul id="modules">
{% for m in object.modules.all %}
<li data-id="{{ m.id }}" {% if m == module
%}class="selected"
{% endif %}>
<a href="{% url "student_course_detail module"
object.id m.id %}">

Module {{ m.order|add:1 }}

{{ m.title }}

</1i>
{% empty %}
No modules yet.</1li>
{% endfor %}

</div>
<div class="module">
{% for content in module.contents.all %}
{% with item=content.item %}
<h2>{{ item.title }}</h2>
{{ item.render }}
{% endwith %}
{% endfor %}
</div>
{% endblock %}

This is the template for enrolled students to access the contents of a
course. First, we build an HTML list including all course modules
and highlighting the current module. Then, we iterate over the
current module contents and access each content item to display it
using ¢{ item.render 33. We are going to add the render() method to the
content models next. This method will take care of rendering the
content properly.

Rendering different types of
content

We need to provide a way to render each type of content. Edit the
models.py file of the courses application and add the following render ()
method to the 1temsase model:

from django.template.loader import render_to_string
from django.utils.safestring import mark_safe

class ItemBase(models.Model):
...

def render(self):
return render_to_string('courses/content/{}.html'.format(
self. meta.model name), {'item': self})

This method uses the render_to_string() function for rendering a
template and returning the rendered content as a string. Each kind
of content is rendered using a template named after the content
model. We use seif. meta.model_name t0 generate the appropriate
template name for each content model dynamically. The render ()
method provides a common interface for rendering diverse content.

Create the following file structure inside the templates/courses/
directory of the courses application:

content/
text.html
file.html
image.html
video.html

Edit the courses/content/text.html template and write this code:

|{{ item.content|linebreaks|safe }}

Edit the courses/content/file.html template and add the following:

<p>Download file</p>

Edit the courses/content/image.html template and write:

<p></p>

For files uploaded with 1magerie1d and riierieid to work, we need to set
up our project to serve media files with the development server.
Edit the settings.py file of your project and add the following code to
it:

MEDIA URL = '/media/'
MEDIA ROOT = os.path.join(BASE_DIR, 'media/'")

Remember that veoza ure is the base URL to serve uploaded media
files and weora _root is the local path where the files are located.

Edit the main ur1s.py file of your project and add the following
imports:

from django.conf import settings
from django.conf.urls.static import static

Then, write the following lines at the end of the file:

if settings.DEBUG:
urlpatterns += static(settings.MEDIA_URL,
document_root=settings.MEDIA_ROOT)

Your project is now ready to upload and serve media files. The
Django development server will be in charge of serving the media

files during development (that is, when the pesus setting is set

to true). Remember that the development server is not suitable for
production use. You will learn how to set up a production
environment in chapter 13, Going Live.

We also have to create a template for rendering video objects. We will
USE django-embed-video for embedding video content. django-embed-video 1s a
third-party Django application that allows you to embed videos in
your templates, from sources such as YouTube or Vimeo, by simply
providing the video's public URL.

Install the package with the following command:
pip install django-embed-video==1.1.2

Edit the settings.py file of your project and add the app to the
INSTALLED_APPs, Setting as follows:

INSTALLED_APPS = [
o,
'embed_video',

You can find django-embed-video application's documentation at nttps://dj
ango-embed-video.readthedocs.io/en/latest/.

Edlt the courses/content/video.html template and write the fOHOWil’lg
code:

{% load embed_video_tags %}
{% video item.url "small" %}

Now run the development server and access
http://127.0.0.1:8000/course/mine/ in your browser.

Access the site with a user that belongs to the nstructors group, and

https://django-embed-video.readthedocs.io/en/latest/

add multiple contents to a course. To include video content, you can
jU.St COpy any YouTube URL, such as https://www.youtube.com/watch?
v=bgvaopimzzu, and include it in the ur1 field of the form.

After adding contents to the course open http://127.0.0.1:8000/, click
the course and click on the ENROLL NOW button. You should be
enrolled in the course and redirected to the student_course_detair URL.
The following screenshot shows a sample course content:

Introduction to Django

Modules

MODULE T
Introduction to Django

MODULE 2
Configuring Django

MODULE 3
Your first Django project

MODULE 4
Django URLs

Why Django?

Meet Django. Django is a high-level Python Web framework that encourages rapid
development and clean, pragmatic design. Built by experienced developers, it takes
care of much of the hassle of Web development, so you can focus on writing your
app without needing to reinvent the wheel. It's free and open source.

Django video

DjangoCon 2012 - Malcolm Tredinnick "The... @ 4

In the background...

* Al aliases ina QuerySet can be changed al
once

TLT2,T3,.. -> U1, U2, U3
for nested queries
* QuerySets can be merged
+ Same table can appear with different aliase

Great! You have created a common interface for rendering different
types of course contents.

Using the cache framework

HTTP requests to your web application usually entail database
access, data processing, and template rendering. This is much more
expensive in terms of processing than serving a static website.

The overhead in some requests can be significant when your site
starts getting more and more traffic. This is where caching becomes
precious. By caching queries, calculation results, or rendered
content in an HTTP request, you will avoid cost-expensive
operations in the following requests. This translates into shorter
response times and less processing on the server side.

Django includes a robust cache system that allows you to cache data
with different levels of granularity. You can cache a single query, the
output of a specific view, parts of rendered template content, or
your entire site. Items are stored in the cache system for a default
time. You can specify the default timeout for cached data.

This is how you will usually use the cache framework when your
application gets an HTTP request:

1. Try to find the requested data in the cache
2. If found, return the cached data
3. If not found, perform the following steps:

1. Perform the query or processing required to obtain
the data

2. Save the generated data in the cache

3. Return the data

You can read detailed information about Django's cache system at nt

tps://docs.djangoproject.com/en/2.0/topics/cache/.

https://docs.djangoproject.com/en/2.0/topics/cache/

Available cache backends

Django comes with several cache backends. These are the following:

® packends.memcached.MemcachedCache OT backends.memcached.PyLibMCCache: A
Memcached backend. Memcached is a fast and efficient
memory-based cache server. The backend to use depends on
the Memcached Python bindings you choose.

® backends.db.Databasecache: USe the database as cache system.

® backends.filebased.FileBasedcache: Use the file storage system.
Serializes and stores each cache value as a separate file.

® packends.locmen. LocMencache: Local memory cache backend. This
the default cache backend.

® backends.dummy.bummycache: A dummy cache backend intended
only for development. It implements the cache interface
without actually caching anything. This cache is per-process
and thread-safe.

For optimal performance, use a memory-based cache backend such as the
Memcached backend.

Installing Memcached

We are going to use the Memcached backend. Memcached runs in
memory and it is allotted a specified amount of RAM. When the
allotted RAM is full, Memcached starts removing the oldest data to
store new data.

Download Memcached from https://memcached.org/downloads. If you are
using Linux, you can install Memcached using the following
command:

./configure && make && make test && sudo make install

If you are using macOS X, you can install Memcached with the
Homebrew package

manager using the command brew install memcached. YOu can download
Homebrew from nttps://brew.sh/.

After installing Memcached, open a shell and start it using the
following command:

memcached -1 127.0.0.1:11211

Memcached will run on port 11211 by default. However, you can
specify a custom host and port by using the -1 option. You can find
more information about Memcached at https://memcached.org.

After installing Memcached, you have to install its Python bindings.
You can do it with the following command:

pip install python-memcached==1.59

https://memcached.org/downloads
https://brew.sh/
https://memcached.org

Cache settings

Django provides the following cache settings:

e cactes: A dictionary containing all available caches for the
project.

o cacHe_mropLeware_ALIAs: The cache alias to use for storage.

® CACHE_MIDDLEWARE_KEY_PREFIX: The prefix to use for cache keys.
Set a prefix to avoid key collisions if you share the same
cache between several sites.

® CACHE_MIDDLEWARE_SECONDS. The default number Of SeCOIldS to cache
pages.

The caching system for the project can be configured using the cactes
setting. This setting is a dictionary that allows you to specify the
configuration for multiple caches. Each cache included in the cacres
dictionary can specify the following data:

e gackenn: The cache backend to use.

e kev_runctron: A string containing a dotted path to a callable
that takes a prefix, version, and key as arguments and
returns a final cache key.

o «ev_rrerix: A string prefix for all cache keys, to avoid
collisions.

¢ ocatron: The location of the cache. Depending on the cache

backend, this might be a directory, a host and port, or a
name for the in-memory backend.

oprtrons: Any additional parameters to be passed to the cache
backend.

rmveout: The default timeout, in seconds, for storing the cache
keys. 300 seconds by default, which is five minutes. If set to
none, cache keys will not expire.

verston: The default version number for the cache keys. Useful
for cache versioning.

Adding Memcached to your
project

Let's configure the cache for our project. Edit the settings.py file of
the educa project and add the following code to it:

CACHES = {
'default': {
'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache',

'LOCATION': '127.0.0.1:11211"',

We are using the mencachedcache backend. We specify its location using
the address:port notation. If you have multiple Memcached instances,
you can use a list for Locatron.

Monitoring Memcached

In order to monitor Memcached, we will use a third-party package
called django-mencache-status. This app displays statistics for your
Memcached instances in the administration site. Install it with the
following command:

pip install django-memcache-status==1.3

Edit the settings.py file and add 'memcache_status' to the nstaLLep_apps
setting:

INSTALLED_APPS = [
o,
'memcache_status',

Make sure Memcached is running, start the development server in
another shell window, and open nttp://127.0.0.1:8000/admin/ in your
browser. Log in to the administration site using a superuser. You
should see the following block:

MEMCACHED: DEFAULT: 127.0.0.1:11211 (1) - 0% LOAD

This graph shows the cache usage. The green color represents free
cache while red indicates used space. If you click the title of the box,
it shows detailed statistics of your Memcached instance.

We have set up Memcached for our project and are able to monitor

it. Let's start caching data!

Cache levels

Django provides the following levels of caching listed here by
ascending order of granularity:

e Low-level cache API: Provides the highest granularity.
Allows you to cache specific queries or calculations.

¢ Per-view cache: Provides caching for individual views.

e Template cache: Allows you to cache template fragments.

e Per-site cache: The highest-level cache. It caches your
entire site.

Think about your cache strategy before implementing caching. Focus first on
expensive queries or calculations, which are not calculated on a per-user
basis.

Using the low-level cache API

The low-level cache API allows you to store objects in the cache with
any granularity. It is located at django.core.cache. YOu can import it like
this:

from django.core.cache import cache

This uses the default cache. It's equivalent to caches['defauit'].
Accessing a specific cache is also possible via its alias:

from django.core.cache import caches
my_cache = caches['alias']

Let's take a look at how the cache API works. Open the shell with
the command python manage.py shell and execute the following code:

>>> from django.core.cache import cache
>>> cache.set('musician', 'Django Reinhardt',6 20)

We access the default cache backend and use set(key, value, timeout) to
store a key named 'nusician' with a value that is the string 'pjango
reinhardt' for 20 seconds. If we don't specify a timeout, Django uses
the default timeout specified for the cache backend in the cactes
setting. Now, execute the following code:

>>> cache.get('musician')
'Django Reinhardt'

We retrieve the key from the cache. Wait for 20 seconds and
execute the same code:

>>> cache.get('musician')

No value is returned this time. The 'musician' cache key expired and
the get() method returns none because the key is not in the cache
anymore.

Always avoid storing a wone value in a cache key because you won't be able to
distinguish between the actual value and a cache miss.

Let's cache a QuerySet with the following code:

>>> from courses.models import Subject
>>> subjects = Subject.objects.all()
>>> cache.set('all_subjects', subjects)

We perform a QuerySet on the subject model and store the returned
objects in the 'a11_subjects' key. Let's retrieve the cached data:

>>> cache.get('all subjects')
<QuerySet [<Subject: Mathematics>, <Subject: Music>, <Subject: Physics>,
<Subject: Programming>]>

We are going to cache some queries in our views. Edit the vieus.py
file of the courses application and add the following import:

from django.core.cache import cache

In the get() method of the courseListview, replace the following line:

subjects = Subject.objects.annotate(
total_courses=Count('courses'))

Replace it with the following ones:

subjects = cache.get('all subjects')
if not subjects:
subjects = Subject.objects.annotate(

total_courses=Count('courses'))
cache.set('all _subjects', subjects)

In this code, we try to get the a11_students key from the cache using
cache.get (). This returns none if the given key is not found. If no key is
found (not cached yet or cached but timed out), we perform the
query to retrieve all subject objects and their number of courses, and
we cache the result using cache.set ().

Run the development server and open nttp://127.0.0.1:8000/ in your
browser. When the view is executed, the cache key is not found and
the QuerySet is executed. Open http://127.0.0.1:8000/admin/ IN your
browser and expand the Memcached statistics. You should see
usage data for the cache similar to the following screen:

MEMCACHED: DEFAULT: 127.0.0.1:11211 (1) - 0% LOAD

MissRatio 38% (D
Avg GET by item 1

Avg GET by seconds/minutes 0/0

Detailed Statistics:
Pid 12606
Uptime Oy, 0d, Oh, 43m, 12s
Time 03/30/1817:13:02
Version 1.4.20

Libevent 2.0.21-stable

Take a look at Curr Items, which should be 1. This shows that there
is one item currently stored in the cache. Get Hits shows how many
get commands were successful and Get Misses shows the get
requests for keys that are missing. The Miss Ratio is calculated
using both of them.

Now, navigate back to nttp://127.0.0.1:8000/ USing your browser and
reload the page several times. If you take a look at the cache
statistics now, you will see several more reads (Get Hits and Cmd
Get will increase).

Caching based on dynamic
data

Many times you will want to cache something that is based on
dynamic data. In these cases, you have to build dynamic keys that
contain all information required to uniquely identify the cached
data. Edit the views.py file of the courses application and modify the
courseListview View to make it look like this:

class CourselListView(TemplateResponseMixin, View):
model = Course
template_name = 'courses/course/list.html’

def get(self, request, subject=None):
subjects = cache.get('all _subjects')
if not subjects:
subjects = Subject.objects.annotate(
total_courses=Count('courses'))
cache.set('all subjects', subjects)
all courses = Course.objects.annotate(
total _modules=Count('modules'))
if subject:
subject = get_object_or_404(Subject, slug=subject)
key = 'subject_{} courses'.format(subject.id)
courses = cache.get(key)
if not courses:
courses = all courses.filter(subject=subject)
cache.set(key, courses)
else:
courses = cache.get('all _courses')
if not courses:
courses = all_courses
cache.set('all courses', courses)
return self.render_to_response({'subjects': subjects,
'subject': subject,
'courses': courses})

In this case, we also cache both all courses and courses filtered by

subject. We use the a11_courses cache key for storing all courses if no
subject is given. If there is a subject, we build the key dynamically
Wlth 'subject_{3}_courses'.format(subject.id).

It is important to note that you cannot use a cached QuerySet to
build other QuerySets, since what you cached are actually the
results of the QuerySet. So you cannot do the following:

courses = cache.get('all courses')
courses.filter(subject=subject)

Instead, you have to create the base QuerySet
Course.objects.annotate(total_modules=Count('modules')), which is not going to
be executed until it is forced, and use it to further restrict the
QuerySet with all courses.filter(subject=subject) in case the data was not
found in the cache.

Caching template fragments

Caching template fragments is a higher-level approach. You need to
load the cache template tags in your template using {% 1oad cache %}.
Then, you will be able to use the % cache %} template tag to cache
specific template fragments. You will usually use the template tag as
follows:

{% cache 300 fragment_name %}

{% endcache %}

The (% cache %} tag has two required arguments: the timeout, in
seconds, and a name for the fragment. If you need to cache content
depending on dynamic data, you can do so by passing additional
arguments to the % cache %3 template tag to uniquely identify the
fragment.

Edit the /students/course/detail.htm1 Of the students application. Add the
following code at the top of it, just after the (% extends %} tag:

{% load cache %}

Then, replace the following lines:

{% for content in module.contents.all %}
{% with item=content.item %}
<h2>{{ item.title }}</h2>
{{ item.render }}
{% endwith %}
{% endfor %}

Replace them with the following ones:

{% cache 600 module_contents module %}
{% for content in module.contents.all %}
{% with item=content.item %}
<h2>{{ item.title }}</h2>
{{ item.render }}
{% endwith %}
{% endfor %}
{% endcache %}

We cache this template fragment using the name moduie_contents and
passing the current moduie object to it. Thus, we uniquely identify the
fragment. This is important to avoid caching a module's contents
and serving the wrong content when a different module is
requested.

If the use_118n setting is set to rue, the per-site middleware cache will respect
the active language. If you use the % cache %3 template tag you have to use one
of the translation-specific variables available in templates to achieve the
same result, such as {% cache 600 name request.LANGUAGE_CODE %}.

Caching views

You can cache the output of individual views using the cache page
decorator located at django.views.decorators.cache. The decorator
requires a timeout argument (in seconds).

Let's use it in our views. Edit the uris.py file of the students application
and add the following import:

from django.views.decorators.cache import cache_page

Then, apply the cache_page decorator to the student_course_detail and
student_course_detail_module URL patterns, as follows:

path('course/<pk>/",
cache_page(60 * 15)(views.StudentCourseDetailView.as_view()),
name="'student_course_detail'),

path('course/<pk>/<module_id>/",
cache_page(60 * 15)(views.StudentCourseDetailView.as_view()),
name="'student_course_detail module'),

Now, the result for the studentcoursepetailview is cached for 15 minutes.

The per-view cache uses the URL to build the cache key. Multiple URLs
pointing to the same view will be cached separately.

Using the per-site cache

This is the highest-level cache. It allows you to cache your entire
site.

To allow the per-site cache, edit the settings.py file of your project
and add the UpdateCacheMiddleware and retchrromcachemiddleware classes to the
wippLewaRE Setting, as follows:

MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware"',
'django.contrib.sessions.middleware.SessionMiddleware"',
'django.middleware.cache.UpdateCacheMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.cache.FetchFromCacheMiddleware',

...

Remember that middlewares are executed in the given order during
the request phase, and in reverse order during the response phase.
UpdateCacheMiddleware 1S placed before commonmiddieware because it runs
during response time, when middlewares are executed in reverse
order. retchrromcachemiddleware 1S placed after commonMiddleware
intentionally because it needs to access request data set by the
latter.

Then, add the following settings to the settings.py file:

CACHE_MIDDLEWARE_ALIAS = 'default'
CACHE_MIDDLEWARE_SECONDS = 60 * 15 # 15 minutes
CACHE_MIDDLEWARE_KEY_PREFIX = 'educa'

In these settings, we use the default cache for our cache middleware
and we set the global cache timeout to 15 minutes. We also specify a

prefix for all cache keys to avoid collisions in case we use the same
Memcached backend for multiple projects. Our site will now cache
and return cached content for all ceT requests.

We have done this to test the per-site cache functionality. However,
the per-site cache is not suitable for us, since the course
management views need to show updated data to instantly reflect
any changes. The best approach to follow in our project is to cache
the templates or views that are used to display course contents to
students.

We have seen an overview of the methods provided by Django to
cache data. You should define your cache strategy wisely and
prioritize the most expensive QuerySets or calculations.

Summary

In this chapter, we created public views for the courses and you
have built a system for students to register and enroll in courses.
We installed Memcached and implemented different cache levels.

In the next chapter, we will build a RESTful API for your project.

Building an API

In the previous chapter, you built a system of student registration
and enrollment in courses. You created views to display course
contents and learned how to use Django's cache framework. In this
chapter, you will learn how to do the following;:

e Build a RESTful API

e Handle authentication and permissions for API views

e Create API view sets and routers

Building a RESTful API

You might want to create an interface for other services to interact
with your web application. By building an API, you can allow third
parties to consume information and operate with your application
programmatically.

There are several ways you can structure your API but following
REST principles is encouraged. The REST architecture comes from
Representational State Transfer. RESTful APIs are resource-
based. Your models represent resources and HTTP methods such as
GET, POST, PUT, OT DELETE are used to retrieve, create, update, or delete
objects. HTTP response codes are also used in this context.
Different HTTP response codes are returned to indicate the result of
the HTTP request, for example, 2xx response codes for success, 4xx
for errors, and so on.

The most common formats to exchange data in RESTful APIs are
JSON and XML. We will build a REST API with JSON serialization
for our project. Our API will provide the following functionality:

e Retrieve subjects
e Retrieve available courses
e Retrieve course contents

e Enroll in a course

We can build an API from scratch with Django by creating custom
views. However, there are several third-party modules that simplify
creating an API for your project, the most popular among them

being Django REST framework.

Installing Django REST
framework

Django REST framework allows you to easily build REST APIs for
your project. You can find all information about REST framework at

https://www.django-rest-framework.org/.

Open the shell and install the framework with the following
command:

pip install djangorestframework==3.8.2

Edit the settings.py file of the educa project and add rest_framework tO the
nsTALLED_Apps Setting to activate the application, as follows:

INSTALLED_APPS = [
o,
'rest_framework',

Then, add the following code to the settings.py file:

REST_FRAMEWORK = {
'DEFAULT_PERMISSION_CLASSES':
'rest_framework.permissions.DjangoModelPermissionsOrAnonReadOnly'

]
b

You can provide a specific configuration for your API using the
resT_rramework Setting. REST framework offers a wide range of settings
to configure default behaviors. The perauLT_permrsston_cLasses setting
specifies the default permissions to read, create, update, or delete

https://www.django-rest-framework.org/

objects. We set DjangoModelPermissionsOrAnonReadOnly dS the only default
permission class. This class relies on Django's permissions system
to allow users to create, update, or delete objects, while providing
read-only access for anonymous users. You will learn more about
permissions later in the Adding permissions to views section.

For a complete list of available settings for REST framework, you
can visit https://www.django-rest-framework.org/api-guide/settings/.

https://www.django-rest-framework.org/api-guide/settings/

Defining serializers

After setting up REST framework, we need to specify how our data
will be serialized. Output data has to be serialized in a specific
format, and input data will be de-serialized for processing. The
framework provides the following classes to build serializers for
single objects:

e serializer: Provides serialization for normal Python class

instances

® wodelserializer: Provides serialization for model instances

® HyperlinkedModelSerializer. The same as ModelSerializer, but it
represents object relationships with links rather than

primary keys

Let's build our first serializer. Create the following file structure
inside the courses application directory:

api/
__init__ .py
serializers.py

We will build all the API functionality inside the api directory to
keep everything well organized. Edit the seriaiizers.py file and add the
following code:

from rest_framework import serializers
from ..models import Subject

class SubjectSerializer(serializers.ModelSerializer):

class Meta:
model = Subject
fields = ['id', 'title', 'slug']

This is the serializer for the subject model. Serializers are defined in a
similar fashion to Django's rorm and mode1rorm classes. The weta class
allows you to specify the model to serialize and the fields to be
included for serialization. All model fields will be included if you
don't set a rie1ds attribute.

Let's try our serializer. Open the command line and start the Django
shell with the following command:

python manage.py shell

Run the following code:

>>>
>>>
>>>
>>>
>>>

from courses.models import Subject

from courses.api.serializers import SubjectSerializer
subject = Subject.objects.latest('id')

serializer = SubjectSerializer(subject)
serializer.data

{'id': 4, 'title': 'Programming', 'slug': 'programming'}

In this example, we get a subject Object, create an instance of
subjectserializer, and access the serialized data. You can see that the
model data is translated into Python native data types.

Understanding parsers and
renderers

The serialized data has to be rendered in a specific format before
you return it in an HTTP response. Likewise, when you get an
HTTP request, you have to parse the incoming data and de-serialize
it before you can operate with it. REST framework includes
renderers and parsers to handle that.

Let's see how to parse incoming data. Execute the following code in
the Python shell:

>>> from io import BytesIO

>>> from rest_framework.parsers import JSONParser

>>> data = b'{"id":4,"title":"Programming", "slug":"programming"}"'
>>> JSONParser().parse(BytesIO(data))

{'id': 4, 'title': 'Programming', 'slug': 'programming'}

Given a JSON string input, you can use the ssonrarser class provided
by REST framework to convert it to a Python object.

REST framework also includes renderer classes that allow you to
format API responses. The framework determines which renderer
to use through content negotiation. It inspects the request's accept
header to determine the expected content type for the response.
Optionally, the renderer is determined by the format suffix of the
URL. For example, accessing will trigger the ssonrenderer in order to
return a JSON response.

Go back to the shell and execute the following code to render the
serializer Object from the previous serializer example:

>>> from rest_framework.renderers import JSONRenderer
>>> JSONRenderer().render(serializer.data)

You will see the following output:
b'{"id":4,"title":"Programming", "slug":"programming"}'

We use the ssonrenderer to render the serialized data into JSON. By
default, REST framework uses two different renderers: isonrenderer
and srowsablearirenderer. The latter provides a web interface to easily
browse your API. You can change the default renderer classes with
the perauLT_renperer_cLasses Ooption of the rest_rramework setting.

You can find more information about renderers and parsers at nttps:
//www.django-rest-framework.org/api-guide/renderers/ and https://www.django-rest-f
ramework.org/api-guide/parsers/, respectively.

https://www.django-rest-framework.org/api-guide/renderers/
https://www.django-rest-framework.org/api-guide/parsers/

Building list and detail views

REST framework comes with a set of generic views and mixins that
you can use to build your API views. These provide functionality to
retrieve, create, update, or delete model objects. You can see all
generic mixins and views provided by REST framework at nttps://ww.

django-rest-framework.org/api-guide/generic-views/.

Let's create list and detail views to retrieve subject objects. Create a
new file inside the courses/apis directory and name it views.py. Add the
following code to it:

from rest_framework import generics
from ..models import Subject
from .serializers import SubjectSerializer

class SubjectListView(generics.ListAPIView):
gueryset = Subject.objects.all()
serializer_class = SubjectSerializer

class SubjectDetailView(generics.RetrieveAPIView):
gueryset = Subject.objects.all()
serializer_class = SubjectSerializer

In this code, we are using the generic Listaptview and RretrieveApIview
views of REST framework. We include a px URL parameter for the
detail view to retrieve the object for the given primary key. Both
views have the following attributes:

® queryset: The base queryset t0 use to retrieve objects

® serializer_class. The class to Serialize objects

Let's add URL patterns for our views. Create a new file inside the

https://www.django-rest-framework.org/api-guide/generic-views/

courses/api/ directory, name it uris.py, and make it look as follows:

from django.urls import path
from . import views

app_name = 'courses'

urlpatterns = [
path('subjects/',
views.SubjectListView.as_view(),
name="'subject_list'),

path('subjects/<pk>/",
views.SubjectDetailView.as_view(),
name='subject_detail'),

Edit the main ur1s.py file of the educa project and include the API
patterns as follows:

urlpatterns = [
...
path('api/', include('courses.api.urls', namespace='api')),

We use the api namespace for our API URLs. Ensure that your
server is running with the command python manage.py runserver. Open

the shell and retrieve the URL http://127.0.0.1:8000/api/subjects/ with cur1

as follows:
curl http://127.0.0.1:8000/api/subjects/

You will get a response similar to the following one:

{"id":1,"title":"Mathematics", "slug":"mathematics"},
{"id":2,"title" :"Music", "slug":"music"},
{"id":3,"title" :"Physics", "slug":"physics"},
{"id":4,"title":"Programming", "slug":"programming"}

The HTTP response contains a list of subject objects in JSON format.
If your operating system doesn't come with cur1 installed, you can
download it from https://curl.haxx.se/dlwiz/. Instead of curl, you can
also use any other tool to send custom HTTP requests, such as a
browser extension, such as Postman, which you can get at https://ww.

getpostman.com/.

Open http://127.0.0.1:8000/api/subjects/ 11 your browser. You will see
REST framework's browsable API as follows:

https://curl.haxx.se/dlwiz/
https://www.getpostman.com/

Supject List e -

GET /api/subjects/

HTTP 200 0K

Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

Fid": 1,
"title": "Mathematics",
"slug": "mathematics"

”id”. 2
"title": "Music",
”Slug“: "mUSiC“
”id”i 3:

"title": "Physics",
"slug": "physics"

Ilidll: 4

"title": "Programming",
"slug": "programming"

This HTML interface is provided by the srowsabieapirenderer renderer.
It displays the result headers and content and allows you to perform

requests. You can also access the API detail view for a subject Object
by including its ID in the URL. Open http://127.0.0.1:8000/api/subjects/1/
in your browser. You will see a single subject object rendered in
JSON format.

Creating nested serializers

We are going to create a serializer for the course model. Edit the
api/serializers.py file of the courses application and add the following
code to it:

from ..models import Course

class CourseSerializer(serializers.ModelSerializer):
class Meta:
model = Course
fields = ['id', 'subject', 'title', 'slug', 'overview',
'created', 'owner', 'modules']

Let's take a look at how a course object is serialized. Open the shell,
rumn python manage.py shell, and run the following code:

>>> from rest_framework.renderers import JSONRenderer
>>> from courses.models import Course

>>> from courses.api.serializers import CourseSerializer
>>> course = Course.objects.latest('id')

>>> serializer = CourseSerializer(course)

>>> JSONRenderer().render(serializer.data)

You will get a JSON object with the fields we included in
courseserializer. YOU can see that the related objects of the modules
manager are serialized as a list of primary keys, as follows:

"modules": [6, 7, 9, 10]

We want to include more information about each module, so we
need to serialize moduie objects and nest them. Modify the previous
code of the api/serializers.py file of the courses application to make it
look as follows:

from rest_framework import serializers
from ..models import Module

class ModuleSerializer(serializers.ModelSerializer):
class Meta:
model = Module
fields = ['order', 'title', 'description']

class CourseSerializer(serializers.ModelSerializer):
modules = ModuleSerializer(many=True, read_only=True)

class Meta:
model = Course
fields = ['id', 'subject', 'title', 'slug', 'overview',
'created', 'owner', 'modules']

We define moduieserializer to provide serialization for the moduie model.
Then we add a modules attribute to courseserializer to nest the
moduleserializer Serializer. We set many=True tO indicate that we are
serializing multiple objects. The read_on1y parameter indicates that
this field is read-only and should not be included in any input to
create or update objects.

Open the shell and create an instance of courseserializer again. Render
the serializer's data attribute with ssonrenderer. This time, the listed
modules are being serialized with the nested moduieserializer
serializer, as follows:

"modules": [
{
"order": O,
"title": "Introduction to overview",
"description": "A brief overview about the Web Framework."
3
{
"order": 1,
"title": "Configuring Django",
"description": "How to install Django."
3
]

You can read more about serializers at https://www.django-rest-framework.o

https://www.django-rest-framework.org/api-guide/serializers/

rg/api-gquide/serializers/.

http://www.django-rest-framework.org/api-guide/serializers/

Building custom views

REST framework provides an ar1view class, which builds API
functionality on top of Django's view class. The ap1view class differs
from view in using REST framework's custom request and response
objects and handling ariexception €xceptions to return the appropriate
HTTP responses. It also has a built-in authentication and
authorization system to manage access to views.

We are going to create a view for users to enroll in courses. Edit the
api/views.py file of the courses application and add the following code to
it:

from django.shortcuts import get_object_or_404
from rest_framework.views import APIView

from rest_framework.response import Response
from ..models import Course

class CourseEnrollView(APIView):
def post(self, request, pk, format=None):
course = get_object_or_404(Course, pk=pk)
course.students.add(request.user)
return Response({'enrolled': True})

The courseenroliview View handles user enrollment in courses. The
preceding code is as follows:

1. We create a custom view that subclasses ap1view.

2. We define a post() method for POST actions. No other HTTP
method will be allowed for this view.

3. We expect a px URL parameter containing the ID of a course.
We retrieve the course by the given pk parameter and raise a
a04 exception if it's not found.

4. We add the current user to the students many-to-many
relationship of the course Object and return a successful
response.

Edit the api/uris.py file and add the following URL pattern for the

CourseEnrollView'VieVV:

path('courses/<pk>/enroll/',
views.CourseEnrollView.as_view(),
name="'course_enroll'),

Theoretically, we could now perform a POST request to enroll the
current user in a course. However, we need to be able to identify the
user and prevent unauthenticated users from accessing this view.
Let's see how API authentication and permissions work.

Handling authentication

REST framework provides authentication classes to identify the
user performing the request. If authentication is successful, the
framework sets the authenticated user object in request.user. If no user
is authenticated, an instance of Django's anonymoususer is set instead.

REST framework provides the following authentication backends:

® gasicauthentication: This 1S HTTP basic authentication. The user
and password are sent by the client in the authorization HTTP
header encoded with Base64. You can learn more about it at

https://en.wikipedia.org/wiki/Basic_access_authentication.

® TokenAuthentication: ThlS iS token—based authentication. A Token
model is used to store user tokens. Users include the token
in the authorization HTTP header for authentication.

® sessionAuthentication: This one uses Django's session backend
for authentication. This backend is useful to perform
authenticated AJAX requests to the API from your website's
frontend.

® RemoteUserAuthentication: ThlS allows you to delegate
authentication to your web server, which sets a remote_user
environment variable.

You can build a custom authentication backend by subclassing the
BaseAuthentication class provided by REST framework and overriding
the authenticate() method.

https://en.wikipedia.org/wiki/Basic_access_authentication

You can set authentication on a per-view basis, or set it globally
with the perauLt_autHENTICATTON cLASSES Setting.

Authentication only identifies the user performing the request. It won't allow
or deny access to views. You have to use permissions to restrict access to
views.

You can find all the information about authentication at nttps://www.dj

ango-rest-framework.org/api-guide/authentication/.

Let's add Basicauthentication to our view. Edit the api/views.py file of the
courses application and add dll authentication_classes attribute to
CourseEnrollView QS fOHOWS:

from rest_framework.authentication import BasicAuthentication

class CourseEnrollView(APIView):
authentication_classes = (BasicAuthentication,)
...

Users will be identified by the credentials set in the authorization
header of the HTTP request.

https://www.django-rest-framework.org/api-guide/authentication/

Adding permissions to views

REST framework includes a permission system to restrict access to
views. Some of the built-in permissions of REST framework are:

e allowany: Unrestricted access, regardless of if a user is
authenticated or not.
e 1sauthenticated: Allows access to authenticated users only.

® Isauthenticatedorreadonly: Complete access to authenticated
users. Anonymous users are only allowed to execute read
methods such as GET, HEAD, OI' OPTIONS.

® DjangoModelPermissions. Permissions tied to django.contrib.auth. The
view requires a queryset attribute. Only authenticated users
with model permissions assigned are granted permission.

® DjangoObjectPermissions: Django permissions ona per—object
basis.

If users are denied permission, they will usually get one of the
following HTTP error codes:

e urTp 401: Unauthorized

e uTTpP 403: Permission denied

You can read more information about permissions at https://www.django

-rest-framework.org/api-guide/permissions/.

https://www.django-rest-framework.org/api-guide/permissions/

Edit the api/views.py file of the courses application and add
d permission_classes attribute to courseenroiiview as follows:

from rest_framework.authentication import BasicAuthentication
from rest_framework.permissions import IsAuthenticated

class CourseEnrollView(APIView):
authentication_classes = (BasicAuthentication,)
permission_classes = (IsAuthenticated,)
...

We include the 1sauthenticated permission. This will prevent
anonymous users from accessing the view. Now we can perform a
POST request to our new API method.

Make sure the development server is running. Open the shell and
run the following command:

curl -i -X POST http://127.0.0.1:8000/api/courses/1/enroll/
You will get the following response:

HTTP/1.1 401 Unauthorized

{"detail": "Authentication credentials were not provided."}

We get a 101 HTTP code as expected, since we are not authenticated.
Let's use basic authentication with one of our users. Run the
following command, replacing student:password With the credentials of
an existing user:

curl -i -X POST -u student:password
http://127.0.0.1:8000/api/courses/1/enroll/

You will get the following response:

HTTP/1.1 200 OK

{"enrolled": true}

You can access the administration site and check that the user is
now enrolled in the course.

Creating view sets and routers

viewsets allow you to define the interactions of your API and let REST
framework build the URLs dynamically with a router object. By using
view sets, you can avoid repeating logic for multiple views. View
sets include actions for the typical create, retrieve, update, delete
operations, which are list(), create(), retrieve(), update(), partial_update(),
and destroy().

Let's create a view set for the course model. Edit the api/views.py file
and add the following code to it:

from rest_framework import viewsets
from .serializers import CourseSerializer

class CourseViewSet(viewsets.ReadOnlyModelViewSet):
gueryset = Course.objects.all()
serializer_class = CourseSerializer

We subclass readoniymodeiviewset, which provides the read-only actions
1ist() and retrieve() to both list objects or retrieve a single object. Edit
the api/uris.py file and create a router for our view set as follows:

from django.urls import path, include
from rest_framework import routers
from . import views

router = routers.DefaultRouter ()
router.register('courses', views.CourseViewSet)

urlpatterns = [
...
path('', include(router.urls)),

We create a pefauitrouter Object and register our view set with the

courses prefix. The router takes charge of generating URLs
automatically for our view set.

Open nttp://127.0.0.1:8000/api/ i your browser. You will see that the
router lists all view sets in its base URL, as shown in the following
screenshot:

Api Root

The default basic root view for DefaultRouter

GET /api/

HTTP 200 0K

Allow: GET, HEAD, OPTIONS
Content-~Type: application/json
Vary: Accept

{
"courses": "http://127.0.0.1:8000/api/courses/"

You can access nttp://127.0.0.1:8000/api/courses/ tO retrieve the list of
courses.

You can learn more about view sets at nttps://www.django-rest-framework.or
g/api-guide/viewsets/. YOu can also find more information about routers

at https://www.django-rest-framework.org/api-guide/routers/.

https://www.django-rest-framework.org/api-guide/viewsets/
https://www.django-rest-framework.org/api-guide/routers/

Adding additional actions to
view sets

You can add extra actions to view sets. Let's change our previous
courseEnrollview View into a custom view set action. Edit the api/views.py
file and modify the courseviewset class to look as follows:

from rest_framework.decorators import detail route

class CourseViewSet(viewsets.ReadOnlyModelViewSet):
gueryset = Course.objects.all()
serializer_class = CourseSerializer

@detail_route(methods=["'post'],
authentication_classes=[BasicAuthentication],
permission_classes=[IsAuthenticated])

def enroll(self, request, *args, **kwargs):

course = self.get_object()
course.students.add(request.user)
return Response({'enrolled': True})

We add a custom enro11() method that represents an additional
action for this view set. The preceding code is as follows:

1. We use the detai1_route decorator of the framework to specify
that this is an action to be performed on a single object.

2. The decorator allows us to add custom attributes for the
action. We specify that only the post method is allowed for
this view and set the authentication and permission classes.

3. We use seif.get_object() to retrieve the course object.

4. We add the current user to the students many-to-many
relationship and return a custom success response.

Edit the api/uris.py file and remove the following URL, since we don't
need it anymore:

path('courses/<pk>/enroll/',
views.CourseEnrollView.as_view(),
name='course_enroll'),

Then edit the api/views.py file and remove the courseenro11view class.

The URL to enroll in courses is now automatically generated by the
router. The URL remains the same, since it's built dynamically
using our action name enroi1.

Creating custom permissions

We want students to be able to access the contents of the courses
they are enrolled in. Only students enrolled in a course should be
able to access its contents. The best way to do this is with a custom
permission class. Django provides a sasepermission class that allows
you to define the following methods:

® has_permission(): View-level permission check

® has object_permission(): Instance-level permission check

These methods should return rrue to grant access or raise otherwise.
Create a new file inside the courses/api/ directory and name it
permissions.py. Add the following code to it:

from rest_framework.permissions import BasePermission

class IsEnrolled(BasePermission):
def has_object_permission(self, request, view, obj):
return obj.students.filter(id=request.user.id).exists()

We subclass the saserermission class and override the
has_object_permission(). We check that the user performing the request
is present in the students relationship of the course object. We are
going to use the 1senro11ed permission next.

Serializing course contents

We need to serialize course contents. The content model includes a
generic foreign key that allows us to associate objects of different
content models. Yet, we have added a common render () method for
all content models in the previous chapter. We can use this method
to provide rendered contents to our API.

Edit the api/serializers.py file of the courses application and add the
following code to it:

from ..models import Content

class ItemRelatedField(serializers.RelatedField):
def to_representation(self, value):
return value.render()

class ContentSerializer(serializers.ModelSerializer):
item = ItemRelatedField(read_only=True)

class Meta:
model = Content
fields = ['order', 'item']

In this code, we define a custom field by subclassing the reiatedrield
serializer field provided by REST framework and overriding the
to_representation() method. We define the contentserializer serializer for
the content model and use the custom field for the item generic foreign
key.

We need an alternate serializer for the moduie model that includes its

contents, and an extended course Serializer as well. Edit the
api/serializers.py file and add the following code to it:

class ModuleWithContentsSerializer(serializers.ModelSerializer):

contents = ContentSerializer(many=True)

class Meta:
model = Module
fields = ['order', 'title', ‘'description', 'contents']

class CourseWithContentsSerializer(serializers.ModelSerializer):
modules = ModulewWithContentsSerializer (many=True)

class Meta:
model = Course
fields = ['id', 'subject', 'title', 'slug',
'overview', 'created', 'owner', 'modules']

Let's create a view that mimics the behavior of the retrieve() action,

but it includes the course contents. Edit the api/views.py file and add
the following method to the coursevienset class:

from .permissions import IsEnrolled
from .serializers import CourseWithContentsSerializer

class CourseViewSet(viewsets.ReadOnlyModelViewSet):

...

@detail_route(methods=['get'],
serializer_class=CourseWithContentsSerializer,
authentication_classes=[BasicAuthentication],
permission_classes=[IsAuthenticated,

IsEnrolled])

def contents(self, request, *args, **kwargs):

return self.retrieve(request, *args, **kwargs)

The description of this method is as follows:

e We use the detai1_route decorator to specify that this action is
performed on a single object.

e We specify that only the cer method is allowed for this
action.

e We use the new coursewithcontentsserializer Serializer class that
includes rendered course contents.

e We use bOth the IsAuthenticated and our custom 1senrolled
permissions. By doing so, we make sure that only users
enrolled in the course are able to access its contents.

e We use the existing retrieve() action to return the course object.

Open http://127.0.0.1:8000/api/courses/1/contents/ in your browser. If you
access the view with the right credentials, you will see that each
module of the course includes the rendered HTML for course
contents, as follows:

{
"order": 0O,
"title": "Introduction to Django",
"description": "Brief introduction to the Django Web Framework.",
"contents": [
{
"order": 0,
"item": "<p>Meet Django. Django is a high-level
Python Web framework
L. </p>"
+
{
"order": 1,
"item": "\n<iframe width=\"480\" height=\"360\"
src=\"http://www.youtube.com/embed/bgv39D1mz2U?
wmode=opaque\"
frameborder=\"0\" allowfullscreen></iframe>\n"
}
]
}

You have built a simple API that allows other services to access the
course application programmatically. REST framework also allows
you to handle creating and editing objects with the vode1viewset View
set. We have covered the main aspects of Django REST framework,
but you will find further information about its features in its
extensive documentation at https://www.django-rest-framework.org/.

https://www.django-rest-framework.org/

Summary

In this chapter, you created a RESTful API for other services to
interact with your web application.

The next chapter will teach you how to build a production
environment using uWSGI and NGINX. You will also learn how to
implement a custom middleware and create custom management
commands.

Going Live

In the previous chapter, you created a RESTful API for your project.
In this chapter, we will learn how to create a production
environment for our project by covering the following topics:

¢ Configuring a production environment
e Creating a custom middleware

e Implementing custom management commands

Creating a production
environment

It's time to deploy your Django project in a production
environment. We are going to follow these steps to get our project

live:

Configure project settings for a production environment

Use a PostgreSQL database
Set up a web server with uWSGI and NGINX

Serve static assets

CLEE SR S

Secure our site with SSL

Managing settings for multiple
environments

In real-world projects you will have to deal with multiple
environments. You will have at least a local and a production
environment, but you could have other environments as well, such
as testing or pre-production environments. Some project settings
will be common to all environments, but others will have to be
overridden per environment. Let's set up project settings for
multiple environments while keeping everything neatly organized.

Create a settings/ directory next to the settings.py file of the educa
project. Rename the settings.py file to base.py and move it into the
new settings/ directory. Create the following additional files inside
the setting/ folder so that the new directory looks as follows:

settings/
__init__ .py
base.py
local.py

pro.py

These files are as follows:

* nase.py: The base settings file that contains common settings
(pI'GViOLlSly settings. py)

® 1ocal.py: Custom settings for your local environment

® pro.py: Custom settings for the production environment

Edit the settings/base.py file and replace the following line:

BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__ file_)))
With the following one:

BASE_DIR =

os.path.dirname(os.path.dirname(os.path.abspath(os.path.join(__file ,
os.pardir))))

We have moved our settings files to a directory one level lower, so
we need sase_p1r to point to the parent directory to be correct. We
achieve this by pointing to the parent directory with os.pardir.

Edit the settings/10cal.py file and add the following lines of code:

from .base import *
DEBUG = True

DATABASES = {
'default': {
'ENGINE': 'django.db.backends.sqglite3',
'"NAME': os.path.join(BASE_DIR, 'db.sqglite3'),

This is the settings file for our local environment. We import all
settings defined in the vase.py file and we only define specific settings
for this environment. We have copied the pesue and patasases settings
from the base.py file, since these will be set per environment. You can
remove the patasases and oesus settings from the vase.py settings file.

Edit the settings/pro.py file and make it look as follows:

from .base import *
DEBUG = False

ADMINS = (
('Antonio M', 'email@mydomain.com'),

)

ALLOWED_HOSTS = ['*']

DATABASES = {
'default': {

}

These are the settings for the production environment. Let's take a
closer look at each of them:

e pesuc: Setting oesus to raise Should be mandatory for any
production environment. Failing to do so will result in
traceback information and sensitive configuration data
exposed to everyone.

e aomins: When pesuc 1S Fa1se and a view raises an exception, all
information will be sent by email to the people listed in the
romtns setting. Make sure to replace the name/email tuple
with your own information.

e atLowen_wosts: Django will only allow the hosts included in this
list to serve the application. This is a security measure. We
include the asterisk symbol + to refer to all hostnames. We
will limit the hostnames that can be used for serving the
application later.

o patasases: We just keep this setting empty. We are going to
cover database setup for production hereafter.

When handling multiple environments, create a base settings file and a
settings file for each environment. Environment settings files should inherit
the common settings and override environment-specific settings.

We have placed the project settings in a different location than the
default settings.py file. You will not be able to execute any commands

with the manage.py tool unless you specify the settings module to use.
You will need to add a --settings flag when you run management
commands from the shell or set a bianco_setTIngs_MobuLE environment
variable.

Open the shell and run the following command:
export DJANGO_SETTINGS_MODULE=educa.settings.pro

This will set the pianco_settInes_MobuLe environment variable for the
current shell session. If you want to avoid executing this command
for each new shell, add this command to your shell's configuration
in the .bashrc OT .bash_prorile files. If you don't set this variable you will
have to run management commands, including the --settings flag, as
follows:

python manage.py migrate --settings=educa.settings.pro

You have successfully organized settings for handling multiple
environments.

Using PostgreSQL

Throughout this book, we have mostly used the SQLite database.
SQLite is simple and quick to set up, but for a production
environment you will need a more powerful database, such as
PostgreSQL, MySQL, or Oracle. You already learned how to install
PostgreSQL and set up a PostgreSQL database in chapter

3, Extending Your Blog Application. If you need to install
PostgreSQL, you can read the Installing PostgreSQL section of chapt
er 3, Extending Your Blog Application.

Let's create a PostgreSQL user. Open the shell and run the following
commands to create a database user:

su postgres
createuser -dP educa

You will be prompted for a password and permissions you want to
give to this user. Enter the desired password and permissions and
then create a new database with the following command:

createdb -E utf8 -U educa educa

Then edit the settings/pro.py file and modify the pataeases setting to
make it look as follows:

DATABASES = {
"default': {
'"ENGINE': 'django.db.backends.postgresqgl',
'"NAME': 'educa',
'"USER': 'educa',
'PASSWORD': '*¥**x1,

Replace the preceding data with the database name and credentials
for the user you created. The new database is empty. Run the
following command to apply all database migrations:

python manage.py migrate

Finally, create a superuser with the following command:

python manage.py createsuperuser

Checking your project

Django includes the check management command for checking your
project anytime. This command inspects the apps installed in your
Django project and outputs any errors or warnings. If you include
the --dep1oy Option, additional checks only relevant for production
use will be triggered. Open the shell and run the following
command to perform a check:

python manage.py check --deploy

You will see an output with no errors but several warnings. This
means the check was successful, but you should go through the
warnings to see if there is anything more you can do to make your
project safe for production. We are not going to go deeper into this,
but keep in mind that you should check your project before
production use to look for any relevant issues.

Serving Django through WSGI

Django's primary deployment platform is WSGI. WSGI stands for
Web Server Gateway Interface and it is the standard for
serving Python applications on the web.

When you generate a new project using the startproject command,
Django creates a wsgi.py file inside your project directory. This file
contains a WSGI application callable, which is an access point to
your application. WSGI is used for both running your project with
the Django development server, and deploying your application
with the server of your choice in a production environment.

You can learn more about WSGI at https://wsgi.readthedocs.io/en/latest/.

https://wsgi.readthedocs.io/en/latest/

Installing uWSGI

Throughout this book, you have been using the Django
development server to run projects in your local environment.
However, you need a real web server for deploying your application
in a production environment.

uWSGTI is an extremely fast Python application server. It
communicates with your Python application using the WSGI
specification. uWSGI translates web requests into a format that
your Django project can process.

Install uWSGTI using the following command:
pip install uwsgi==2.0.17

In order to build uWSGI, you will need a C compiler, such as gcc or
clang. In a Linux environment you can install it with the
command apt-get install build-essential.

If you are using macOS X, you can install uWSGI with the
Homebrew package manager using the command brew insta1l uwsgi. If
you want to install uWSGI on Windows, you will need Cygwin
https://www.cygwin.com. HOWGVGI‘, it's desirable to use uWSGI in UNIX-
based environments.

You can read uWSGI's documentation at https://uwsgi-docs.readthedocs.io
/en/latest/.

https://www.cygwin.com
https://uwsgi-docs.readthedocs.io/en/latest/

Configuring uwWSsGl

You can run uWSGI from the command line. Open the shell and run
the following command from the educa project directory:

sudo uwsgi --module=educa.wsgi:application \

- -env=DJANGO_SETTINGS_MODULE=educa.settings.pro \
--master --pidfile=/tmp/project-master.pid \
--http=127.0.0.1:8000 \

--uid=1000 \

--virtualenv=/home/env/educa/

You might have to prepend sudo to this command if you don't have
the required permissions.

With this command, we run uWSGI on our localhost with the
following options:

e We use the educa.wsgi:application WSGI callable.
e We load the settings for the production environment.

e We use our virtual environment. Replace the path in the
virtualenv Option with your actual virtual environment
directory. If you are not using a virtual environment, you
can skip this option.

If you are not running the command within the project directory,
include the option --chdir=/path/toseducas With the path to your project.

Open nttp://127.0.0.1:8000/ iN your browser. You should see the
generated HTML without any CSS style sheets or images being

loaded. This makes sense since we didn't configure uWSGI to serve
static files.

uWSGTI allows you to define a custom configuration in a .ini file.
This is more convenient than passing options through the
command line.

Create the following file structure inside the main educas directory:

config/
uwsgi.ini

Edit the wwsgi.ini file and add the following code to it:

[uwsgi]

variables

projectname = educa

base = /home/projects/educa

configuration

master = true

virtualenv = /home/env/%(projectname)

pythonpath = %(base)

chdir = %(base)

env = DJANGO_SETTINGS_MODULE=%(projectname).settings.pro
module = educa.wsgi:application

socket = /tmp/%(projectname).sock

In the .ini file we define the following variables:

® projectname: The name of our Django project, which is educa.

e base: The absolute path to the educa project. Replace it with the
absolute path to your project.

These are custom variables that we will use in the uWSGI options.
You can define any other variables you like as long as the name is
different than uWSGI options.

We set the following options:

e naster: Enable master process.

e virtualenv: The path to your virtual environment. Replace this
path with the appropriate path.

e pythonpath: The paths to add to your Python path.

e cndir: The path to your project directory, so that uWSGI
changes to that directory before loading the application.

e onv: Environment variables. We include the
DJANGO_SETTINGS_MopuLE Variable pointing to the settings for the
production environment.

¢ nodule: The WSGI module to use. We set this to the appiication
callable contained in the wsgi module of our project.

e socket: The UNIX/TCP socket to bind the server.

The socket option is intended for communication with some third-
party router, such as NGINX, while the nttp option is for uWSGI to
accept incoming HTTP requests and route them by itself. We are
going to run uWSGI using a socket, since we are going to configure
NGINX as our web server, and communicate with uWSGI through
the socket.

You can find the list of available uWSGI OptiOIlS at nttps://uwsgi-docs.re
adthedocs.io/en/latest/Options.html.

Now you can run uWSGI with your custom configuration using this
command:

uwsgi --ini config/uwsgi.ini

https://uwsgi-docs.readthedocs.io/en/latest/Options.html

You will not be able to access your uWSGI instance from your
browser now, since it's running through a socket. Let's complete the
production environment.

Installing NGINX

When you are serving a website, you have to serve dynamic content,
but you also need to serve static files, such as CSS, JavaScript files,
and images. While uWSGI is capable of serving static files, it adds
an unnecessary overhead to HTTP requests and therefore, it is
encouraged to set up a web server, such as NGINX in front of it.

NGINX is a web server focused on high concurrency, performance,
and low memory usage. NGINX also acts as a reverse proxy,
receiving HTTP requests, and routing them to different backends.
Generally, you will use a web server, such as NGINX in front, for
serving static files efficiently and quickly, and you will forward
dynamic requests to uWSGI workers. By using NGINX, you can also
apply rules and benefit from its reverse proxy capabilities.

Install NGINX with the following command:
sudo apt-get install nginx

If you are using macOS X, you can install NGINX using the
command brew install nginx. YOu can find NGINX binaries for
Windows at https://nginx.org/en/download.html.

https://nginx.org/en/download.html

The production environment

The following diagram shows how our final production
environment will look:

Wi

HTTP Socket WSGI
Client

NGTnX UWSGI Django
hrowser J Jang

The following will happen when the client browser launches an
HTTP request:

1. NGINX receives the HTTP request.

2. If a static file is requested, NGINX serves the static file
directly. If a dynamic page is requested, NGINX delegates
the request to uWSGI through a socket.

3. uWSGI passes the request to Django for processing. The
resulting HTTP response is passed back to NGINX, which in
turn passes it back to the client browser.

Configuring NGINX

Create a new file inside the conrig/ directory and name it nginx. conf.
Add the following code to it:

the upstream component nginx needs to connect to
upstream educa {
server unix:///tmp/educa.sock;
3
server {
listen 80;
server_name www.educaproject.com educaproject.com;
location / {
include /etc/nginx/uwsgi_params;
uwsgi_pass educa;
3
3

This is the basic configuration for NGINX. We set up an upstream
named educa, which points to the socket created by uWSGI. We use
the server directive and add the following configuration:

e We tell NGINX to listen on port se.

e We set the server name to both www . educaproject.com and
educaproject.com. NGINX will serve incoming requests for both
domains.

e We specify that everything under the / path has to be routed
to the educa socket (WUWSGI). We also include the default
uWSGI configuration params that come with NGINX.

You can find NGINX documentation at https://nginx.org/en/docs/.

The primary NGINX configuration file is located at
/etc/nginx/nginx.conf. It includes any configuration files found
under /etc/nginx/sites-enabled/. To make NGINX load your custom
configuration file, open the shell and create a symbolic link as
follows:

sudo 1n -s /home/projects/educa/config/nginx.conf /etc/nginx/sites-
enabled/educa.conf

Replace /nhome/projects/educas With your project's absolute path. Then
open a shell and run uWSGI if you are not running it yet:

uwsgi --ini config/uwsgi.ini

Open a second shell and run NGINX with the following command:

service nginx start

Since we are using a sample domain name, we need to redirect it to
our local host. Edit your /etc/nosts file and add the following lines to
it:

127.0.0.1 educaproject.com
127.0.0.1 www.educaproject.com

By doing so, we are routing both hostnames to our local server. In a
production server you won't need to do this, since you will have a
fixed IP address and you will point your hostname to your server in
your domain's DNS configuration.

Open http://educaproject.com/ in your browser. You should be able to
see your site, still without any static assets being loaded. Our
production environment is almost ready.

https://nginx.org/en/docs/
http://nginx.org/en/docs/

Now you can restrict the hosts that can serve your Django project.
Edit the production settings file settings/pro.py 0f your project and
change the acLowen_nosts setting as follows:

ALLOWED_HOSTS = ['educaproject.com', 'www.educaproject.com']

Django will now only serve your application if it's running under
any of these hostnames. You can read more about the allowed
setting at nttps://docs.djangoproject.com/en/2.0/ref/settings/#allowed-hosts.

https://docs.djangoproject.com/en/2.0/ref/settings/#allowed-hosts

Serving static and media
assets

NGINX is very good at serving static content. For best performance
we will use NGINX to serve the static files in our production
environment. We will set up NGINX to serve both static files of our
application and media files uploaded for course contents.

Edit the settings/base.py file and add the following code to it:

STATIC_ROOT = os.path.join(BASE_DIR, 'static/')

We need to export static assets with Django. The coiiectstatic
command copies static files from all applications and stores them in
the star1c_roor directory. Open the shell and run the following
command:

python manage.py collectstatic

You will see this output:

160 static files copied to '/educa/static'.

Now edit the config/nginx.conf file and add the fOHOWiIlg code inside
the server directive:

location /static/ {

alias /home/projects/educa/static/;
3
location /media/ {

alias /home/projects/educa/media/;

}

Remember to replace the /home/projects/educas path with the absolute
path to your project directory. These directives tell NGINX to serve
static assets located under /static/ and /medias paths directly. These
paths are as follows:

e /static/: This path matches the one set in the static_urL setting
and its target path corresponds to the value of the
statIc_rooT Setting. We use it to serve the static files of our
application.

e /media/: This path matches the one set in the veo1a_ure setting
and its target path corresponds to the value of the vep1a_roor
setting. We use it to serve the media files uploaded to the
course contents.

Reload NGINX's configuration with the following command to keep
track of the new paths:

service nginx reload

Open http://educaproject.com/ in your browser. You should be able to
see your site correctly loading static resources such as CSS style
sheets and images. NGINX is now serving the static files directly
instead of forwarding static files' requests to uWSGI.

Great! You have successfully configured NGINX for serving static
files.

Securing connections with SSL

The Secure Sockets Layer protocol (SSL), is becoming the norm
for serving websites through a secure connection. It's strongly
encouraged that you serve your websites under HTTPS. We are
going to configure an SSL certificate in NGINX to serve our

site securely.

Creating an SSL certificate

Create a new directory inside the educa project directory and name it
ss1. Then generate an SSL certificate from the command line with
the following command:

sudo openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout
ssl/educa.key -out ssl/educa.crt

We are generating a private key and a 2048-bit SSL certificate valid
for one year. You will be asked to enter data as follows:

Country Name (2 letter code) [AU]:

State or Province Name (full name) [Some-State]:

Locality Name (eg, city) []:

Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR name) []: educaproject.com
Email Address []: email@domain.com

You can fill in the requested data with your own information. The
most important field is the Common Name. You have to specify the
domain name for the certificate. We use educaproject.con.

This will generate, inside the ss1/ directory, an educa.key private key
file and an educa.crt file, which is the actual certificate.

Configuring NGINX to use SSL

Edit the nginx.conf file and edit the server directive to include SSL as
follows:

server {
listen 80;
listen 443 ssl;
ssl certificate /home/projects/educa/ssl/educa.crt;
ssl certificate_key /home/projects/educa/ssl/educa.key;
server_name www . educaproject.com educaproject.com;
...

With the preceding code, our server now listens both to HTTP
through port se and HTTPS through port 443. We indicate the path to
the SSL certificate with ss1_certificate and the certificate key with

ssl_certificate_key.

Restart NGINX with the following command:

sudo service nginx restart

NGINX will load the new configuration. Open nttps://educaproject.com/
with your browser. You should see a warning message similar to the
following one:

| This Connection is Untrusted

You have asked Firefox to connect securely to educaproject.com, but we can't confirm that your
connection s secure.

Normally, when you try to connect securely, sites will present trusted identification to prove that you
are going to the right place. However, this site's identity can't be verified.

What Should | Do?

If you usually connect to this site without problems, this error could mean that someone is trying to
impersonate the site, and youshouldn't continue.

Get me out of here!

Technical Details

| Understand the Risks

If you understand what's going on, you can tell Firefox to start trusting this site's identification. Even
if you trust the site, this error could mean that someone is tampering with your connection.

Don't add an exception unless you know there's a good reason why this site doesn't use trusted
identification.

Add Exception...

The message might be different depending on your browser. It
alerts you that your site is not using a trusted certificate: the
browser cannot verify the identity of your site. This is because we
signed our own certificate instead of obtaining one from a trusted
Certification Authority (CA). When you own a real domain, you
can apply for a trusted CA to issue an SSL certificate for it, so that
browsers can verify its identity.

If you want to obtain a trusted certificate for a real domain, you can
refer to the Let's Encrypt project created by the Linux Foundation.
It is a collaborative project that aims to simplify obtaining and
renewing trusted SSL certificates for free. You can find more
information at nttps://1etsencrypt.org.

Click on the Add Exception button to let your browser know that

https://letsencrypt.org

you trust this certificate. You will see that the browser displays a
lock icon next to the URL as follows:

@ https://educaproject.com

If you click the lock icon, SSL certificate details will be displayed.

Configuring our project for SSL

Django comes with specific settings for SSL support. Edit the
settings/pro.py Settings file and add the following settings to it:

SECURE_SSL_REDIRECT = True
CSRF_COOKIE_SECURE = True

These settings are as follows:

o secure_sst_rep1rect: Whether HTTP requests have to be
redirected to HTTPS

e csrr_cookte_secure: Has to be set for establishing a secure cookie
for the cross-site request forgery protection

Congratulations! You have configured a production environment
that will offer great performance for serving your project.

Creating a custom middleware

You already know the wrooLeware setting, which contains the
middlewares for your project. You can think of it as a low-level
plugin system, allowing you to implement hooks that get executed
in the request/response process. Each middleware is responsible for
some specific action that will be executed for all HTTP requests or
responses.

Avoid adding expensive processing to middlewares, since they are executed
in every single request.

When an HTTP request is received, middlewares are executed in
order of appearance in the wmmooieware setting. When an HTTP
response has been generated by Django, the response passes
through all middlewares back in reverse order.

A middleware can be written as a function as follows:

def my_middleware(get_response):
def middleware(request):
Code executed for each request before
the view (and later middleware) are called.

response = get_response(request)

Code executed for each request/response after
the view is called.

return response

return middleware

A middleware factory is a callable that takes a get_response callable
and returns a middleware. A middleware is a callable that takes a

request and returns a response, just like a view. The get_response
callable might be the next middleware in the chain or the actual
view in case of the last listed middleware.

If any middleware returns a response without calling its get_response
callable, it short-circuits the process, no further middlewares get
executed (also not the view), and the response returns through the
same layers that the request passed in through.

The order of middlewares in the mooLeware setting is very important
because a middleware can depend on data set in the request by
other middlewares that have been executed previously.

When adding a new middleware to the nmoieware setting, make sure to place it
in the right position. Middlewares are executed in order of appearance in the
setting during the request phase, and in reverse order for responses.

You can find more information about middleware at
https://docs.djangoproject.com/en/2.0/topics/http/middleware/.

https://docs.djangoproject.com/en/2.0/topics/http/middleware/

Creating a subdomain
middleware

We are going to create a custom middleware to allow courses to be
accessible through a custom subdomain. Each course detail URL,
which looks like https://educaproject.com/course/django/, will also be
accessible through the subdomain that makes use of the course siug,
such as https://django.educaproject.com/. Users will be able to use the
subdomain as a shortcut to access the course details. Any requests
to subdomains will be redirected to each corresponding course
detail URL.

Middlewares can reside anywhere within your project. However, it's
recommended to create a middieware.py file in your application
directory.

Create a new file inside the courses application directory and name it
middleware.py. Add the following code to it:

from django.urls import reverse
from django.shortcuts import get_object_or_404, redirect
from .models import Course

def subdomain_course_middleware(get_response):

Provides subdomains for courses
def middleware(request):
host_parts = request.get_host().split('.")
if len(host_parts) > 2 and host_parts[0] != "www':
get course for the given subdomain
course = get_object_or_404(Course, slug=host_parts[0])
course_url = reverse('course_detail',
args=[course.slug])
redirect current request to the course_detail view
url = "{}://{3{}'.format(request.scheme,

".'.join(host_parts[1:]),
course_url)
return redirect(url)

response = get_response(request)
return response

return middleware

When an HTTP request is received, we perform the following tasks:

1. We get the hostname that is being used in the request and
divide it into parts. For example, if the user is accessing
mycourse.educaproject .comn We generate the list ['mycourse’,
'educaproject', 'com'].

2. We check if the hostname includes a subdomain by checking
whether the split generated more than two elements. If the
hostname includes a subdomain, and this is not ww we try to
get the course with the siug provided in the subdomain.

3. If a course is not found, we raise an HTTP 404 exception.
Otherwise, we redirect the browser to the course detail URL.

Edit the settings.py file of the project and add
'courses.middleware.SubdomainCourseMiddleware' at the bottom Of the
wrooLeware list as follows:

MIDDLEWARE = [
o,
'courses.middleware.subdomain_course_middleware',

Our middleware will now be executed in every request.

Remember that the hostnames allowed to serve our Django project
are specified in the aLLowep_nosTs setting. Let's change this setting so
that any possible subdomain of educaproject.com is allowed to serve our

application.

Edit the settings/pro.py file and modify the aLcowen_nosTs setting as
follows:

ALLOWED_HOSTS = ['.educaproject.com']

A value that begins with a period is used as a subdomain wildcard:
' .educaproject.com' will match educaproject.com and any subdomain for this
domain, for example course.educaproject.com and django.educaproject.com.

Serving multiple subdomains
with NGINX

We need NGINX to be able to serve our site with any possible
subdomain. Edit the config/nginx.conf file and replace this line:

server_name www.educaproject.com educaproject.com;

With the following one:

server_name *.educaproject.com educaproject.com;

By using the asterisk, this rule applies to all subdomains of
educaproject.com. In order to test our middleware locally, we need to
add any subdomains we want to test to /etc/nosts. For testing the
middleware with a course object with the slug django, add the following
line to your /etc/nosts file:

127.0.0.1 django.educaproject.com

Then OP€Nn https://django.educaproject.com/ n your browser. The
middleware will find the course by the subdomain and redirect your
browser to https://educaproject.com/course/django/.

https://django.educaproject.com/
https://educaproject.com/course/django/

Implementing custom
management commands

Django allows your applications to register custom management
commands for the manage.py utility. For example, we used the
management commands makemessages and compilemessages n Chapter

9, Extending Your Shop to create and compile translation files.

A management command consists of a Python module containing a
command class that inherits from django.core.management.base.BaseCommand OT
one of its subclasses. You can create simple commands or make
them take positional and optional arguments as input.

Django looks for management commands in the management/commands/
directory for each active application in the rnstaLLen_ares setting. Each
module found is registered as a management command named after
it.

You can learn more about custom management commands at nttps:/

/docs.djangoproject.com/en/2.0/howto/custom-management-commands/.

We are going to create a custom management command to remind
students to enroll at least in one course. The command will send an
email reminder to users that have been registered for longer than a
specified period that aren't enrolled in any course yet.

Create the following file structure inside the students application
directory:

management/
__init__ .py
commands/

https://docs.djangoproject.com/en/2.0/howto/custom-management-commands/

__init__.py
enroll_reminder.py

Edit the en roll_reminder.py file and add the following code to it:

def

def

import datetime

from django.conf import settings

from django.core.management.base import BaseCommand
from django.core.mail import send_mass_mail

from django.contrib.auth.models import User

from django.db.models import Count

class Command(BaseCommand) :
help = 'Sends an e-mail reminder to users registered more \

than N days that are not enrolled into any courses yet'

add_arguments(self, parser):
parser.add_argument('--days', dest='days', type=int)

handle(self, *args, **options):
emails = []
subject = 'Enroll in a course'
date_joined = datetime.date.today() - \
datetime.timedelta(days=options['days'])
users = User.objects.annotate(course_count=Count('courses_joined'))\
.filter(course_count=0, date_joined__lte=date_joined)
for user in users:
message = 'Dear {},\n\n We noticed that you didn't\
enroll in any courses yet. What are you waiting\
for?'.format(user.first_name)
emails.append((subject,
message,
settings.DEFAULT_FROM_EMAIL,
[user.email]))
send_mass_mail(emails)
self.stdout.write('Sent {} reminders'.format(len(emails)))

This is our enro11_reminder command. The preceding code is as follows:

L The Ccommand class inherits fI'OITl BaseCommand.

e We include a ne1p attribute. This attribute provides a short

description of the command that is printed if you run the

command python manage.py help enroll reminder.

e We use the add_arguments() method to add the --days named
argument. This argument is used to specify the minimum
number of days a user has to be registered, without having
enrolled in any course, in order to receive the reminder.

e The handie() command contains the actual command. We get
the days attribute parsed from the command line. We retrieve
the users that have been registered for more than the
specified days, which are not enrolled in any courses yet. We
achieve this by annotating the QuerySet with the total
number of courses each user is enrolled in. We generate the
reminder email for each user and append it to the emaiis list.
Finally, we send the emails using the send_mass_mai1() function,
which is optimized to open a single SMTP connection for
sending all emails, instead of opening one connection per
email sent.

You have created your first management command. Open the shell
and run your command:

python manage.py enroll_reminder --days=20

If you don't have a local SMTP server running, you can take a look
at chapter 2, Enhancing Your Blog with Advanced Features where we
configured SMTP settings for our first Django project. Alternatively,
you can add the following setting to the settings.py file to make
Django output emails to the standard output during development:

EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'

Let's schedule our management command so that the server runs it
every day at 8 a.m. If you are using a UNIX-based system such as

Linux or macOS X, open the shell and run crontab -e to edit your
crontab. Add the fOHOWiIlg line to it:

0 8 * * * python /path/to/educa/manage.py enroll_reminder --days=20 --
settings=educa.settings.pro

If you are not familiar with eron you can find an introduction to
cron at http://www.unixgeeks.org/security/newbie/unix/cron-1.html.

If you are using Windows, you can schedule tasks using the Task
Scheduler. You can find more information about it at nttps://msdn.micro

soft.com/en-us/library/windows/desktop/aa383614(v=vs.85).aspx.

Another option for executing actions periodically is to create tasks
and schedule them with Celery. Remember that we used Celery in cn
apter 7, Building an Online Shop to execute asynchronous tasks.
Instead of creating management commands and scheduling them
with cron, you can create asynchronous tasks and execute them
with the Celery beat scheduler. You can learn more about
scheduling periodic tasks with Celery at nttps://celery.readthedocs.io/en/1

atest/userguide/periodic-tasks.html.

Use management commands for standalone scripts that you want to
schedule with cron or the Windows scheduler control panel.

Django also includes a utility to call management commands using
Python. You can run management commands from your code as
follows:

from django.core import management
management.call_command('enroll_reminder', days=20)

Congratulations! You can now create custom management
commands for your applications and schedule them when needed.

http://www.unixgeeks.org/security/newbie/unix/cron-1.html
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383614(v=vs.85).aspx
https://celery.readthedocs.io/en/latest/userguide/periodic-tasks.html

Summary

In this chapter, you configured a production environment using
uWSGI and NGINX. You have also implemented a custom
middleware and you have learned how to create custom
management commands.

You have reached the end of this book. Congratulations! You have
learned the skills required to build successful web applications with
Django. This book has guided you through the process of
developing real-life projects and integrating Django with other
technologies. Now you are ready to create your own Django project,
whether it is a simple prototype or a large-scale web application.

Good luck with your next Django adventure!

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books
by Packt:

Daniel Furtado, Mareus Pennington

Python
Programming

Blueprints

Python Programming Blueprints
Daniel Furtado, Marcus Pennington

ISBN: 978-1-78646-816-1
e Learn object-oriented and functional programming concepts
while developing projects
e The dos and don'ts of storing passwords in a database

¢ Develop a fully functional website using the popular Django
framework

e Use the Beautiful Soup library to perform web scrapping

o Get started with cloud computing by building microservice
and serverless applications in AWS

e Develop scalable and cohesive microservices using the
Nameko framework

https://www.amazon.com/Python-Programming-Blueprints-leveraging-frameworks/dp/1786468166/ref=sr_1_2?s=books&ie=UTF8&qid=1526980209&sr=1-2&keywords=django+packt

¢ Create service dependencies for Redis and PostgreSQL

Gastén C. Hillar

Django RESTful
Web Services

thon RESTful APIs and web

Django RESTful Web Services
Gaston C. Hillar

ISBN: 978-1-78883-392-9
e The best way to build a RESTful Web Service or API with
Django and the Django REST Framework

e Develop complex RESTful APIs from scratch with Django
and the Django REST Framework

e Work with either SQL or NoSQL data sources

e Design RESTful Web Services based on application
requirements

e Use third-party packages and extensions to perform
common tasks

e Create automated tests for RESTful web services

e Debug, test, and profile RESTful web services with Django

and the Django REST Framework

Leave a review - let other
readers know what you think

Please share your thoughts on this book with others by leaving a
review on the site that you bought it from. If you purchased the
book from Amazon, please leave us an honest review on this book's
Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we
can understand what our customers think about our products, and
our authors can see your feedback on the title that they have worked
with Packt to create. It will only take a few minutes of your time, but
is valuable to other potential customers, our authors, and Packt.
Thank you!

	Title Page
	Copyright and Credits
	Django 2 by Example

	Dedication
	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	About the reviewers
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used

	Get in touch
	Reviews

	Building a Blog Application
	Installing Django
	Creating an isolated Python environment
	Installing Django with pip

	Creating your first project
	Running the development server
	Project settings
	Projects and applications
	Creating an application

	Designing the blog data schema
	Activating your application
	Creating and applying migrations

	Creating an administration site for your models
	Creating a superuser
	The Django administration site
	Adding your models to the administration site
	Customizing the way models are displayed

	Working with QuerySet and managers
	Creating objects
	Updating objects
	Retrieving objects
	Using the filter() method
	Using exclude()
	Using order_by()

	Deleting objects
	When QuerySets are evaluated
	Creating model managers

	Building list and detail views
	Creating list and detail views
	Adding URL patterns for your views
	Canonical URLs for models

	Creating templates for your views
	Adding pagination
	Using class-based views
	Summary

	Enhancing Your Blog with Advanced Features
	Sharing posts by email
	Creating forms with Django
	Handling forms in views
	Sending emails with Django
	Rendering forms in templates

	Creating a comment system
	Creating forms from models
	Handling ModelForms in views
	Adding comments to the post detail template

	Adding the tagging functionality
	Retrieving posts by similarity
	Summary

	Extending Your Blog Application
	Creating custom template tags and filters
	Creating custom template tags
	Creating custom template filters

	Adding a sitemap to your site
	Creating feeds for your blog posts
	Adding full-text search to your blog
	Installing PostgreSQL
	Simple search lookups
	Searching against multiple fields
	Building a search view
	Stemming and ranking results
	Weighting queries
	Searching with trigram similarity
	Other full-text search engines

	Summary

	Building a Social Website
	Creating a social website project
	Starting your social website project

	Using the Django authentication framework
	Creating a login view
	Using Django authentication views
	Login and logout views
	Changing password views
	Resetting password views

	User registration and user profiles
	User registration
	Extending the user model
	Using a custom user model

	Using the messages framework

	Building a custom authentication backend
	Adding social authentication to your site
	Authentication using Facebook
	Authentication using Twitter
	Authentication using Google

	Summary

	Sharing Content in Your Website
	Creating an image bookmarking website
	Building the image model
	Creating many-to-many relationships
	Registering the image model in the administration site

	Posting content from other websites
	Cleaning form fields
	Overriding the save() method of a ModelForm
	Building a bookmarklet with jQuery

	Creating a detail view for images
	Creating image thumbnails using sorl-thumbnail
	Adding AJAX actions with jQuery
	Loading jQuery
	Cross-Site Request Forgery in AJAX requests
	Performing AJAX requests with jQuery

	Creating custom decorators for your views
	Adding AJAX pagination to your list views
	Summary

	Tracking User Actions
	Building a follower system
	Creating many-to-many relationships with an intermediary model
	Creating list and detail views for user profiles
	Building an AJAX view to follow users

	Building a generic activity stream application
	Using the contenttypes framework
	Adding generic relations to your models
	Avoiding duplicate actions in the activity stream
	Adding user actions to the activity stream
	Displaying the activity stream
	Optimizing QuerySets that involve related objects
	Using select_related()
	Using prefetch_related()

	Creating templates for actions

	Using signals for denormalizing counts
	Working with signals
	Application configuration classes

	Using Redis for storing item views
	Installing Redis
	Using Redis with Python
	Storing item views in Redis
	Storing a ranking in Redis
	Next steps with Redis

	Summary

	Building an Online Shop
	Creating an online shop project
	Creating product catalog models
	Registering catalog models on the admin site
	Building catalog views
	Creating catalog templates

	Building a shopping cart
	Using Django sessions
	Session settings
	Session expiration
	Storing shopping carts in sessions
	Creating shopping cart views
	Adding items to the cart
	Building a template to display the cart
	Adding products to the cart
	Updating product quantities in the cart

	Creating a context processor for the current cart
	Context processors
	Setting the cart into the request context

	Registering customer orders
	Creating order models
	Including order models in the administration site
	Creating customer orders

	Launching asynchronous tasks with Celery
	Installing Celery
	Installing RabbitMQ
	Adding Celery to your project
	Adding asynchronous tasks to your application
	Monitoring Celery

	Summary

	Managing Payments and Orders
	Integrating a payment gateway
	Creating a Braintree sandbox account
	Installing the Braintree Python module
	Integrating the payment gateway
	Integrating Braintree using Hosted Fields

	Testing payments
	Going live

	Exporting orders to CSV files
	Adding custom actions to the administration site

	Extending the admin site with custom views
	Generating PDF invoices dynamically
	Installing WeasyPrint
	Creating a PDF template
	Rendering PDF files
	Sending PDF files by email

	Summary

	Extending Your Shop
	Creating a coupon system
	Building the coupon models
	Applying a coupon to the shopping cart
	Applying coupons to orders

	Adding internationalization and localization
	Internationalization with Django
	Internationalization and localization settings
	Internationalization management commands
	How to add translations to a Django project
	How Django determines the current language

	Preparing our project for internationalization
	Translating Python code
	Standard translations
	Lazy translations
	Translations including variables
	Plural forms in translations
	Translating your own code

	Translating templates
	The {% trans %} template tag
	The {% blocktrans %} template tag
	Translating the shop templates

	Using the Rosetta translation interface
	Fuzzy translations
	URL patterns for internationalization
	Adding a language prefix to URL patterns
	Translating URL patterns

	Allowing users to switch language
	Translating models with django-parler
	Installing django-parler
	Translating model fields
	Integrating translations in the administration site
	Creating migrations for model translations
	Adapting views for translations

	Format localization
	Using django-localflavor to validate form fields

	Building a recommendation engine
	Recommending products based on previous purchases

	Summary

	Building an E-Learning Platform
	Setting up the e-learning project
	Building the course models
	Registering the models in the administration site
	Using fixtures to provide initial data for models

	Creating models for diverse content
	Using model inheritance
	Abstract models
	Multi-table model inheritance
	Proxy models

	Creating the content models
	Creating custom model fields
	Adding ordering to module and content objects

	Creating a CMS
	Adding an authentication system
	Creating the authentication templates
	Creating class-based views
	Using mixins for class-based views
	Working with groups and permissions
	Restricting access to class-based views

	Managing course modules and content
	Using formsets for course modules
	Adding content to course modules
	Managing modules and contents
	Reordering modules and contents
	Using mixins from django-braces

	Summary

	Rendering and Caching Content
	Displaying courses
	Adding student registration
	Creating a student registration view
	Enrolling in courses

	Accessing the course contents
	Rendering different types of content

	Using the cache framework
	Available cache backends
	Installing Memcached
	Cache settings
	Adding Memcached to your project
	Monitoring Memcached

	Cache levels
	Using the low-level cache API
	Caching based on dynamic data

	Caching template fragments
	Caching views
	Using the per-site cache

	Summary

	Building an API
	Building a RESTful API
	Installing Django REST framework
	Defining serializers
	Understanding parsers and renderers
	Building list and detail views
	Creating nested serializers
	Building custom views
	Handling authentication
	Adding permissions to views
	Creating view sets and routers
	Adding additional actions to view sets
	Creating custom permissions
	Serializing course contents

	Summary

	Going Live
	Creating a production environment
	Managing settings for multiple environments
	Using PostgreSQL
	Checking your project
	Serving Django through WSGI
	Installing uWSGI
	Configuring uWSGI
	Installing NGINX
	The production environment
	Configuring NGINX
	Serving static and media assets
	Securing connections with SSL
	Creating an SSL certificate
	Configuring NGINX to use SSL
	Configuring our project for SSL

	Creating a custom middleware
	Creating a subdomain middleware
	Serving multiple subdomains with NGINX

	Implementing custom management commands
	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

