

Django	2	by	Example

	

	

	

	

	

	

	

	

	

	

Build	powerful	and	reliable	Python	web	applications	from	scratch

	

	

	

	

	

	

	

	

	

	

	

Antonio	Melé

	

	

	

	

	

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

Django	2	by	Example
Copyright	©	2018	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in	any
form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief
quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information	presented.
However,	the	information	contained	in	this	book	is	sold	without	warranty,	either	express	or	implied.	Neither	the
author,	nor	Packt	Publishing	or	its	dealers	and	distributors,	will	be	held	liable	for	any	damages	caused	or	alleged
to	have	been	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and	products
mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee	the
accuracy	of	this	information.

Content	Development	Editor:	Arun	Nadar
Technical	Editor:	Prajakta	Mhatre
Copy	Editor:	Dhanya	Baburaj	and	Safis	Editing
Project	Coordinator:	Sheejal	Shah
Proofreader:	Safis	Editing
Indexer:	Rekha	Nair
Production	Coordinator:	Nilesh	Mohite

First	published:	May	2018

Production	reference:	1250518

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78847-248-7

www.packtpub.com

http://www.packtpub.com

To	my	sister

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access	to	over
5,000	books	and	videos,	as	well	as	industry	leading	tools	to	help
you	plan	your	personal	development	and	advance	your	career.	For
more	information,	please	visit	our	website.

https://mapt.io/

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with
practical	eBooks	and	Videos	from	over	4,000	industry
professionals

Improve	your	learning	with	Skill	Plans	built	especially	for
you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

PacktPub.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book
published,	with	PDF	and	ePub	files	available?	You	can	upgrade	to
the	eBook	version	at	www.PacktPub.com	and	as	a	print	book	customer,
you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical
articles,	sign	up	for	a	range	of	free	newsletters,	and	receive	exclusive
discounts	and	offers	on	Packt	books	and	eBooks.

http://www.PacktPub.com
http://www.packtpub.com

Contributors

About	the	author
Antonio	Melé	is	the	CTO	of	Exo	Investing	and	the	founder	of
Zenx	IT.	Antonio	has	been	developing	Django	projects	since	2006
for	clients	in	several	industries.	He	has	been	working	as	the	CTO
and	as	a	technology	consultant	for	multiple	technology-based	start-
ups,	and	he	has	managed	development	teams	building	projects	for
large	digital	businesses.	Antonio	holds	a	master's	in	computer
science	from	Universidad	Pontificia	Comillas.	His	father	inspired
his	passion	for	computers	and	programming.

What	this	book	covers
Chapter	1,	Building	a	Blog	Application,	introduces	you	to	the
framework	by	creating	a	blog	application.	You	will	create	the	basic
blog	models,	views,	templates,	and	URLs	to	display	blog	posts.	You
will	learn	how	to	build	QuerySets	with	the	Django	ORM,	and	you
will	configure	the	Django	administration	site.

Chapter	2,	Enhancing	Your	Blog	with	Advanced	Features,	teaches
you	how	to	handle	forms	and	model	forms,	send	emails	with
Django,	and	integrate	third-party	applications.	You	will	implement
a	comment	system	for	your	blog	posts	and	allow	your	users	to	share
posts	via	email.	The	chapter	also	guides	you	through	the	process	of
creating	a	tagging	system.

Chapter	3,	Extending	Your	Blog	Application,	explores	how	to	create
custom	template	tags	and	filters.	The	chapter	also	shows	you	how	to
use	the	sitemap	framework	and	create	an	RSS	feed	for	your	posts.
You	will	complete	your	blog	application	by	building	a	search	engine
with	PostgreSQL's	full-text	search	capabilities.

Chapter	4,	Building	a	Social	Website,	explains	how	to	build	a	social
website.	You	will	use	the	Django	authentication	framework	to
create	user	account	views.	You	will	learn	how	to	create	a	custom
user	profile	model	and	build	social	authentication	into	your	project
using	major	social	networks.

Chapter	5,	Sharing	Content	in	Your	Website,	teaches	you	how	to
transform	your	social	application	into	an	image	bookmarking
website.	You	will	define	many-to-many	relationships	for	models,
and	you	will	create	an	AJAX	bookmarklet	in	JavaScript	and
integrate	it	into	your	project.	The	chapter	shows	you	how	to
generate	image	thumbnails	and	create	custom	decorators	for	your

views.

Chapter	6,	Tracking	User	Actions,	shows	you	how	to	build	a	follower
system	for	users.	You	will	complete	your	image	bookmarking
website	by	creating	a	user	activity	stream	application.	You	will	learn
how	to	optimize	QuerySets,	and	you	will	work	with	signals.	You	will
integrate	Redis	into	your	project	to	count	image	views.

Chapter	7,	Building	an	Online	Shop,	explores	how	to	create	an	online
shop.	You	will	build	catalog	models,	and	you	will	create	a	shopping
cart	using	Django	sessions.	You	will	build	a	context	processor	for
the	shopping	cart,	and	you	will	learn	how	to	implement	sending
asynchronous	notifications	to	users	using	Celery.

Chapter	8,	Managing	Payments	and	Orders,	explains	how	to
integrate	a	payment	gateway	into	your	shop.	You	will	also
customize	the	administration	site	to	export	orders	to	CSV	files,	and
you	will	generate	PDF	invoices	dynamically.

Chapter	9,	Extending	Your	Shop,	teaches	you	how	to	create	a	coupon
system	to	apply	discounts	to	orders.	The	chapter	shows	you	how	to
add	internationalization	to	your	project	and	how	to	translate
models.	You	will	also	build	a	product	recommendation	engine	using
Redis.

Chapter	10,	Building	an	E-Learning	Platform,	guides	you	through
creating	an	e-learning	platform.	You	will	add	fixtures	to	your
project,	use	model	inheritance,	create	custom	model	fields,	use
class-based	views,	and	manage	groups	and	permissions.	You	will
create	a	content	management	system	and	handle	formsets.

Chapter	11,	Rendering	and	Caching	Content,	shows	you	how	to	create
a	student	registration	system	and	manage	student	enrollment	on
courses.	You	will	render	diverse	course	content	and	you	will	learn
how	to	use	the	cache	framework.

Chapter	12,	Building	an	API,	explores	building	a	RESTful	API	for	your

project	using	the	Django	REST	framework.

Chapter	13,	Going	Live,	shows	how	to	set	up	a	production
environment	using	uWSGI	and	NGINX,	and	how	to	secure	it	with
SSL.	The	chapter	explains	how	to	build	a	custom	middleware	and
create	custom	management	commands.

About	the	reviewers
Norbert	Máté	is	a	web	developer.	He	started	his	career	back	in
2008.	His	first	programming	language	as	a	professional	web
developer	was	PHP,	then	he	moved	on	to	JavaScript/Node.js	and
Python/Django/Django	REST	framework.	He	is	passionate	about
software	architecture,	design	patterns,	and	clean	code.	Norbert	was
the	reviewer	of	another	Django	book	Django	RESTful	Web
Services	by	Packt	Publishing.

I	would	like	to	thank	my	wife	for	her	support.

	

	

	

Packt	is	searching	for	authors
like	you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit	auth
ors.packtpub.com	and	apply	today.	We	have	worked	with	thousands	of
developers	and	tech	professionals,	just	like	you,	to	help	them	share
their	insight	with	the	global	tech	community.	You	can	make	a
general	application,	apply	for	a	specific	hot	topic	that	we	are
recruiting	an	author	for,	or	submit	your	own	idea.

http://authors.packtpub.com

Table	of	Contents
Title	Page

Copyright	and	Credits

Django	2	by	Example

Dedication

Packt	Upsell

Why	subscribe?

PacktPub.com

Contributors

About	the	author

About	the	reviewers

Packt	is	searching	for	authors	like	you

Preface

Who	this	book	is	for

What	this	book	covers

To	get	the	most	out	of	this	book

Download	the	example	code	files

Conventions	used

Get	in	touch

Reviews

1.	 Building	a	Blog	Application

Installing	Django

Creating	an	isolated	Python	environment

Installing	Django	with	pip

Creating	your	first	project

Running	the	development	server

Project	settings

Projects	and	applications

Creating	an	application

Designing	the	blog	data	schema

Activating	your	application

Creating	and	applying	migrations

Creating	an	administration	site	for	your	models

Creating	a	superuser

The	Django	administration	site

Adding	your	models	to	the	administration	site

Customizing	the	way	models	are	displayed

Working	with	QuerySet	and	managers

Creating	objects

Updating	objects

Retrieving	objects

Using	the	filter()	method

Using	exclude()

Using	order_by()

Deleting	objects

When	QuerySets	are	evaluated

Creating	model	managers

Building	list	and	detail	views

Creating	list	and	detail	views

Adding	URL	patterns	for	your	views

Canonical	URLs	for	models

Creating	templates	for	your	views

Adding	pagination

Using	class-based	views

Summary

2.	 Enhancing	Your	Blog	with	Advanced	Features

Sharing	posts	by	email

Creating	forms	with	Django

Handling	forms	in	views

Sending	emails	with	Django

Rendering	forms	in	templates

Creating	a	comment	system

Creating	forms	from	models

Handling	ModelForms	in	views

Adding	comments	to	the	post	detail	template

Adding	the	tagging	functionality

Retrieving	posts	by	similarity

Summary

3.	 Extending	Your	Blog	Application

Creating	custom	template	tags	and	filters

Creating	custom	template	tags

Creating	custom	template	filters

Adding	a	sitemap	to	your	site

Creating	feeds	for	your	blog	posts

Adding	full-text	search	to	your	blog

Installing	PostgreSQL

Simple	search	lookups

Searching	against	multiple	fields

Building	a	search	view

Stemming	and	ranking	results

Weighting	queries

Searching	with	trigram	similarity

Other	full-text	search	engines

Summary

4.	 Building	a	Social	Website

Creating	a	social	website	project

Starting	your	social	website	project

Using	the	Django	authentication	framework

Creating	a	login	view

Using	Django	authentication	views

Login	and	logout	views

Changing	password	views

Resetting	password	views

User	registration	and	user	profiles

User	registration

Extending	the	user	model

Using	a	custom	user	model

Using	the	messages	framework

Building	a	custom	authentication	backend

Adding	social	authentication	to	your	site

Authentication	using	Facebook

Authentication	using	Twitter

Authentication	using	Google

Summary

5.	 Sharing	Content	in	Your	Website

Creating	an	image	bookmarking	website

Building	the	image	model

Creating	many-to-many	relationships

Registering	the	image	model	in	the	administration	site

Posting	content	from	other	websites

Cleaning	form	fields

Overriding	the	save()	method	of	a	ModelForm

Building	a	bookmarklet	with	jQuery

Creating	a	detail	view	for	images

Creating	image	thumbnails	using	sorl-thumbnail

Adding	AJAX	actions	with	jQuery

Loading	jQuery

Cross-Site	Request	Forgery	in	AJAX	requests

Performing	AJAX	requests	with	jQuery

Creating	custom	decorators	for	your	views

Adding	AJAX	pagination	to	your	list	views

Summary

6.	 Tracking	User	Actions

Building	a	follower	system

Creating	many-to-many	relationships	with	an	intermediary

model

Creating	list	and	detail	views	for	user	profiles

Building	an	AJAX	view	to	follow	users

Building	a	generic	activity	stream	application

Using	the	contenttypes	framework

Adding	generic	relations	to	your	models

Avoiding	duplicate	actions	in	the	activity	stream

Adding	user	actions	to	the	activity	stream

Displaying	the	activity	stream

Optimizing	QuerySets	that	involve	related	objects

Using	select_related()

Using	prefetch_related()

Creating	templates	for	actions

Using	signals	for	denormalizing	counts

Working	with	signals

Application	configuration	classes

Using	Redis	for	storing	item	views

Installing	Redis

Using	Redis	with	Python

Storing	item	views	in	Redis

Storing	a	ranking	in	Redis

Next	steps	with	Redis

Summary

7.	 Building	an	Online	Shop

Creating	an	online	shop	project

Creating	product	catalog	models

Registering	catalog	models	on	the	admin	site

Building	catalog	views

Creating	catalog	templates

Building	a	shopping	cart

Using	Django	sessions

Session	settings

Session	expiration

Storing	shopping	carts	in	sessions

Creating	shopping	cart	views

Adding	items	to	the	cart

Building	a	template	to	display	the	cart

Adding	products	to	the	cart

Updating	product	quantities	in	the	cart

Creating	a	context	processor	for	the	current	cart

Context	processors

Setting	the	cart	into	the	request	context

Registering	customer	orders

Creating	order	models

Including	order	models	in	the	administration	site

Creating	customer	orders

Launching	asynchronous	tasks	with	Celery

Installing	Celery

Installing	RabbitMQ

Adding	Celery	to	your	project

Adding	asynchronous	tasks	to	your	application

Monitoring	Celery

Summary

8.	 Managing	Payments	and	Orders

Integrating	a	payment	gateway

Creating	a	Braintree	sandbox	account

Installing	the	Braintree	Python	module

Integrating	the	payment	gateway

Integrating	Braintree	using	Hosted	Fields

Testing	payments

Going	live

Exporting	orders	to	CSV	files

Adding	custom	actions	to	the	administration	site

Extending	the	admin	site	with	custom	views

Generating	PDF	invoices	dynamically

Installing	WeasyPrint

Creating	a	PDF	template

Rendering	PDF	files

Sending	PDF	files	by	email

Summary

9.	 Extending	Your	Shop

Creating	a	coupon	system

Building	the	coupon	models

Applying	a	coupon	to	the	shopping	cart

Applying	coupons	to	orders

Adding	internationalization	and	localization

Internationalization	with	Django

Internationalization	and	localization	settings

Internationalization	management	commands

How	to	add	translations	to	a	Django	project

How	Django	determines	the	current	language

Preparing	our	project	for	internationalization

Translating	Python	code

Standard	translations

Lazy	translations

Translations	including	variables

Plural	forms	in	translations

Translating	your	own	code

Translating	templates

The	{%	trans	%}	template	tag

The	{%	blocktrans	%}	template	tag

Translating	the	shop	templates

Using	the	Rosetta	translation	interface

Fuzzy	translations

URL	patterns	for	internationalization

Adding	a	language	prefix	to	URL	patterns

Translating	URL	patterns

Allowing	users	to	switch	language

Translating	models	with	django-parler

Installing	django-parler

Translating	model	fields

Integrating	translations	in	the	administration	

site

Creating	migrations	for	model	translations

Adapting	views	for	translations

Format	localization

Using	django-localflavor	to	validate	form	fields

Building	a	recommendation	engine

Recommending	products	based	on	previous	purchases

Summary

10.	 Building	an	E-Learning	Platform

Setting	up	the	e-learning	project

Building	the	course	models

Registering	the	models	in	the	administration	site

Using	fixtures	to	provide initial	data	for	models

Creating	models	for	diverse	content

Using	model	inheritance

Abstract	models

Multi-table	model	inheritance

Proxy	models

Creating	the	content	models

Creating	custom	model	fields

Adding	ordering	to	module	and	content	objects

Creating	a	CMS

Adding	an	authentication	system

Creating	the	authentication	templates

Creating	class-based	views

Using	mixins	for	class-based	views

Working	with	groups	and	permissions

Restricting	access	to	class-based	views

Managing	course	modules	and	content

Using	formsets	for	course	modules

Adding	content	to	course	modules

Managing	modules	and	contents

Reordering	modules	and	contents

Using	mixins	from	django-braces

Summary

11.	 Rendering	and	Caching	Content

Displaying	courses

Adding	student	registration

Creating	a	student	registration	view

Enrolling	in	courses

Accessing	the	course	contents

Rendering	different	types	of	content

Using	the	cache	framework

Available	cache	backends

Installing	Memcached

Cache	settings

Adding	Memcached	to	your	project

Monitoring	Memcached

Cache	levels

Using	the	low-level	cache	API

Caching	based	on	dynamic	data

Caching	template	fragments

Caching	views

Using	the	per-site	cache

Summary

12.	 Building	an	API

Building	a	RESTful	API

Installing	Django	REST	framework

Defining	serializers

Understanding	parsers	and	renderers

Building	list	and	detail	views

Creating	nested	serializers

Building	custom	views

Handling	authentication

Adding	permissions	to	views

Creating	view	sets	and	routers

Adding	additional	actions	to	view	sets

Creating	custom	permissions

Serializing	course	contents

Summary

13.	 Going	Live

Creating	a	production	environment

Managing	settings	for	multiple	environments

Using	PostgreSQL

Checking	your	project

Serving	Django	through	WSGI

Installing	uWSGI

Configuring	uWSGI

Installing	NGINX

The	production	environment

Configuring	NGINX

Serving	static	and	media	assets

Securing	connections	with	SSL

Creating	an	SSL	certificate

Configuring	NGINX	to	use	SSL

Configuring	our	project	for	SSL

Creating	a	custom	middleware

Creating	a	subdomain	middleware

Serving	multiple	subdomains	with	NGINX

Implementing	custom	management	commands

Summary

Other	Books	You	May	Enjoy

Leave	a	review	-	let	other	readers	know	what	you	think

Preface
Django	is	a	powerful	Python	web	framework	that	encourages	rapid
development	and	clean,	pragmatic	design,	offering	a	relatively
shallow	learning	curve.	This	makes	it	attractive	to	both	novice	and
expert	programmers.

This	book	will	guide	you	through	the	entire	process	of	developing
professional	web	applications	with	Django.	The	book	not	only
covers	the	most	relevant	aspects	of	the	framework,	but	also	teaches
you	how	to	integrate	other	popular	technologies	into	your	Django
projects.

The	book	will	walk	you	through	the	creation	of	real-world
applications,	solving	common	problems,	and	implementing	best
practices	with	a	step-by-step	approach	that	is	easy	to	follow.

After	reading	this	book,	you	will	have	a	good	understanding	of	how
Django	works	and	how	to	build	practical,	advanced	web
applications.

Who	this	book	is	for
This	book	is	intended	for	developers	with	Python	knowledge	who
wish	to	learn	Django	in	a	pragmatic	way.	Perhaps	you	are
completely	new	to	Django,	or	you	already	know	a	little	but	you	want
to	get	the	most	out	of	it.	This	book	will	help	you	master	the	most
relevant	areas	of	the	framework	by	building	practical	projects	from
scratch.	You	need	to	have	familiarity	with	programming	concepts	in
order	to	read	this	book.	Some	previous	knowledge	of	HTML	and
JavaScript	is	assumed.

To	get	the	most	out	of	this
book
To	get	the	most	out	of	this	book,	it	is	recommended	that	you	have
good	working	knowledge	of	Python.	You	should	also	be	comfortable
with	HTML	and	JavaScript.	Before	reading	this	book,	it	is
recommended	that	you	read	parts	1	to	3	of	the
official	Django	documentation	tutorial	at	https://docs.djangoproject.com/e
n/2.0/intro/tutorial01/.

https://docs.djangoproject.com/en/2.0/intro/tutorial01/

Download	the	example	code
files
You	can	download	the	example	code	files	for	this	book	from	your
account	at	www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you
can	visit	www.packtpub.com/support	and	register	to	have	the	files	emailed
directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packtpub.com.

2.	 Select	the	SUPPORT	tab.

3.	 Click	on	Code	Downloads	&	Errata.

4.	 Enter	the	name	of	the	book	in	the	Search	box	and	follow	the

onscreen	instructions.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or
extract	the	folder	using	the	latest	version	of:

WinRAR/7-Zip	for	Windows

Zipeg/iZip/UnRarX	for	Mac

7-Zip/PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://githu
b.com/PacktPublishing/Django-2-by-Example.	In	case	there's	an	update	to	the
code,	it	will	be	updated	on	the	existing	GitHub	repository.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Django-2-by-Example

We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and
videos	available	at	https://github.com/PacktPublishing/.	Check	them	out!

	

https://github.com/PacktPublishing/

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder
names,	filenames,	file	extensions,	pathnames,	dummy	URLs,	user
input,	and	Twitter	handles.	Here	is	an	example:	"You	can	deactivate
your	environment	at	any	time	with	the	deactivate	command."

A	block	of	code	is	set	as	follows:

from	django.contrib	import	admin

from	.models	import	Post

admin.site.register(Post)

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code
block,	the	relevant	lines	or	items	are	set	in	bold:

INSTALLED_APPS	=	[

				'django.contrib.admin',

				'django.contrib.auth',

				'django.contrib.contenttypes',

				'django.contrib.sessions',

				'django.contrib.messages',

				'django.contrib.staticfiles',

				'blog.apps.BlogConfig',

]

Any	command-line	input	or	output	is	written	as	follows:

$	python	manage.py	startapp	blog

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you

see	onscreen.	For	example,	words	in	menus	or	dialog	boxes	appear
in	the	text	like	this.	Here	is	an	example:	"Fill	in	the	form	and	click
on	the	SAVE	button."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	Email	feedback@packtpub.com	and	mention	the	book
title	in	the	subject	of	your	message.	If	you	have	questions	about	any
aspect	of	this	book,	please	email	us	at	questions@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy
of	our	content,	mistakes	do	happen.	If	you	have	found	a	mistake	in
this	book,	we	would	be	grateful	if	you	would	report	this	to	us.	Please
visit	www.packtpub.com/submit-errata,	selecting	your	book,	clicking	on	the
Errata	Submission	Form	link,	and	entering	the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any
form	on	the	Internet,	we	would	be	grateful	if	you	would	provide	us
with	the	location	address	or	website	name.	Please	contact	us	at
copyright@packtpub.com	with	a	link	to	the	material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a
topic	that	you	have	expertise	in	and	you	are	interested	in	either
writing	or	contributing	to	a	book,	please	visit	authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why
not	leave	a	review	on	the	site	that	you	purchased	it	from?	Potential
readers	can	then	see	and	use	your	unbiased	opinion	to	make
purchase	decisions,	we	at	Packt	can	understand	what	you	think
about	our	products,	and	our	authors	can	see	your	feedback	on	their
book.	Thank	you!

For	more	information	about	Packt,	please	visit	packtpub.com.

https://www.packtpub.com/

Building	a	Blog	Application
In	this	book,	you	will	learn	how	to	build	complete	Django	projects,
ready	for	production	use.	In	case	you	haven't	installed	Django	yet,
you	will	learn	how	to	do	it	in	the	first	part	of	this	chapter.	This
chapter	covers	how	to	create	a	simple	blog	application	using
Django.	The	purpose	of	this	chapter	is	to	get	a	general	idea	of	how
the	framework	works,	understand	how	the	different	components
interact	with	each	other,	and	provide	you	with	the	skills	to	easily
create	Django	projects	with	a	basic	functionality.	You	will	be	guided
through	the	creation	of	a	complete	project	without	elaborating	upon
all	the	details.	The	different	framework	components	will	be	covered
in	detail	throughout	this	book.

This	chapter	will	cover	the	following	topics:

Installing	Django	and	creating	your	first	project

Designing	models	and	generating	model	migrations

Creating	an	administration	site	for	your	models

Working	with	QuerySet	and	managers

Building	views,	templates,	and	URLs

Adding	pagination	to	list	views

Using	Django's	class-based	views

Installing	Django
If	you	have	already	installed	Django,	you	can	skip	this	section	and
jump	directly	to	the	Creating	your	first	project	section.	Django
comes	as	a	Python	package	and	thus	can	be	installed	in	any	Python
environment.	If	you	haven't	installed	Django	yet,	the	following	is	a
quick	guide	to	install	Django	for	local	development.

Django	2.0	requires	Python	version	3.4	or	higher.	In	the	examples
for	this	book,	we	will	use	Python	3.6.5.	If	you're	using	Linux	or
macOS	X,	you	probably	have	Python	installed.	If	you	are	using
Windows,	you	can	download	a	Python	installer	at	https://www.python.org
/downloads/windows/.

If	you	are	not	sure	whether	Python	is	installed	on	your	computer,
you	can	verify	it	by	typing	python	in	the	shell.	If	you	see	something
like	the	following,	then	Python	is	installed	on	your	computer:

Python	3.6.5	(v3.6.5:f59c0932b4,	Mar	28	2018,	03:03:55)	

[GCC	4.2.1	(Apple	Inc.	build	5666)	(dot	3)]	on	darwin

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.

>>>

If	your	installed	Python	version	is	lower	than	3.4,	or	if	Python	is	not
installed	on	your	computer,	download	Python	3.6.5	from	https://www.p
ython.org/downloads/	and	install	it.

Since	you	will	use	Python	3,	you	don't	have	to	install	a	database.
This	Python	version	comes	with	a	built-in	SQLite	database.	SQLite
is	a	lightweight	database	that	you	can	use	with	Django	for
development.	If	you	plan	to	deploy	your	application	in	a	production
environment,	you	should	use	an	advanced	database,	such	as
PostgreSQL,	MySQL,	or	Oracle.	You	can	get	more	information

https://www.python.org/downloads/windows/
https://www.python.org/downloads/
http://www.python.org/download/

about	how	to	get	your	database	running	with	Django
at	https://docs.djangoproject.com/en/2.0/topics/install/#database-installation.

https://docs.djangoproject.com/en/2.0/topics/install/#database-installation

Creating	an	isolated	Python
environment
It	is	recommended	that	you	use	virtualenv	to	create	isolated	Python
environments,	so	that	you	can	use	different	package	versions	for
different	projects,	which	is	far	more	practical	than	installing	Python
packages	system-wide.	Another	advantage	of	using	virtualenv	is	that
you	won't	need	any	administration	privileges	to	install	Python
packages.	Run	the	following	command	in	your	shell	to	install
virtualenv:

pip	install	virtualenv

After	you	install	virtualenv,	create	an	isolated	environment	with	the
following	command:

virtualenv	my_env

This	will	create	a	my_env/	directory,	including	your	Python
environment.	Any	Python	libraries	you	install	while	your	virtual
environment	is	active	will	go	into	the	my_env/lib/python3.6/site-packages
directory.

If	your	system	comes	with	Python	2.X	and	you	have	installed	Python	3.X,
you	have	to	tell	virtualenv	to	use	the	latter.	

You	can	locate	the	path	where	Python	3	is	installed	and	use	it	to
create	the	virtual	environment	with	the	following	commands:

zenx$	which	python3

/Library/Frameworks/Python.framework/Versions/3.6/bin/python3

zenx$	virtualenv	my_env	-p	

/Library/Frameworks/Python.framework/Versions/3.6/bin/python3	

Run	the	following	command	to	activate	your	virtual	environment:

source	my_env/bin/activate

The	shell	prompt	will	include	the	name	of	the	active	virtual
environment	enclosed	in	parentheses,	as	follows:

(my_env)laptop:~	zenx$

You	can	deactivate	your	environment	at	any	time	with	the	deactivate
command.

You	can	find	more	information	about	virtualenv	at
https://virtualenv.pypa.io/en/latest/.

On	top	of	virtualenv,	you	can	use	virtualenvwrapper.	This	tool	provides
wrappers	that	make	it	easier	to	create	and	manage	your	virtual
environments.	You	can	download	it	from	https://virtualenvwrapper.readth
edocs.io/en/latest/.

https://virtualenv.pypa.io/en/latest/
https://virtualenvwrapper.readthedocs.io/en/latest/

Installing	Django	with	pip
The	pip	package	management	system	is	the	preferred	method	for
installing	Django.	Python	3.6	comes	with	pip	preinstalled,	but	you
can	find	pip	installation	instructions	at
https://pip.pypa.io/en/stable/installing/.

Run	the	following	command	at	the	shell	prompt	to	install	Django
with	pip:

pip	install	Django==2.0.5

Django	will	be	installed	in	the	Python	site-packages/	directory	of	your
virtual	environment.

Now,	check	whether	Django	has	been	successfully	installed.	Run
python	on	a	terminal,	import	Django,	and	check	its	version,	as
follows:

>>>	import	django

>>>	django.get_version()

'2.0.5'

If	you	get	the	preceding	output,	Django	has	been	successfully
installed	on	your	machine.

Django	can	be	installed	in	several	other	ways.	You	can	find	a	complete
installation	guide	at	https://docs.djangoproject.com/en/2.0/topics/install/.

https://pip.pypa.io/en/stable/installing/
https://docs.djangoproject.com/en/2.0/topics/install/

Creating	your	first	project
Our	first	Django	project	will	be	building	a	complete	blog.	Django
provides	a	command	that	allows	you	to	create	an	initial	project	file
structure.	Run	the	following	command	from	your	shell:

django-admin	startproject	mysite

This	will	create	a	Django	project	with	the	name	mysite.

Avoid	naming	projects	after	built-in	Python	or	Django	modules	in	order	to
avoid	conflicts.

Let's	take	a	look	at	the	project	structure	generated:

mysite/

		manage.py

		mysite/

				__init__.py

				settings.py

				urls.py

				wsgi.py

These	files	are	as	follows:

manage.py:	This	is	a	command-line	utility	used	to	interact	with

your	project.	It	is	a	thin	wrapper	around	the	django-admin.py

tool.	You	don't	need	to	edit	this	file.

mysite/:	This	is	your	project	directory,	which	consists	of	the

following	files:

__init__.py:	An	empty	file	that	tells	Python	to	treat	the

mysite	directory	as	a	Python	module.

settings.py:	This	indicates	settings	and	configuration

for	your	project	and	contains	initial	default	settings.

urls.py:	This	is	the	place	where	your	URL	patterns

live.	Each	URL	defined	here	is	mapped	to	a	view.

wsgi.py:	This	is	the	configuration	to	run	your	project

as	a	Web	Server	Gateway

Interface	(WSGI)	application.

The	generated	settings.py	file	contains	the	project	settings,	including
a	basic	configuration	to	use	an	SQLite	3	database	and	a	list
named	INSTALLED_APPS,	which	contains	common	Django
applications	that	are	added	to	your	project	by	default.	We	will	go
through	these	applications	later	in	the	Project	settings	section.

To	complete	the	project	setup,	we	will	need	to	create	the	tables	in
the	database	required	by	the	applications	listed
in	INSTALLED_APPS.	Open	the	shell	and	run	the	following	commands:

cd	mysite

python	manage.py	migrate

You	will	note	an	output	that	ends	with	the	following	lines:

Applying	contenttypes.0001_initial...	OK

Applying	auth.0001_initial...	OK

Applying	admin.0001_initial...	OK

Applying	admin.0002_logentry_remove_auto_add...	OK

Applying	contenttypes.0002_remove_content_type_name...	OK

Applying	auth.0002_alter_permission_name_max_length...	OK

Applying	auth.0003_alter_user_email_max_length...	OK

Applying	auth.0004_alter_user_username_opts...	OK

Applying	auth.0005_alter_user_last_login_null...	OK

Applying	auth.0006_require_contenttypes_0002...	OK

Applying	auth.0007_alter_validators_add_error_messages...	OK

Applying	auth.0008_alter_user_username_max_length...	OK

Applying	auth.0009_alter_user_last_name_max_length...	OK

Applying	sessions.0001_initial...	OK

The	preceding	lines	are	the	database	migrations	that	are	applied	by
Django.	By	applying	migrations,	the	tables	for	the	initial
applications	are	created	in	the	database.	You	will	learn	about	the
migrate	management	command	in	the	Creating	and	applying
migrations	section	of	this	chapter.

Running	the	development
server
Django	comes	with	a	lightweight	web	server	to	run	your	code
quickly,	without	needing	to	spend	time	configuring	a	production
server.	When	you	run	the	Django	development	server,	it	keeps
checking	for	changes	in	your	code.	It	reloads	automatically,	freeing
you	from	manually	reloading	it	after	code	changes.	However,	it
might	not	notice	some	actions,	such	as	adding	new	files	to	your
project,	so	you	will	have	to	restart	the	server	manually	in	these
cases.

Start	the	development	server	by	typing	the	following	command
from	your	project's	root	folder:

python	manage.py	runserver

You	should	see	something	like	this:

Performing	system	checks...

System	check	identified	no	issues	(0	silenced).

May	06,	2018	-	17:17:31

Django	version	2.0.5,	using	settings	'mysite.settings'

Starting	development	server	at	http://127.0.0.1:8000/

Quit	the	server	with	CONTROL-C.

Now,	open	http://127.0.0.1:8000/	in	your	browser.	You	should	see	a
page	stating	that	the	project	is	successfully	running,	as	shown	in	the
following	screenshot:

The	preceding	screenshot	indicates	that	Django	is	running.	If	you
take	a	look	at	your	console,	you	will	see	the	GET	request	performed
by	your	browser:

[06/May/2018	17:20:30]	"GET	/	HTTP/1.1"	200	16348

Each	HTTP	request	is	logged	in	the	console	by	the	development
server.	Any	error	that	occurs	while	running	the	development	server
will	also	appear	in	the	console.

You	can	indicate	Django	to	run	the	development	server	on	a	custom
host	and	port	or	tell	it	to	run	your	project,	loading	a	different
settings	file,	as	follows:

python	manage.py	runserver	127.0.0.1:8001	\

--settings=mysite.settings

When	you	have	to	deal	with	multiple	environments	that	require	different
configurations,	you	can	create	a	different	settings	file	for	each	environment.

Remember	that	this	server	is	only	intended	for	development	and	is
not	suitable	for	production	use.	In	order	to	deploy	Django	in	a
production	environment,	you	should	run	it	as	a	WSGI	application
using	a	real	web	server,	such	as	Apache,	Gunicorn,	or	uWSGI.	You
can	find	more	information	on	how	to	deploy	Django	with	different
web	servers	at	https://docs.djangoproject.com/en/2.0/howto/deployment/wsgi/.

Chapter	13,	Going	Live,	explains	how	to	set	up	a	production
environment	for	your	Django	projects.

https://docs.djangoproject.com/en/2.0/howto/deployment/wsgi/

Project	settings
Let's	open	the	settings.py	file	and	take	a	look	at	the	configuration	of
our	project.	There	are	several	settings	that	Django	includes	in	this
file,	but	these	are	only	a	part	of	all	the	Django	settings	available.
You	can	see	all	settings	and	their	default	values	in
https://docs.djangoproject.com/en/2.0/ref/settings/.

The	following	settings	are	worth	looking	at:

DEBUG	is	a	boolean	that	turns	the	debug	mode	of	the	project	on

and	off.	If	it	is	set	to	True,	Django	will	display	detailed	error

pages	when	an	uncaught	exception	is	thrown	by	your

application.	When	you	move	to	a	production	environment,

remember	that	you	have	to	set	it	to	False.	Never	deploy	a	site

into	production	with	DEBUG	turned	on	because	you	will	expose

sensitive	project-related	data.

ALLOWED_HOSTS	is	not	applied	while	debug	mode	is	on,	or	when

the	tests	are	run.	Once	you	move	your	site	to	production	and

set	DEBUG	to	False,	you	will	have	to	add	your	domain/host	to

this	setting	in	order	to	allow	it	to	serve	your	Django	site.

INSTALLED_APPS	is	a	setting	you	will	have	to	edit	for	all	projects.

This	setting	tells	Django	which	applications	are	active	for

this	site.	By	default,	Django	includes	the	following

applications:

django.contrib.admin:	An	administration	site

https://docs.djangoproject.com/en/2.0/ref/settings/

django.contrib.auth:	An	authentication	framework

django.contrib.contenttypes:	A	framework	for	handling

content	types

django.contrib.sessions:	A	session	framework

django.contrib.messages:	A	messaging	framework

django.contrib.staticfiles:	A	framework	for	managing

static	files

MIDDLEWARE	is	a	list	that	contains	middleware	to	be	executed.

ROOT_URLCONF	indicates	the	Python	module	where	the	root	URL

patterns	of	your	application	are	defined.

DATABASES	is	a	dictionary	that	contains	the	settings	for	all	the

databases	to	be	used	in	the	project.	There	must	always	be	a

default	database.	The	default	configuration	uses	an	SQLite3

database.

LANGUAGE_CODE	defines	the	default	language	code	for	this	Django

site.

USE_TZ	tells	Django	to	activate/deactivate	timezone	support.

Django	comes	with	support	for	timezone-aware

datetime.	This	setting	is	set	to	True	when	you	create	a	new

project	using	the	startproject	management	command.

Don't	worry	if	you	don't	understand	much	about	what	you	are
seeing.	You	will	learn	the	different	Django	settings	in	the	following
chapters.

Projects	and	applications
Throughout	this	book,	you	will	encounter	the	terms	project	and
application	over	and	over.	In	Django,	a	project	is	considered	a
Django	installation	with	some	settings.	An	application	is	a	group	of
models,	views,	templates,	and	URLs.	Applications	interact	with	the
framework	to	provide	some	specific	functionalities	and	may	be
reused	in	various	projects.	You	can	think	of	the	project	as	your
website,	which	contains	several	applications	such	as	a	blog,	wiki,	or
forum,	that	can	be	used	by	other	projects	also.

Creating	an	application
Now,	let's	create	our	first	Django	application.	We	will	create	a	blog
application	from	scratch.	From	the	project's	root	directory,	run	the
following	command:

python	manage.py	startapp	blog

This	will	create	the	basic	structure	of	the	application,	which	looks
like	this:

blog/

				__init__.py

				admin.py

				apps.py

				migrations/

								__init__.py

				models.py

				tests.py

				views.py

These	files	are	as	follows:

admin.py:	This	is	where	you	register	models	to	include	them	in

the	Django	administration	site—using	the	Django	admin	site

is	optional.

apps.py:	This	includes	the	main	configuration	of	the	blog

application.

migrations:	This	directory	will	contain	database	migrations	of

your	application.	Migrations	allow	Django	to	track	your

model	changes	and	synchronize	the	database	accordingly.

models.py:	Data	models	of	your	application—all	Django

applications	need	to	have	a	models.py	file,	but	this	file	can	be

left	empty.

tests.py:	This	is	where	you	can	add	tests	for	your	application.

views.py:	The	logic	of	your	application	goes	here;	each	view

receives	an	HTTP	request,	processes	it,	and	returns	a

response.

Designing	the	blog	data
schema
We	will	start	designing	our	blog	data	schema	by	defining	the	data
models	for	our	blog.	A	model	is	a	Python	class	that	subclasses
django.db.models.Model,	in	which	each	attribute	represents	a	database
field.	Django	will	create	a	table	for	each	model	defined	in	the
models.py	file.	When	you	create	a	model,	Django	provides	you	with	a
practical	API	to	query	objects	in	the	database	easily.

First,	we	will	define	a	Post	model.	Add	the	following	lines	to	the
models.py	file	of	the	blog	application:

from	django.db	import	models

from	django.utils	import	timezone

from	django.contrib.auth.models	import	User

class	Post(models.Model):

				STATUS_CHOICES	=	(

								('draft',	'Draft'),

								('published',	'Published'),

)

				title	=	models.CharField(max_length=250)

				slug	=	models.SlugField(max_length=250,

																												unique_for_date='publish')

				author	=	models.ForeignKey(User,

																															on_delete=models.CASCADE,

																															related_name='blog_posts')

				body	=	models.TextField()

				publish	=	models.DateTimeField(default=timezone.now)

				created	=	models.DateTimeField(auto_now_add=True)

				updated	=	models.DateTimeField(auto_now=True)

				status	=	models.CharField(max_length=10,

																														choices=STATUS_CHOICES,

																														default='draft')

				class	Meta:

								ordering	=	('-publish',)

				def	__str__(self):

								return	self.title

This	is	our	data	model	for	blog	posts.	Let's	take	a	look	at	the	fields
we	just	defined	for	this	model:

title:	This	is	the	field	for	the	post	title.	This	field	is	CharField,

which	translates	into	a	VARCHAR	column	in	the	SQL	database.

slug:	This	is	a	field	intended	to	be	used	in	URLs.	A	slug	is	a

short	label	that	contains	only	letters,	numbers,	underscores,

or	hyphens.	We	will	use	the	slug	field	to	build	beautiful,	SEO-

friendly	URLs	for	our	blog	posts.	We	have	added	the

unique_for_date	parameter	to	this	field	so	that	we	can	build

URLs	for	posts	using	their	publish	date	and	slug.	Django	will

prevent	multiple	posts	from	having	the	same	slug	for	a

given	date.

author:	This	field	is	a	foreign	key.	It	defines	a	many-to-one

relationship.	We	are	telling	Django	that	each	post	is	written

by	a	user,	and	a	user	can	write	any	number	of	posts.	For	this

field,	Django	will	create	a	foreign	key	in	the	database	using

the	primary	key	of	the	related	model.	In	this	case,	we	are

relying	on	the	User	model	of	the	Django	authentication

system.	The	on_delete	parameter	specifies	the	behavior	to

adopt	when	the	referenced	object	is	deleted.	This	is	not

specific	to	Django;	it	is	an	SQL	standard.	Using	CASCADE,	we

specify	that	when	the	referenced	user	is	deleted,	the

database	will	also	delete	its	related	blog	posts.	You	can	take

a	look	at	all	possible	options	at	https://docs.djangoproject.com/en/2.

0/ref/models/fields/#django.db.models.ForeignKey.on_delete.	We	specify

https://docs.djangoproject.com/en/2.0/ref/models/fields/#django.db.models.ForeignKey.on_delete

the	name	of	the	reverse	relationship,	from	User	to	Post,	with

the	related_name	attribute.	This	will	allow	us	to	access	related

objects	easily.	We	will	learn	more	about	this	later.

body:	This	is	the	body	of	the	post.	This	field	is	a	text	field,

which	translates	into	a	TEXT	column	in	the	SQL	database.

publish:	This	datetime	indicates	when	the	post	was	published.

We	use	Django's	timezone	now	method	as	the	default	value.

This	returns	the	current	datetime	in	a	timezone-aware

format.	You	can	think	of	it	as	a	timezone-aware	version	of

the	standard	Python	datetime.now	method.

created:	This	datetime	indicates	when	the	post	was	created.

Since	we	are	using	auto_now_add	here,	the	date	will	be	saved

automatically	when	creating	an	object.

updated:	This	datetime	indicates	the	last	time	the	post	was

updated.	Since	we	are	using	auto_now	here,	the	date	will	be

updated	automatically	when	saving	an	object.

status:	This	field	shows	the	status	of	a	post.	We	use	a	choices

parameter,	so	the	value	of	this	field	can	only	be	set	to	one	of

the	given	choices.

Django	comes	with	different	types	of	fields	that	you	can	use	to
define	your	models.	You	can	find	all	field	types
at	https://docs.djangoproject.com/en/2.0/ref/models/fields/.

The	Meta	class	inside	the	model	contains	metadata.	We	tell	Django	to
sort	results	in	the	publish	field	in	descending	order	by	default	when
we	query	the	database.	We	specify	descending	order	using	the
negative	prefix.	By	doing	so,	posts	published	recently	will	appear
first.

https://docs.djangoproject.com/en/2.0/ref/models/fields/

The	__str__()	method	is	the	default	human-readable	representation
of	the	object.	Django	will	use	it	in	many	places,	such	as	the
administration	site.

If	you	come	from	using	Python	2.X,	note	that	in	Python	3,	all	strings	are
natively	considered	Unicode,	and	therefore,	we	only	use	the	__str__()	method.
The	__unicode__()	method	is	obsolete.

Activating	your	application
In	order	for	Django	to	keep	track	of	our	application	and	be	able	to
create	database	tables	for	its	models,	we	have	to	activate	it.	To	do
this,	edit	the	settings.py	file	and	add	blog.apps.BlogConfig	to	the
INSTALLED_APPS	setting.	It	should	look	like	this:

INSTALLED_APPS	=	[

				'django.contrib.admin',

				'django.contrib.auth',

				'django.contrib.contenttypes',

				'django.contrib.sessions',

				'django.contrib.messages',

				'django.contrib.staticfiles',

				'blog.apps.BlogConfig',

]

The	BlogConfig	class	is	your	application	configuration.	Now	Django
knows	that	our	application	is	active	for	this	project	and	will	be	able
to	load	its	models.

Creating	and	applying
migrations
Now	that	we	have	a	data	model	for	our	blog	posts,	we	will	need	a
database	table	for	it.	Django	comes	with	a	migration	system
that	tracks	the	changes	done	to	models	and	allows	to	propagate
them	into	the	database.	The	migrate	command	applies	migrations	for
all	applications	listed	in	INSTALLED_APPS;	it	synchronizes	the	database
with	the	current	models	and	existing	migrations.

First,	you	will	need	to	create	an	initial	migration	for	our	Post	model.
In	the	root	directory	of	your	project,	run	the	following	command:

python	manage.py	makemigrations	blog

You	should	get	the	following	output:

Migrations	for	'blog':

		blog/migrations/0001_initial.py

				-	Create	model	Post

Django	just	created	the	0001_initial.py	file	inside	the	migrations
directory	of	the	blog	application.	You	can	open	that	file	to	see	how	a
migration	appears.	A	migration	specifies	dependencies	on	other
migrations	and	operations	to	perform	in	the	database	to
synchronize	it	with	model	changes.

Let's	take	a	look	at	the	SQL	code	that	Django	will	execute	in	the
database	to	create	the	table	for	our	model.	The	sqlmigrate	command
takes	migration	names	and	returns	their	SQL	without	executing	it.
Run	the	following	command	to	inspect	the	SQL	output	of	our	first
migration:

python	manage.py	sqlmigrate	blog	0001

The	output	should	look	as	follows:

BEGIN;

--

--	Create	model	Post

--

CREATE	TABLE	"blog_post"	("id"	integer	NOT	NULL	PRIMARY	KEY	AUTOINCREMENT,	

"title"	varchar(250)	NOT	NULL,	"slug"	varchar(250)	NOT	NULL,	"body"	text	NOT	

NULL,	"publish"	datetime	NOT	NULL,	"created"	datetime	NOT	NULL,	"updated"	

datetime	NOT	NULL,	"status"	varchar(10)	NOT	NULL,	"author_id"	integer	NOT	

NULL	REFERENCES	"auth_user"	("id"));

CREATE	INDEX	"blog_post_slug_b95473f2"	ON	"blog_post"	("slug");

CREATE	INDEX	"blog_post_author_id_dd7a8485"	ON	"blog_post"	("author_id");

COMMIT;

The	exact	output	depends	on	the	database	you	are	using.	The
preceding	output	is	generated	for	SQLite.	As	you	can	see	in	the
preceding	output,	Django	generates	the	table	names	by	combining
the	app	name	and	the	lowercase	name	of	the	model	(blog_post),	but
you	can	also	specify	a	custom	database	name	for	your	model	in	the
Meta	class	of	the	model	using	the	db_table	attribute.	Django	creates	a
primary	key	automatically	for	each	model,	but	you	can	also	override
this	by	specifying	primary_key=True	in	one	of	your	model	fields.	The
default	primary	key	is	an	id	column,	which	consists	of	an	integer
that	is	incremented	automatically.	This	column	corresponds	to
the	id	field	that	is	automatically	added	to	your	models.

Let's	sync	our	database	with	the	new	model.	Run	the	following
command	to	apply	existing	migrations:

python	manage.py	migrate

You	will	get	an	output	that	ends	with	the	following	line:

Applying	blog.0001_initial...	OK

We	just	applied	migrations	for	the	applications	listed	in
INSTALLED_APPS,	including	our	blog	application.	After	applying
migrations,	the	database	reflects	the	current	status	of	our	models.

If	you	edit	your	models.py	file	in	order	to	add,	remove,	or	change	fields
of	existing	models,	or	if	you	add	new	models,	you	will	have	to
create	a	new	migration	using	the	makemigrations	command.	The
migration	will	allow	Django	to	keep	track	of	model	changes.	Then,
you	will	have	to	apply	it	with	the	migrate	command	to	keep	the
database	in	sync	with	your	models.

Creating	an	administration	site
for	your	models
Now	that	we	have	defined	the	Post	model,	we	will	create	a	simple
administration	site	to	manage	your	blog	posts.	Django	comes	with	a
built-in	administration	interface	that	is	very	useful	for	editing
content.	The	Django	admin	site	is	built	dynamically	by	reading	your
model	metadata	and	providing	a	production-ready	interface	for
editing	content.	You	can	use	it	out	of	the	box,	configuring	how	you
want	your	models	to	be	displayed	in	it.

The	django.contrib.admin	application	is	already	included	in	the
INSTALLED_APPS	setting,	so	we	don't	need	to	add	it.

Creating	a	superuser
First,	we	will	need	to	create	a	user	to	manage	the	administration
site.	Run	the	following	command:

python	manage.py	createsuperuser

You	will	see	the	following	output;	enter	your	desired	username,
email,	and	password,	as	follows:

Username	(leave	blank	to	use	'admin'):	admin

Email	address:	admin@admin.com

Password:	********

Password	(again):	********

Superuser	created	successfully.

The	Django	administration	site
Now,	start	the	development	server	with	the	python	manage.py
runserver	command	and	open	http://127.0.0.1:8000/admin/	in	your	browser.
You	should	see	the	administration	login	page,	as	shown	in	the
following	screenshot:

Log	in	using	the	credentials	of	the	user	you	created	in	the	preceding
step.	You	will	see	the	admin	site	index	page,	as	shown	in	the
following	screenshot:

The	Group	and	User	models	you	see	in	the	preceding	screenshot	are
part	of	the	Django	authentication	framework	located	in
django.contrib.auth.	If	you	click	on	Users,	you	will	see	the	user	you
created	previously.	The	Post	model	of	your	blog	application	has	a
relationship	with	this	User	model.	Remember	that	it	is	a	relationship
defined	by	the	author	field.

Adding	your	models	to	the
administration	site
Let's	add	your	blog	models	to	the	administration	site.	Edit	the
admin.py	file	of	your	blog	application	and	make	it	look	like	this:

from	django.contrib	import	admin

from	.models	import	Post

admin.site.register(Post)

Now,	reload	the	admin	site	in	your	browser.	You	should	see	your
Post	model	on	the	admin	site,	as	follows:

That	was	easy,	right?	When	you	register	a	model	in	the	Django
admin	site,	you	get	a	user-friendly	interface	generated	by

introspecting	your	models	that	allows	you	to	list,	edit,	create,	and
delete	objects	in	a	simple	way.

Click	on	the	Add	link	beside	Posts	to	add	a	new	post.	You	will	note
the	create	form	that	Django	has	generated	dynamically	for	your
model,	as	shown	in	the	following	screenshot:

Django	uses	different	form	widgets	for	each	type	of	field.	Even
complex	fields,	such	as	DateTimeField,	are	displayed	with	an	easy
interface,	such	as	a	JavaScript	date	picker.

Fill	in	the	form	and	click	on	the	SAVE	button.	You	should	be
redirected	to	the	post	list	page	with	a	successful	message	and	the
post	you	just	created,	as	shown	in	the	following	screenshot:

Customizing	the	way	models
are	displayed
Now,	we	will	take	a	look	at	how	to	customize	the	admin	site.	Edit
the	admin.py	file	of	your	blog	application	and	change	it,	as	follows:

from	django.contrib	import	admin

from	.models	import	Post

@admin.register(Post)

class	PostAdmin(admin.ModelAdmin):

				list_display	=	('title',	'slug',	'author',	'publish',

																				'status')

We	are	telling	the	Django	admin	site	that	our	model	is	registered	in
the	admin	site	using	a	custom	class	that	inherits	from	ModelAdmin.	In
this	class,	we	can	include	information	about	how	to	display	the
model	in	the	admin	site	and	how	to	interact	with	it.	The	list_display
attribute	allows	you	to	set	the	fields	of	your	model	that	you	want	to
display	in	the	admin	object	list	page.	The	@admin.register()	decorator
performs	the	same	function	as	the	admin.site.register()	function	we
have	replaced,	registering	the	ModelAdmin	class	that	it	decorates.

Let's	customize	the	admin	model	with	some	more	options,	using	the
following	code:

@admin.register(Post)

class	PostAdmin(admin.ModelAdmin):

				list_display	=	('title',	'slug',	'author',	'publish',

																							'status')

				list_filter	=	('status',	'created',	'publish',	'author')

				search_fields	=	('title',	'body')

				prepopulated_fields	=	{'slug':	('title',)}

				raw_id_fields	=	('author',)

				date_hierarchy	=	'publish'

				ordering	=	('status',	'publish')

Return	to	your	browser	and	reload	the	post	list	page.	Now,	it	will
look	like	this:

You	can	see	that	the	fields	displayed	on	the	post	list	page	are	the
ones	you	specified	in	the	list_display	attribute.	The	list	page	now
includes	a	right	sidebar	that	allows	you	to	filter	the	results	by	the
fields	included	in	the	list_filter	attribute.	A	Search	bar	has	appeared
on	the	page.	This	is	because	we	have	defined	a	list	of	searchable
fields	using	the	search_fields	attribute.	Just	below	the	Search	bar,
there	are	navigation	links	to	navigate	through	a	date	hierarchy:	this
has	been	defined	by	the	date_hierarchy	attribute.	You	can	also	see	that
the	posts	are	ordered	by	Status	and	Publish	columns	by	default.	We
have	specified	the	default	order	using	the	ordering	attribute.

Now,	click	on	the	Add	Post	link.	You	will	also	note	some	changes
here.	As	you	type	the	title	of	a	new	post,	the	slug	field	is	filled	in
automatically.	We	have	told	Django	to	prepopulate	the	slug	field
with	the	input	of	the	title	field	using	the	prepopulated_fields	attribute.
Also,	now,	the	author	field	is	displayed	with	a	lookup	widget	that	can
scale	much	better	than	a	drop-down	select	input	when	you	have
thousands	of	users,	as	shown	in	the	following	screenshot:

With	a	few	lines	of	code,	we	have	customized	the	way	our	model	is
displayed	on	the	admin	site.	There	are	plenty	of	ways	to	customize
and	extend	the	Django	administration	site.	You	will	learn	more
about	this	later	in	this	book.

Working	with	QuerySet	and
managers
Now	that	you	have	a	fully	functional	administration	site	to	manage
your	blog's	content,	it's	time	to	learn	how	to	retrieve	information
from	the	database	and	interact	with	it.	Django	comes	with	a
powerful	database	abstraction	API	that	lets	you	create,	retrieve,
update,	and	delete	objects	easily.	The	Django	Object-relational
mapper	is	compatible	with	MySQL,	PostgreSQL,	SQLite,	and
Oracle.	Remember	that	you	can	define	the	database	of	your	project
in	the	DATABASES	setting	of	your	project's	settings.py	file.	Django	can
work	with	multiple	databases	at	a	time,	and	you	can	program
database	routers	to	create	custom	routing	schemes.

Once	you	have	created	your	data	models,	Django	gives	you	a	free
API	to	interact	with	them.	You	can	find	the	data	model	reference	of
the	official	documentation	at
https://docs.djangoproject.com/en/2.0/ref/models/.

https://docs.djangoproject.com/en/2.0/ref/models/

Creating	objects
Open	the	terminal	and	run	the	following	command	to	open	the
Python	shell:

python	manage.py	shell

Then,	type	the	following	lines:

>>>	from	django.contrib.auth.models	import	User

>>>	from	blog.models	import	Post

>>>	user	=	User.objects.get(username='admin')

>>>	post	=	Post(title='Another	post',

																slug='another-post',

																body='Post	body.',

																author=user)

>>>	post.save()

Let's	analyze	what	this	code	does.	First,	we	will	retrieve	the	user
object	with	the	username	admin:

user	=	User.objects.get(username='admin')

The	get()	method	allows	you	to	retrieve	a	single	object	from	the
database.	Note	that	this	method	expects	a	result	that	matches	the
query.	If	no	results	are	returned	by	the	database,	this	method	will
raise	a	DoesNotExist	exception,	and	if	the	database	returns	more	than
one	result,	it	will	raise	a	MultipleObjectsReturned	exception.	Both
exceptions	are	attributes	of	the	model	class	that	the	query	is	being
performed	on.

Then,	we	create	a	Post	instance	with	a	custom	title,	slug,	and	body,
and	we	set	the	user	we	previously	retrieved	as	the	author	of	the

post:

post	=	Post(title='Another	post',	slug='another-post',	body='Post	body.',	

author=user)

This	object	is	in	memory	and	is	not	persisted	to	the	database.

Finally,	we	save	the	Post	object	to	the	database	using	the	save()
method:

post.save()

The	preceding	action	performs	an	INSERT	SQL	statement	behind	the
scenes.	We	have	seen	how	to	create	an	object	in	memory	first	and
then	persist	it	to	the	database,	but	we	can	also	create	the	object	and
persist	it	into	the	database	in	a	single	operation	using	the	create()
method,	as	follows:

Post.objects.create(title='One	more	post',	slug='one-more-post',	body='Post	

body.',	author=user)

Updating	objects
Now,	change	the	title	of	the	post	to	something	different	and	save	the
object	again:

>>>	post.title	=	'New	title'

>>>	post.save()

This	time,	the	save()	method	performs	an	UPDATE	SQL	statement.

The	changes	you	make	to	the	object	are	not	persisted	to	the	database	until
you	call	the	save()	method.

Retrieving	objects
The	Django	object-relational	mapping	(ORM)	is	based	on
QuerySets.	A	QuerySet	is	a	collection	of	objects	from	your	database
that	can	have	several	filters	to	limit	the	results.	You	already	know
how	to	retrieve	a	single	object	from	the	database	using	the	get()
method.	We	have	accessed	this	method	using	Post.objects.get().	Each
Django	model	has	at	least	one	manager,	and	the	default	manager	is
called	objects.	You	get	a	QuerySet	object	using	your	model	manager.
To	retrieve	all	objects	from	a	table,	you	just	use	the	all()	method	on
the	default	objects	manager,	like	this:

>>>	all_posts	=	Post.objects.all()

This	is	how	we	create	a	QuerySet	that	returns	all	objects	in	the
database.	Note	that	this	QuerySet	has	not	been	executed	yet.
Django	QuerySets	are	lazy;	they	are	only	evaluated	when	they	are
forced	to.	This	behavior	makes	QuerySets	very	efficient.	If	we	don't
set	the	QuerySet	to	a	variable,	but	instead	write	it	directly	on	the
Python	shell,	the	SQL	statement	of	the	QuerySet	is	executed
because	we	force	it	to	output	results:

>>>	Post.objects.all()

Using	the	filter()	method
To	filter	a	QuerySet,	you	can	use	the	filter()	method	of	the	manager.
For	example,	we	can	retrieve	all	posts	published	in	the	year	2017
using	the	following	QuerySet:

Post.objects.filter(publish__year=2017)

You	can	also	filter	by	multiple	fields.	For	example,	we	can	retrieve
all	posts	published	in	2017	by	the	author	with	the	username	admin:

Post.objects.filter(publish__year=2017,	author__username='admin')

This	equates	to	building	the	same	QuerySet	chaining	multiple
filters:

Post.objects.filter(publish__year=2017)	\

												.filter(author__username='admin')

Queries	with	field	lookup	methods	are	built	using	two	underscores,	for
example,	publish__year,	but	the	same	notation	is	also	used	for	accessing	fields	of
related	models,	such	as	author__username.

Using	exclude()
You	can	exclude	certain	results	from	your	QuerySet	using	the
exclude()	method	of	the	manager.	For	example,	we	can	retrieve	all
posts	published	in	2017	whose	titles	don't	start	with	Why:

Post.objects.filter(publish__year=2017)	\

												.exclude(title__startswith='Why')

Using	order_by()
You	can	order	results	by	different	fields	using	the	order_by()	method
of	the	manager.	For	example,	you	can	retrieve	all	objects	ordered	by
their	title,	as	follows:

Post.objects.order_by('title')

Ascending	order	is	implied.	You	can	indicate	descending	order	with
a	negative	sign	prefix,	like	this:

Post.objects.order_by('-title')

Deleting	objects
If	you	want	to	delete	an	object,	you	can	do	it	from	the	object
instance	using	the	delete()	method:

post	=	Post.objects.get(id=1)

post.delete()

Note	that	deleting	objects	will	also	delete	any	dependent	relationships	for
ForeignKey	objects	defined	with	on_delete	set	to	CASCADE.

When	QuerySets	are	evaluated
You	can	concatenate	as	many	filters	as	you	like	to	a	QuerySet,	and
you	will	not	hit	the	database	until	the	QuerySet	is	evaluated.
QuerySets	are	only	evaluated	in	the	following	cases:

The	first	time	you	iterate	over	them

When	you	slice	them,	for	instance,	Post.objects.all()[:3]

When	you	pickle	or	cache	them

When	you	call	repr()	or	len()	on	them

When	you	explicitly	call	list()	on	them

When	you	test	them	in	a	statement,	such	as	bool(),	or	,	and,	or

if

Creating	model	managers
As	we	previously	mentioned,	objects	is	the	default	manager	of	every
model	that	retrieves	all	objects	in	the	database.	However,	we	can
also	define	custom	managers	for	our	models.	We	will	create	a
custom	manager	to	retrieve	all	posts	with	the	published	status.

There	are	two	ways	to	add	managers	to	your	models:	you	can	add
extra	manager	methods	or	modify	initial	manager	QuerySets.	The
first	method	provides	you	with	a	QuerySet	API	such
as		Post.objects.my_manager(),	and	the	latter	provides	you
with	Post.my_manager.all().	The	manager	will	allow	us	to	retrieve	posts
using	Post.published.all().

Edit	the	models.py	file	of	your	blog	application	to	add	the	custom
manager:

class	PublishedManager(models.Manager):

				def	get_queryset(self):

								return	super(PublishedManager,

																					self).get_queryset()\

																										.filter(status='published')

class	Post(models.Model):

				#	...

				objects	=	models.Manager()	#	The	default	manager.

				published	=	PublishedManager()	#	Our	custom	manager.

The	get_queryset()	method	of	a	manager	returns	the	QuerySet	that	will
be	executed.	We	override	this	method	to	include	our	custom	filter	in
the	final	QuerySet.	We	have	defined	our	custom	manager	and
added	it	to	the	Post	model;	we	can	now	use	it	to	perform	queries.
Let's	test	it.

Start	the	development	server	again	with	the	following	command:

python	manage.py	shell

Now,	you	can	retrieve	all	published	posts	whose	title	starts	with	Who
using	the	following	command:

Post.published.filter(title__startswith='Who')

Building	list	and	detail	views
Now	that	you	have	knowledge	of	how	to	use	the	ORM,	you	are	ready
to	build	the	views	of	the	blog	application.	A	Django	view	is	just	a
Python	function	that	receives	a	web	request	and	returns	a	web
response.	All	the	logic	to	return	the	desired	response	goes	inside	the
view.

First,	we	will	create	our	application	views,	then	we	will	define	a
URL	pattern	for	each	view,	and	finally,	we	will	create	HTML
templates	to	render	the	data	generated	by	the	views.	Each	view	will
render	a	template	passing	variables	to	it	and	will	return	an	HTTP
response	with	the	rendered	output.

Creating	list	and	detail	views
Let's	start	by	creating	a	view	to	display	the	list	of	posts.	Edit	the
views.py	file	of	your	blog	application	and	make	it	look	like	this:

from	django.shortcuts	import	render,	get_object_or_404

from	.models	import	Post

def	post_list(request):

				posts	=	Post.published.all()

				return	render(request,

																		'blog/post/list.html',

																		{'posts':	posts})

You	just	created	your	first	Django	view.	The	post_list	view	takes	the
request	object	as	the	only	parameter.	Remember	that	this	parameter
is	required	by	all	views.	In	this	view,	we	are	retrieving	all	the	posts
with	the	published	status	using	the	published	manager	we	created
previously.

Finally,	we	are	using	the	render()	shortcut	provided	by	Django	to
render	the	list	of	posts	with	the	given	template.	This	function	takes
the	request	object,	the	template	path,	and	the	context	variables	to
render	the	given	template.	It	returns	an	HttpResponse	object	with	the
rendered	text	(normally,	HTML	code).	The	render()	shortcut	takes
the	request	context	into	account,	so	any	variable	set	by	template
context	processors	is	accessible	by	the	given	template.	Template
context	processors	are	just	callables	that	set	variables	into	the
context.	You	will	learn	how	to	use	them	in	Chapter	3,	Extending	Your
Blog	Application.

Let's	create	a	second	view	to	display	a	single	post.	Add	the	following
function	to	the	views.py	file:

def	post_detail(request,	year,	month,	day,	post):

				post	=	get_object_or_404(Post,	slug=post,

																																			status='published',

																																			publish__year=year,

																																			publish__month=month,

																																			publish__day=day)

				return	render(request,

																		'blog/post/detail.html',

																		{'post':	post})

This	is	the	post	detail	view.	This	view	takes	year,	month,	day,	and	post
parameters	to	retrieve	a	published	post	with	the	given	slug	and
date.	Note	that	when	we	created	the	Post	model,	we	added	the
unique_for_date	parameter	to	the	slug	field.	This	way,	we	ensure	that
there	will	be	only	one	post	with	a	slug	for	a	given	date,	and	thus,	we
can	retrieve	single	posts	using	date	and	slug.	In	the	detail	view,	we
use	the	get_object_or_404()	shortcut	to	retrieve	the	desired	post.	This
function	retrieves	the	object	that	matches	the	given	parameters	or
launches	an	HTTP	404	(not	found)	exception	if	no	object	is	found.
Finally,	we	use	the	render()	shortcut	to	render	the	retrieved	post
using	a	template.

Adding	URL	patterns	for	your
views
URL	patterns	allow	you	to	map	URLs	to	views.	A	URL	pattern	is
composed	of	a	string	pattern,	a	view,	and,	optionally,	a	name	that
allows	you	to	name	the	URL	project-wide.	Django	runs	through
each	URL	pattern	and	stops	at	the	first	one	that	matches	the
requested	URL.	Then,	Django	imports	the	view	of	the	matching
URL	pattern	and	executes	it,	passing	an	instance	of	the	HttpRequest
class	and	keyword	or	positional	arguments.

Create	an	urls.py	file	in	the	directory	of	the	blog	application	and	add
the	following	lines	to	it:

from	django.urls	import	path

from	.	import	views

app_name	=	'blog'

urlpatterns	=	[

				#	post	views

				path('',	views.post_list,	name='post_list'),

				path('<int:year>/<int:month>/<int:day>/<slug:post>/',

									views.post_detail,

									name='post_detail'),

]

In	the	preceding	code,	we	define	an	application	namespace	with
the	app_name	variable.	This	allows	us	to	organize	URLs	by	application
and	use	the	name	when	referring	to	them.	We	define	two	different
patterns	using	the	path()	function.	The	first	URL	pattern	doesn't	take
any	arguments	and	is	mapped	to	the	post_list	view.	The	second
pattern	takes	the	following	four	arguments	and	is	mapped	to	the
post_detail	view:

year:	Requires	an	integer

month:	Requires	an	integer

day:	Requires	an	integer

post:	Can	be	composed	of	words	and	hyphens

We	use	angle	brackets	to	capture	the	values	from	the	URL.	Any
value	specified	in	the	URL	pattern	as	<parameter>	is	captured	as	a
string.	We	use	path	converters,	such	as	<int:year>,	to	specifically
match	and	return	an	integer	and	<slug:post>	to	specifically	match	a
slug	(a	string	consisting	of	ASCII	letters	or	numbers,	plus	the
hyphen	and	underscore	characters).	You	can	see	all	path	converters
provided	by	Django	at	https://docs.djangoproject.com/en/2.0/topics/http/urls/
#path-converters.

If	using	path()	and	converters	isn't	sufficient	for	you,	you	can
use	re_path()	instead	to	define	complex	URL	patterns	with	Python
regular	expressions.	You	can	learn	more	about	defining	URL
patterns	with	regular	expressions	at	https://docs.djangoproject.com/en/2.0/
ref/urls/#django.urls.re_path.	If	you	haven't	worked	with	regular
expressions	before,	you	might	want	to	take	a	look	at	the	Regular
Expression	HOWTO	located
at		https://docs.python.org/3/howto/regex.html	first.

Creating	a	urls.py	file	for	each	app	is	the	best	way	to	make	your	applications
reusable	by	other	projects.

Now,	you	have	to	include	the	URL	patterns	of	the	blog	application	in
the	main	URL	patterns	of	the	project.	Edit	the	urls.py	file	located	in
the	mysite	directory	of	your	project	and	make	it	look	like	the
following:

from	django.urls	import	path,	include

from	django.contrib	import	admin

urlpatterns	=	[

https://docs.djangoproject.com/en/2.0/topics/http/urls/#path-converters
https://docs.djangoproject.com/en/2.0/ref/urls/#django.urls.re_path
https://docs.python.org/3/howto/regex.html

				path('admin/',	admin.site.urls),

				path('blog/',	include('blog.urls',	namespace='blog')),

]

The	new	URL	pattern	defined	with	include	refers	to	the	URL	patterns
defined	in	the	blog	application	so	that	they	are	included	under	the
blog/	path.	We	include	these	patterns	under	the	namespace	blog.
Namespaces	have	to	be	unique	across	your	entire	project.	Later,	we
will	refer	to	our	blog	URLs	easily	by	including	the	namespace,
building	them,	for	example,	blog:post_list	and	blog:post_detail.	You	can
learn	more	about	URL	namespaces	at	https://docs.djangoproject.com/en/2.
0/topics/http/urls/#url-namespaces.

https://docs.djangoproject.com/en/2.0/topics/http/urls/#url-namespaces

Canonical	URLs	for	models
You	can	use	the	post_detail	URL	that	you	have	defined	in	the
preceding	section	to	build	the	canonical	URL	for	Post	objects.	The
convention	in	Django	is	to	add	a	get_absolute_url()	method	to	the
model	that	returns	the	canonical	URL	of	the	object.	For	this
method,	we	will	use	the	reverse()	method	that	allows	you	to	build
URLs	by	their	name	and	passing	optional	parameters.	Edit	your
models.py	file	and	add	the	following:

from	django.urls	import	reverse

class	Post(models.Model):

				#	...

				def	get_absolute_url(self):

								return	reverse('blog:post_detail',

																							args=[self.publish.year,

																													self.publish.month,

																													self.publish.day,

																													self.slug])

We	will	use	the	get_absolute_url()	method	in	our	templates	to	link	to
specific	posts.

Creating	templates	for	your
views
We	have	created	views	and	URL	patterns	for	the	blog	application.
Now,	it's	time	to	add	templates	to	display	posts	in	a	user-friendly
manner.

Create	the	following	directories	and	files	inside	your	blog	application
directory:

templates/

				blog/

								base.html

								post/

												list.html

												detail.html

The	preceding	structure	will	be	the	file	structure	for	our	templates.
The	base.html	file	will	include	the	main	HTML	structure	of	the
website	and	divide	the	content	into	the	main	content	area	and	a
sidebar.	The	list.html	and		detail.html	files	will	inherit	from	the	base.html
file	to	render	the	blog	post	list	and	detail	views,	respectively.

Django	has	a	powerful	template	language	that	allows	you	to	specify
how	data	is	displayed.	It	is	based	on	template	tags,	template
variables,	and	template	filters:

Template	tags	control	the	rendering	of	the	template	and

look	like	{%	tag	%}.

Template	variables	get	replaced	with	values	when	the

template	is	rendered	and	look	like	{{	variable	}}.

Template	filters	allow	you	to	modify	variables	for	display

and	look	like	{{	variable|filter	}}.

You	can	see	all	built-in	template	tags	and	filters	in
https://docs.djangoproject.com/en/2.0/ref/templates/builtins/.

Let's	edit	the	base.html	file	and	add	the	following	code:

{%	load	static	%}

<!DOCTYPE	html>

<html>

<head>

		<title>{%	block	title	%}{%	endblock	%}</title>

		<link	href="{%	static	"css/blog.css"	%}"	rel="stylesheet">

</head>

<body>

		<div	id="content">

				{%	block	content	%}

				{%	endblock	%}

		</div>

		<div	id="sidebar">

				<h2>My	blog</h2>

						<p>This	is	my	blog.</p>

		</div>

</body>

</html>

{%	load	static	%}	tells	Django	to	load	the	static	template	tags	that	are
provided	by	the	django.contrib.staticfiles	application,	which	is
contained	in	the	INSTALLED_APPS	setting.	After	loading	it,	you	are	able	to
use	the	{%	static	%}	template	filter	throughout	this	template.	With
this	template	filter,	you	can	include	static	files,	such	as	the	blog.css
file,	that	you	will	find	in	the	code	of	this	example	under	the	static/
directory	of	the	blog	application.	Copy	the	static/	directory	from	the
code	that	comes	along	with	this	chapter	into	the	same	location	of
your	project	to	apply	the	CSS	style	sheets.

You	can	see	that	there	are	two	{%	block	%}	tags.	These	tell	Django	that
we	want	to	define	a	block	in	that	area.	Templates	that	inherit	from
this	template	can	fill	in	the	blocks	with	content.	We	have	defined	a

https://docs.djangoproject.com/en/2.0/ref/templates/builtins/

block	called	title	and	a	block	called	content.

Let's	edit	the	post/list.html	file	and	make	it	look	like	the	following:

{%	extends	"blog/base.html"	%}

{%	block	title	%}My	Blog{%	endblock	%}

{%	block	content	%}

		<h1>My	Blog</h1>

		{%	for	post	in	posts	%}

				<h2>

						

								{{	post.title	}}

						

				</h2>

				<p	class="date">

						Published	{{	post.publish	}}	by	{{	post.author	}}

				</p>

				{{	post.body|truncatewords:30|linebreaks	}}

		{%	endfor	%}

{%	endblock	%}

With	the	{%	extends	%}	template	tag,	we	tell	Django	to	inherit	from	the
blog/base.html	template.	Then,	we	are	filling	the	title	and	content	blocks
of	the	base	template	with	content.	We	iterate	through	the	posts	and
display	their	title,	date,	author,	and	body,	including	a	link	in	the
title	to	the	canonical	URL	of	the	post.	In	the	body	of	the	post,	we	are
applying	two	template	filters:	truncatewords	truncates	the	value	to	the
number	of	words	specified,	and	linebreaks	converts	the	output	into
HTML	line	breaks.	You	can	concatenate	as	many	template	filters	as
you	wish;	each	one	will	be	applied	to	the	output	generated	by	the
preceding	one.

Open	the	shell	and	execute	the	python	manage.py	runserver	command	to
start	the	development	server.	Open	http://127.0.0.1:8000/blog/	in	your
browser,	and	you	will	see	everything	running.	Note	that	you	need	to
have	some	posts	with	the	Published	status	to	show	them	here.	You
should	see	something	like	this:

Then,	let's	edit	the	post/detail.html	file:

{%	extends	"blog/base.html"	%}

{%	block	title	%}{{	post.title	}}{%	endblock	%}

{%	block	content	%}

		<h1>{{	post.title	}}</h1>

		<p	class="date">

				Published	{{	post.publish	}}	by	{{	post.author	}}

		</p>

		{{	post.body|linebreaks	}}

{%	endblock	%}

Now,	you	can	return	to	your	browser	and	click	on	one	of	the	post
titles	to	take	a	look	at	the	detail	view	of	a	post.	You	should	see
something	like	this:

Take	a	look	at	the	URL—it	should	be	/blog/2017/12/14/who-was-django-
reinhardt/.	We	have	designed	SEO-friendly	URLs	for	our	blog	posts.

Adding	pagination
When	you	start	adding	content	to	your	blog,	you	will	soon	realize
you	need	to	split	the	list	of	posts	across	several	pages.	Django	has	a
built-in	pagination	class	that	allows	you	to	manage	paginated	data
easily.

Edit	the	views.py	file	of	the	blog	application	to	import	the	Django
paginator	classes	and	modify	the	post_list	view,	as	follows:

from	django.core.paginator	import	Paginator,	EmptyPage,\

																																		PageNotAnInteger

	

def	post_list(request):

				object_list	=	Post.published.all()

				paginator	=	Paginator(object_list,	3)	#	3	posts	in	each	page

				page	=	request.GET.get('page')

				try:

								posts	=	paginator.page(page)

				except	PageNotAnInteger:

								#	If	page	is	not	an	integer	deliver	the	first	page

								posts	=	paginator.page(1)

				except	EmptyPage:

								#	If	page	is	out	of	range	deliver	last	page	of	results

								posts	=	paginator.page(paginator.num_pages)

				return	render(request,

																		'blog/post/list.html',

																		{'page':	page,

																			'posts':	posts})

This	is	how	pagination	works:

1.	 We	instantiate	the	Paginator	class	with	the	number	of	objects

we	want	to	display	on	each	page.

2.	 We	get	the	page	GET	parameter	that	indicates	the	current	page

number.

3.	 We	obtain	the	objects	for	the	desired	page	calling	the	page()

method	of	Paginator.

4.	 If	the	page	parameter	is	not	an	integer,	we	retrieve	the	first

page	of	results.	If	this	parameter	is	a	number	higher	than

the	last	page	of	results,	we	will	retrieve	the	last	page.

5.	 We	pass	the	page	number	and	retrieved	objects	to	the

template.

Now,	we	have	to	create	a	template	to	display	the	paginator	so	that	it
can	be	included	in	any	template	that	uses	pagination.	In	the
templates/	folder	of	the	blog	application,	create	a	new	file	and	name
it	pagination.html.	Add	the	following	HTML	code	to	the	file:

<div	class="pagination">

		

				{%	if	page.has_previous	%}

						Previous

				{%	endif	%}

				

						Page	{{	page.number	}}	of	{{	page.paginator.num_pages	}}.

				

						{%	if	page.has_next	%}

								Next

						{%	endif	%}

		

</div>

The	pagination	template	expects	a	Page	object	in	order	to	render
previous	and	next	links	and	to	display	the	current	page	and	total
pages	of	results.	Let's	return	to	the	blog/post/list.html	template	and
include	the	pagination.html	template	at	the	bottom	of	the	{%	content	%}
block,	as	follows:

{%	block	content	%}

		...

		{%	include	"pagination.html"	with	page=posts	%}

{%	endblock	%}

Since	the	Page	object	we	are	passing	to	the	template	is	called	posts,	we
include	the	pagination	template	in	the	post	list	template,	passing
the	parameters	to	render	it	correctly.	You	can	follow	this	method	to
reuse	your	pagination	template	in	paginated	views	of	different
models.

Now,	open	http://127.0.0.1:8000/blog/	in	your	browser.	You	should	see
the	pagination	at	the	bottom	of	the	post	list	and	should	be	able	to
navigate	through	pages:

Using	class-based	views
Class-based	views	are	an	alternative	way	to	implement	views	as
Python	objects	instead	of	functions.	Since	a	view	is	a	callable	that
takes	a	web	request	and	returns	a	web	response,	you	can	also	define
your	views	as	class	methods.	Django	provides	base	view	classes	for
this.	All	of	them	inherit	from	the	View	class,	which	handles	HTTP
method	dispatching	and	other	common	functionalities.

Class-based	views	offer	advantages	over	function-based	views	for
some	use	cases.	They	have	the	following	features:

Organizing	code	related	to	HTTP	methods,	such	as	GET,	POST,

or	PUT,	in	separate	methods	instead	of	using	conditional

branching

Using	multiple	inheritance	to	create	reusable	view	classes

(also	known	as	mixins)

You	can	take	a	look	at	an	introduction	to	class-based	views	at	https:/
/docs.djangoproject.com/en/2.0/topics/class-based-views/intro/.

We	will	change	our	post_list	view	into	a	class-based	view	to	use	the
generic	ListView	offered	by	Django.	This	base	view	allows	you	to	list
objects	of	any	kind.

Edit	the	views.py	file	of	your	blog	application	and	add	the	following
code:

from	django.views.generic	import	ListView

	

https://docs.djangoproject.com/en/2.0/topics/class-based-views/intro/

class	PostListView(ListView):

				queryset	=	Post.published.all()

				context_object_name	=	'posts'

				paginate_by	=	3

				template_name	=	'blog/post/list.html'

This	class-based	view	is	analogous	to	the	previous	post_list	view.	In
the	preceding	code,	we	are	telling	ListView	to	do	the	following	things:

Use	a	specific	QuerySet	instead	of	retrieving	all	objects.

Instead	of	defining	a	queryset	attribute,	we	could	have

specified	model	=	Post	and	Django	would	have	built	the	generic

Post.objects.all()	QuerySet	for	us.

Use	the	context	variable	posts	for	the	query	results.	The

default	variable	is	object_list	if	we	don't	specify	any

context_object_name.

Paginate	the	result	displaying	three	objects	per	page.

Use	a	custom	template	to	render	the	page.	If	we	don't	set	a

default	template,	ListView	will	use	blog/post_list.html.

Now,	open	the	urls.py	file	of	your	blog	application,	comment	the
preceding	post_list	URL	pattern,	and	add	a	new	URL	pattern	using
the	PostListView	class,	as	follows:

urlpatterns	=	[

				#	post	views

				#	path('',	views.post_list,	name='post_list'),

				path('',	views.PostListView.as_view(),	name='post_list'),

				path('<int:year>/<int:month>/<int:day>/<slug:post>/',

									views.post_detail,

									name='post_detail'),

]

In	order	to	keep	pagination	working,	we	have	to	use	the	right	page

object	that	is	passed	to	the	template.	Django's	ListView	generic	view
passes	the	selected	page	in	a	variable	called	page_obj,	so	you	have	to
edit	your	post/list.html	template	accordingly	to	include	the	paginator
using	the	right	variable,	as	follows:

{%	include	"pagination.html"	with	page=page_obj	%}

Open	http://127.0.0.1:8000/blog/	in	your	browser	and	verify	that
everything	works	the	same	way	as	with	the	previous	post_list	view.
This	is	a	simple	example	of	a	class-based	view	that	uses	a	generic
class	provided	by	Django.	You	will	learn	more	about	class-based
views	in	Chapter	10,	Building	an	E-Learning	Platform,	and	successive
chapters.

Summary
In	this	chapter,	you	have	learned	the	basics	of	the	Django	web
framework	by	creating	a	basic	blog	application.	You	have	designed
the	data	models	and	applied	migrations	to	your	project.	You	have
created	the	views,	templates,	and	URLs	for	your	blog,	including
object	pagination.

In	the	next	chapter,	you	will	learn	how	to	enhance	your	blog
application	with	a	comment	system	and	tagging	functionality	and
allow	your	users	to	share	posts	by	email.

Enhancing	Your	Blog	with
Advanced	Features
In	the	preceding	chapter,	you	created	a	basic	blog	application.	Now,
you	will	turn	your	application	into	a	fully	functional	blog	with
advanced	features,	such	as	sharing	posts	by	email,	adding
comments,	tagging	posts,	and	retrieving	posts	by	similarity.	In	this
chapter,	you	will	learn	the	following	topics:

Sending	emails	with	Django

Creating	forms	and	handling	them	in	views

Creating	forms	from	models

Integrating	third-party	applications

Building	complex	QuerySets

Sharing	posts	by	email
First,	we	will	allow	users	to	share	posts	by	sending	them	emails.
Take	a	short	time	to	think	how	you	would	use	views,	URLs,	and
templates	to	create	this	functionality	using	what	you	have	learned
in	the	preceding	chapter.	Now,	check	what	you	need	in	order	to
allow	your	users	to	send	posts	by	email.	You	will	need	to	do	the
following	things:

Create	a	form	for	users	to	fill	in	their	name	and	email,	the

email	recipient,	and	optional	comments

Create	a	view	in	the	views.py	file	that	handles	the	posted	data

and	sends	the	email

Add	a	URL	pattern	for	the	new	view	in	the	urls.py	file	of	the

blog	application

Create	a	template	to	display	the	form

Creating	forms	with	Django
Let's	start	by	building	the	form	to	share	posts.	Django	has	a	built-in
forms	framework	that	allows	you	to	create	forms	in	an	easy	manner.
The	forms	framework	allows	you	to	define	the	fields	of	your	form,
specify	how	they	have	to	be	displayed,	and	indicate	how	they	have
to	validate	input	data.	The	Django	forms	framework	offers	a	flexible
way	to	render	forms	and	handle	the	data.

Django	comes	with	two	base	classes	to	build	forms:

Form:	Allows	you	to	build	standard	forms

ModelForm:	Allows	you	to	build	forms	tied	to	model	instances

First,	create	a	forms.py	file	inside	the	directory	of	your	blog	application
and	make	it	look	like	this:

from	django	import	forms

	

class	EmailPostForm(forms.Form):

				name	=	forms.CharField(max_length=25)

				email	=	forms.EmailField()

				to	=	forms.EmailField()

				comments	=	forms.CharField(required=False,

																															widget=forms.Textarea)

This	is	your	first	Django	form.	Take	a	look	at	the	code.	We	have
created	a	form	by	inheriting	the	base	Form	class.	We	use	different
field	types	for	Django	to	validate	fields	accordingly.

Forms	can	reside	anywhere	in	your	Django	project.	The	convention	is	to
place	them	inside	a	forms.py	file	for	each	application.

The	name	field	is	CharField.	This	type	of	field	is	rendered	as	an	<input
type="text">	HTML	element.	Each	field	type	has	a	default	widget	that
determines	how	the	field	is	rendered	in	HTML.	The	default	widget
can	be	overridden	with	the	widget	attribute.	In	the	comments	field,	we
use	a	Textarea	widget	to	display	it	as	a	<textarea>	HTML	element
instead	of	the	default	<input>	element.

Field	validation	also	depends	on	the	field	type.	For	example,	the
email	and	to	fields	are	EmailField	fields.	Both	fields	require	a	valid	email
address,	otherwise,	the	field	validation	will	raise	a	forms.ValidationError
exception	and	the	form	will	not	validate.	Other	parameters	are	also
taken	into	account	for	form	validation:	we	define	a	maximum
length	of	25	characters	for	the	name	field	and	make	the	comments	field
optional	with	required=False.	All	of	this	is	also	taken	into	account	for
field	validation.	The	field	types	used	in	this	form	are	only	a	part	of
Django	form	fields.	For	a	list	of	all	form	fields	available,	you	can
visit	https://docs.djangoproject.com/en/2.0/ref/forms/fields/.

https://docs.djangoproject.com/en/2.0/ref/forms/fields/

Handling	forms	in	views
You	have	to	create	a	new	view	that	handles	the	form	and	sends	an
email	when	it's	successfully	submitted.	Edit	the	views.py	file	of	your
blog	application	and	add	the	following	code	to	it:

from	.forms	import	EmailPostForm

	

def	post_share(request,	post_id):

				#	Retrieve	post	by	id

				post	=	get_object_or_404(Post,	id=post_id,	status='published')

				if	request.method	==	'POST':

								#	Form	was	submitted

								form	=	EmailPostForm(request.POST)

								if	form.is_valid():

												#	Form	fields	passed	validation

												cd	=	form.cleaned_data

												#	...	send	email

				else:

								form	=	EmailPostForm()

				return	render(request,	'blog/post/share.html',	{'post':	post,

																																																				'form':	form})

This	view	works	as	follows:

We	define	the	post_share	view	that	takes	the	request	object	and

the	post_id	variable	as	parameters.

We	use	the	get_object_or_404()	shortcut	to	retrieve	the	post	by

ID	and	make	sure	that	the	retrieved	post	has	a	published

status.

We	use	the	same	view	for	both	displaying	the	initial	form

and	processing	the	submitted	data.	We	differentiate	whether

the	form	was	submitted	or	not	based	on	the	request	method

and	submit	the	form	using	POST.	We	assume	that	if	we	get	a

GET	request,	an	empty	form	has	to	be	displayed,	and	if	we	get

a	POST	request,	the	form	is	submitted	and	needs	to	be

processed.	Therefore,	we	use	request.method	==	'POST'	to

distinguish	between	the	two	scenarios.

The	following	is	the	process	to	display	and	handle	the	form:

1.	 When	the	view	is	loaded	initially	with	a	GET	request,	we

create	a	new	form	instance	that	will	be	used	to	display	the

empty	form	in	the	template:

form	=	EmailPostForm()

2.	 The	user	fills	in	the	form	and	submits	it	via	POST.	Then,	we

create	a	form	instance	using	the	submitted	data	that	is

contained	in	request.POST:

if	request.method	==	'POST':

				#	Form	was	submitted

				form	=	EmailPostForm(request.POST)

3.	 After	this,	we	validate	the	submitted	data	using	the	form's

is_valid()	method.	This	method	validates	the	data	introduced

in	the	form	and	returns	True	if	all	fields	contain	valid	data.	If

any	field	contains	invalid	data,	then	is_valid()	returns	False.

You	can	see	a	list	of	validation	errors	by	accessing	form.errors.

4.	 If	the	form	is	not	valid,	we	render	the	form	in	the	template

again	with	the	submitted	data.	We	will	display	validation

errors	in	the	template.

5.	 If	the	form	is	valid,	we	retrieve	the	validated	data	accessing

form.cleaned_data.	This	attribute	is	a	dictionary	of	form	fields

and	their	values.

If	your	form	data	does	not	validate,	cleaned_data	will	contain	only	the	valid
fields.

Now,	let's	learn	how	to	send	emails	using	Django	to	put	everything
together.

Sending	emails	with	Django
Sending	emails	with	Django	is	pretty	straightforward.	First,	you	will
need	to	have	a	local	SMTP	server	or	define	the	configuration	of	an
external	SMTP	server	by	adding	the	following	settings	in	the
settings.py	file	of	your	project:

EMAIL_HOST:	The	SMTP	server	host;	the	default	is	localhost

EMAIL_PORT:	The	SMTP	port;	the	default	is	25

EMAIL_HOST_USER:	Username	for	the	SMTP	server

EMAIL_HOST_PASSWORD:	Password	for	the	SMTP	server

EMAIL_USE_TLS:	Whether	to	use	a	TLS	secure	connection

EMAIL_USE_SSL:	Whether	to	use	an	implicit	TLS	secure

connection

If	you	cannot	use	an	SMTP	server,	you	can	tell	Django	to	write
emails	to	the	console	by	adding	the	following	setting	to
the	settings.py	file:

EMAIL_BACKEND	=	'django.core.mail.backends.console.EmailBackend'

By	using	this	setting,	Django	will	output	all	emails	to	the	shell.	This
is	very	useful	for	testing	your	application	without	an	SMTP	server.

If	you	want	to	send	emails,	but	you	don't	have	a	local	SMTP	server,
you	can	probably	use	the	SMTP	server	of	your	email	service
provider.	The	following	sample	configuration	is	valid	for	sending

emails	via	Gmail	servers	using	a	Google	account:

EMAIL_HOST	=	'smtp.gmail.com'

EMAIL_HOST_USER	=	'your_account@gmail.com'

EMAIL_HOST_PASSWORD	=	'your_password'

EMAIL_PORT	=	587

EMAIL_USE_TLS	=	True

Run	the	python	manage.py	shell	command	to	open	the	Python	shell	and
send	an	email,	as	follows:

>>>	from	django.core.mail	import	send_mail

>>>	send_mail('Django	mail',	'This	e-mail	was	sent	with	Django.',	

'your_account@gmail.com',	['your_account@gmail.com'],	fail_silently=False)

The	send_mail()	function	takes	the	subject,	message,	sender,	and	list	of
recipients	as	required	arguments.	By	setting	the	optional	argument
fail_silently=False,	we	are	telling	it	to	raise	an	exception	if	the	email
couldn't	be	sent	correctly.	If	the	output	you	see	is	1,	then	your	email
was	successfully	sent.

If	you	are	sending	emails	by	Gmail	with	the	preceding
configuration,	you	might	have	to	enable	access	for	less	secured	apps
at	https://myaccount.google.com/lesssecureapps,	as	follows:

https://myaccount.google.com/lesssecureapps

Now,	we	will	add	this	functionality	to	our	view.

Edit	the	post_share	view	in	the	views.py	file	of	the	blog	application	as
follows:

from	django.core.mail	import	send_mail

def	post_share(request,	post_id):

				#	Retrieve	post	by	id

				post	=	get_object_or_404(Post,	id=post_id,	status='published')

				sent	=	False

	

				if	request.method	==	'POST':

								#	Form	was	submitted

								form	=	EmailPostForm(request.POST)

								if	form.is_valid():

												#	Form	fields	passed	validation

												cd	=	form.cleaned_data

												post_url	=	request.build_absolute_uri(

																																										post.get_absolute_url())

												subject	=	'{}	({})	recommends	you	reading	"

{}"'.format(cd['name'],	cd['email'],	post.title)

												message	=	'Read	"{}"	at	{}\n\n{}\'s	comments:	

{}'.format(post.title,	post_url,	cd['name'],	cd['comments'])

												send_mail(subject,	message,	'admin@myblog.com',

	[cd['to']])

												sent	=	True

				else:

								form	=	EmailPostForm()

				return	render(request,	'blog/post/share.html',	{'post':	post,

																																																				'form':	form,

																																																				'sent':	sent})

We	declare	a	sent	variable	and	set	it	to	True	when	the	post	was	sent.
We	will	use	that	variable	later	in	the	template	to	display	a	success
message	when	the	form	is	successfully	submitted.	Since	we	have	to
include	a	link	to	the	post	in	the	email,	we	will	retrieve	the	absolute
path	of	the	post	using	its	get_absolute_url()	method.	We	use	this	path
as	an	input	for	request.build_absolute_uri()	to	build	a	complete	URL,
including	HTTP	schema	and	hostname.	We	build	the	subject	and
the	message	body	of	the	email	using	the	cleaned	data	of	the
validated	form	and	finally	send	the	email	to	the	email	address
contained	in	the	to	field	of	the	form.

Now	that	your	view	is	complete,	remember	to	add	a	new	URL
pattern	for	it.	Open	the	urls.py	file	of	your	blog	application	and	add
the	post_share	URL	pattern,	as	follows:

urlpatterns	=	[

				#	...

				path('<int:post_id>/share/',

									views.post_share,	name='post_share'),

]

Rendering	forms	in	templates
After	creating	the	form,	programming	the	view,	and	adding	the
URL	pattern,	we	are	only	missing	the	template	for	this	view.	Create
a	new	file	in	the	blog/templates/blog/post/	directory	and	name	it
share.html;	add	the	following	code	to	it:

{%	extends	"blog/base.html"	%}

{%	block	title	%}Share	a	post{%	endblock	%}

{%	block	content	%}

		{%	if	sent	%}

				<h1>E-mail	successfully	sent</h1>

				<p>

						"{{	post.title	}}"	was	successfully	sent	to	{{	form.cleaned_data.to	}}.

				</p>

		{%	else	%}

				<h1>Share	"{{	post.title	}}"	by	e-mail</h1>

				<form	action="."	method="post">

						{{	form.as_p	}}

						{%	csrf_token	%}

						<input	type="submit"	value="Send	e-mail">

				</form>

		{%	endif	%}

{%	endblock	%}

This	is	the	template	to	display	the	form	or	a	success	message	when
it's	sent.	As	you	would	notice,	we	create	the	HTML	form	element,
indicating	that	it	has	to	be	submitted	by	the	POST	method:

<form	action="."	method="post">

Then,	we	include	the	actual	form	instance.	We	tell	Django	to	render
its	fields	in	HTML	paragraph	<p>	elements	with	the	as_p	method.	We
can	also	render	the	form	as	an	unordered	list	with	as_ul	or	as	an
HTML	table	with	as_table.	If	we	want	to	render	each	field,	we	can

also	iterate	through	the	fields,	as	in	the	following	example:

{%	for	field	in	form	%}

		<div>

				{{	field.errors	}}

				{{	field.label_tag	}}	{{	field	}}

		</div>

{%	endfor	%}

The	{%	csrf_token	%}	template	tag	introduces	a	hidden	field	with	an
autogenerated	token	to	avoid	cross-site	request	forgery
(CSRF)	attacks.	These	attacks	consist	of	a	malicious	website	or
program	performing	an	unwanted	action	for	a	user	on	your	site.
You	can	find	more	information	about	this	at	https://www.owasp.org/index.
php/Cross-Site_Request_Forgery_(CSRF).

The	preceding	tag	generates	a	hidden	field	that	looks	like	this:

<input	type='hidden'	name='csrfmiddlewaretoken'	

value='26JjKo2lcEtYkGoV9z4XmJIEHLXN5LDR'	/>

By	default,	Django	checks	for	the	CSRF	token	in	all	POST	requests.	Remember
that	you	include	the	csrf_token	tag	in	all	forms	that	are	submitted	via	POST.

Edit	your	blog/post/detail.html	template	and	add	the	following	link	to
the	share	post	URL	after	the	{{	post.body|linebreaks	}}	variable:

<p>

		

				Share	this	post

		

</p>

Remember	that	we	are	building	the	URL	dynamically	using	the	{%
url	%}	template	tag	provided	by	Django.	We	are	using	the	namespace
called	blog	and	the	URL	named	post_share,	and	we	are	passing	the	post
ID	as	a	parameter	to	build	the	absolute	URL.

Now,	start	the	development	server	with	the	python	manage.py

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

runserver	command	and	open	http://127.0.0.1:8000/blog/	in	your	browser.
Click	on	any	post	title	to	view	its	detail	page.	Under	the	post	body,
you	should	see	the	link	we	just	added,	as	shown	in	the	following
screenshot:

Click	on	Share	this	post,	and	you	should	see	the	page	including	the
form	to	share	this	post	by	email,	as	follows:

CSS	styles	for	the	form	are	included	in	the	example	code	in	the
static/css/blog.css	file.	When	you	click	on	the	SEND	E-MAIL	button,
the	form	is	submitted	and	validated.	If	all	fields	contain	valid	data,
you	will	get	a	success	message,	as	follows:

If	you	input	invalid	data,	you	will	see	that	the	form	is	rendered
again,	including	all	validation	errors:

Note	that	some	modern	browsers	will	prevent	you	from	submitting
the	form	with	empty	or	erroneous	fields.	This	is	because	of	form
validation	done	by	the	browser	based	on	field	types	and	restrictions
per	field.	In	this	case,	the	form	won't	be	submitted	and	the	browser
will	display	an	error	message	for	the	fields	that	are	wrong.

Our	form	for	sharing	posts	by	email	is	now	complete.	Let's	create	a
comment	system	for	our	blog.

Creating	a	comment	system
Now,	we	will	build	a	comment	system	for	the	blog,	wherein	the
users	will	be	able	to	comment	on	posts.	To	build	the	comment
system,	you	will	need	to	do	the	following	steps:

1.	 Create	a	model	to	save	comments

2.	 Create	a	form	to	submit	comments	and	validate	the	input

data

3.	 Add	a	view	that	processes	the	form	and	saves	the	new

comment	to	the	database

4.	 Edit	the	post	detail	template	to	display	the	list	of	comments

and	the	form	to	add	a	new	comment

First,	let's	build	a	model	to	store	comments.	Open	the	models.py	file	of
your	blog	application	and	add	the	following	code:

class	Comment(models.Model):	

				post	=	models.ForeignKey(Post,

																													on_delete=models.CASCADE,

																													related_name='comments')

				name	=	models.CharField(max_length=80)	

				email	=	models.EmailField()	

				body	=	models.TextField()	

				created	=	models.DateTimeField(auto_now_add=True)	

				updated	=	models.DateTimeField(auto_now=True)	

				active	=	models.BooleanField(default=True)	

	

				class	Meta:	

								ordering	=	('created',)	

	

				def	__str__(self):	

								return	'Comment	by	{}	on	{}'.format(self.name,	self.post)	

This	is	our	Comment	model.	It	contains	ForeignKey	to	associate	the
comment	with	a	single	post.	This	many-to-one	relationship	is
defined	in	the	Comment	model	because	each	comment	will	be	made	on
one	post,	and	each	post	may	have	multiple	comments.	The
related_name	attribute	allows	us	to	name	the	attribute	that	we	use	for
the	relation	from	the	related	object	back	to	this	one.	After	defining
this,	we	can	retrieve	the	post	of	a	comment	object	using	comment.post
and	retrieve	all	comments	of	a	post	using	post.comments.all().	If	you
don't	define	the	related_name	attribute,	Django	will	use	the	name	of	the
model	in	lowercase,	followed	by	_set		(that	is,	comment_set)	to	name	the
manager	of	the	related	object	back	to	this	one.

You	can	learn	more	about	many-to-one	relationships	at
https://docs.djangoproject.com/en/2.0/topics/db/examples/many_to_one/.

We	have	included	an	active	boolean	field	that	we	will	use	to
manually	deactivate	inappropriate	comments.	We	use	the	created
field	to	sort	comments	in	a	chronological	order	by	default.

The	new	Comment	model	you	just	created	is	not	yet	synchronized	into
the	database.	Run	the	following	command	to	generate	a	new
migration	that	reflects	the	creation	of	the	new	model:

python	manage.py	makemigrations	blog

You	should	see	the	following	output:

Migrations	for	'blog':

		blog/migrations/0002_comment.py

				-	Create	model	Comment

Django	has	generated	a	0002_comment.py	file	inside	the	migrations/
directory	of	the	blog	application.	Now,	you	will	need	to	create	the
related	database	schema	and	apply	the	changes	to	the	database.
Run	the	following	command	to	apply	existing	migrations:

https://docs.djangoproject.com/en/2.0/topics/db/examples/many_to_one/

python	manage.py	migrate

You	will	get	an	output	that	includes	the	following	line:

Applying	blog.0002_comment...	OK	

The	migration	we	just	created	has	been	applied,	and,	now,	a
blog_comment	table	exists	in	the	database.

Now,	we	can	add	our	new	model	to	the	administration	site	in	order
to	manage	comments	through	a	simple	interface.	Open	the	admin.py
file	of	the	blog	application,	import	the	Comment	model,	and	add	the
following	ModelAdmin	class:

from	.models	import	Post,	Comment

@admin.register(Comment)

class	CommentAdmin(admin.ModelAdmin):

				list_display	=	('name',	'email',	'post',	'created',	'active')

				list_filter	=	('active',	'created',	'updated')

				search_fields	=	('name',	'email',	'body')

Start	the	development	server	with	the	python	manage.py	runserver
command	and	open	http://127.0.0.1:8000/admin/	in	your	browser.	You
should	see	the	new	model	included	in	the	BLOG	section,	as	shown
in	the	following	screenshot:

The	model	is	now	registered	in	the	admin	site,	and	we	can	manage
Comment	instances	using	a	simple	interface.

Creating	forms	from	models
We	will	still	need	to	build	a	form	to	let	our	users	comment	on	blog
posts.	Remember	that	Django	has	two	base	classes	to	build	forms,
Form	and	ModelForm.	You	used	the	first	one	previously	to	let	your	users
share	posts	by	email.	In	the	present	case,	you	will	need	to	use
ModelForm	because	you	have	to	build	a	form	dynamically	from	your
Comment	model.	Edit	the	forms.py	file	of	your	blog	application	and	add	the
following	lines:

from	.models	import	Comment

	

class	CommentForm(forms.ModelForm):

				class	Meta:

								model	=	Comment

								fields	=	('name',	'email',	'body')

To	create	a	form	from	a	model,	we	will	just	need	to	indicate	which
model	to	use	to	build	the	form	in	the	Meta	class	of	the	form.	Django
introspects	the	model	and	builds	the	form	dynamically	for	us.	Each
model	field	type	has	a	corresponding	default	form	field	type.	The
way	we	define	our	model	fields	is	taken	into	account	for	form
validation.	By	default,	Django	builds	a	form	field	for	each	field
contained	in	the	model.	However,	you	can	explicitly	tell	the
framework	which	fields	you	want	to	include	in	your	form	using	a
fields	list	or	define	which	fields	you	want	to	exclude	using	an	exclude
list	of	fields.	For	our	CommentForm	form,	we	will	just	use	the	name,	email,
and	body	fields	because	those	are	the	only	fields	our	users	will	be	able
to	fill	in.

Handling	ModelForms	in	views
We	will	use	the	post	detail	view	to	instantiate	the	form	and	process
it	in	order	to	keep	it	simple.	Edit	the	views.py	file,	add	imports	for	the
Comment	model	and	the	CommentForm	form,	and	modify	the	post_detail	view
to	make	it	look	like	the	following:

from	.models	import	Post,	Comment

from	.forms	import	EmailPostForm,	CommentForm

def	post_detail(request,	year,	month,	day,	post):

				post	=	get_object_or_404(Post,	slug=post,

																																			status='published',

																																			publish__year=year,

																																			publish__month=month,

																																			publish__day=day)

	

				#	List	of	active	comments	for	this	post

				comments	=	post.comments.filter(active=True)

				new_comment	=	None

				if	request.method	==	'POST':

								#	A	comment	was	posted

								comment_form	=	CommentForm(data=request.POST)

								if	comment_form.is_valid():

												#	Create	Comment	object	but	don't	save	to	database	yet										

												new_comment	=	comment_form.save(commit=False)

												#	Assign	the	current	post	to	the	comment

												new_comment.post	=	post

												#	Save	the	comment	to	the	database

												new_comment.save()

				else:

								comment_form	=	CommentForm()																			

				return	render(request,

																		'blog/post/detail.html',

																		{'post':	post,

																			'comments':	comments,

																			'new_comment':	new_comment,

																			'comment_form':	comment_form})

Let's	review	what	we	have	added	to	our	view.	We	used	the
post_detail	view	to	display	the	post	and	its	comments.	We	added	a
QuerySet	to	retrieve	all	active	comments	for	this	post,	as	follows:

comments	=	post.comments.filter(active=True)

We	build	this	QuerySet,	starting	from	the	post	object.	We	use	the
manager	for	related	objects	we	defined	as	comments	using	the
related_name	attribute	of	the	relationship	in	the	Comment	model.

We	also	use	the	same	view	to	let	our	users	add	a	new	comment.
Therefore,	we	initialize	the	new_comment	variable	by	setting	it	to	None.	We
will	use	this	variable	when	a	new	comment	is	created.	We	build	a
form	instance	with	comment_form	=	CommentForm()	if	the	view	is	called	by	a
GET	request.	If	the	request	is	done	via	POST,	we	instantiate	the	form
using	the	submitted	data	and	validate	it	using	the	is_valid()	method.
If	the	form	is	invalid,	we	render	the	template	with	the	validation
errors.	If	the	form	is	valid,	we	take	the	following	actions:

1.	 We	create	a	new	Comment	object	by	calling	the	form's	save()

method	and	assign	it	to	the	new_comment	variable	as	follows:

new_comment	=	comment_form.save(commit=False)

The	save()	method	creates	an	instance	of	the	model	that	the
form	is	linked	to	and	saves	it	to	the	database.	If	you	call	it
using	commit=False,	you	create	the	model	instance,	but	you	don't
save	it	to	the	database	yet.	This	comes	in	handy	when	you
want	to	modify	the	object	before	finally	saving	it,	which	is
what	we	do	next.

The	save()	method	is	available	for	ModelForm	but	not	for	Form	instances,	since	they
are	not	linked	to	any	model.

2.	 We	assign	the	current	post	to	the	comment	we	just	created:

new_comment.post	=	post

By	doing	this,	we	are	specifying	that	the	new	comment
belongs	to	this	post.

3.	 Finally,	we	save	the	new	comment	to	the	database	by	calling

its	save()	method:

new_comment.save()

Our	view	is	now	ready	to	display	and	process	new	comments.

Adding	comments	to	the	post
detail	template
We	have	created	the	functionality	to	manage	comments	for	a	post.
Now,	we	will	need	to	adapt	our	post/detail.html	template	to	do	the
following	things:

Display	the	total	number	of	comments	for	the	post

Display	the	list	of	comments

Display	a	form	for	users	to	add	a	new	comment

First,	we	will	add	the	total	comments.	Open	the	post/detail.html
template	and	append	the	following	code	to	the	content	block:

{%	with	comments.count	as	total_comments	%}

		<h2>

				{{	total_comments	}}	comment{{	total_comments|pluralize	}}

		</h2>

{%	endwith	%}

We	are	using	the	Django	ORM	in	the	template,	executing	the
QuerySet	comments.count().	Note	that	Django	template	language	doesn't
use	parentheses	for	calling	methods.	The	{%	with	%}	tag	allows	us	to
assign	a	value	to	a	new	variable	that	will	be	available	to	be	used
until	the	{%	endwith	%}	tag.

The	{%	with	%}	template	tag	is	useful	to	avoid	hitting	the	database	or
accessing	expensive	methods	multiple	times.

We	use	the	pluralize	template	filter	to	display	a	plural	suffix	for	the
word	comment,	depending	on	the	total_comments	value.	Template

filters	take	the	value	of	the	variable	they	are	applied	to	as	their
input	and	return	a	computed	value.	We	will	discuss	template	filters
in	Chapter	3,	Extending	Your	Blog	Application.

The	pluralize	template	filter	returns	a	string	with	the	letter	"s"	if	the
value	is	different	from	1.	The	preceding	text	will	be	rendered	as	0
comments,	1	comment,	or	N	comments.	Django	includes	plenty	of
template	tags	and	filters	that	help	you	display	information	in	the
way	you	want.

Now,	let's	include	the	list	of	comments.	Append	the	following	lines
to	the	post/detail.html	template	below	the	preceding	code:

{%	for	comment	in	comments	%}

		<div	class="comment">

				<p	class="info">

						Comment	{{	forloop.counter	}}	by	{{	comment.name	}}

						{{	comment.created	}}

				</p>

				{{	comment.body|linebreaks	}}

		</div>

{%	empty	%}

		<p>There	are	no	comments	yet.</p>

{%	endfor	%}

We	use	the	{%	for	%}	template	tag	to	loop	through	comments.	We
display	a	default	message	if	the	comments	list	is	empty,	informing	our
users	that	there	are	no	comments	on	this	post	yet.	We	enumerate
comments	with	the	{{	forloop.counter	}}	variable,	which	contains	the
loop	counter	in	each	iteration.	Then,	we	display	the	name	of	the
user	who	posted	the	comment,	the	date,	and	the	body	of	the
comment.

Finally,	you	need	to	render	the	form	or	display	a	successful	message
instead	when	it	is	successfully	submitted.	Add	the	following	lines
just	below	the	preceding	code:

{%	if	new_comment	%}

		<h2>Your	comment	has	been	added.</h2>

{%	else	%}

		<h2>Add	a	new	comment</h2>

		<form	action="."	method="post">

				{{	comment_form.as_p	}}

				{%	csrf_token	%}

				<p><input	type="submit"	value="Add	comment"></p>

		</form>

{%	endif	%}

The	code	is	pretty	straightforward:	if	the	new_comment	object	exists,	we
display	a	success	message	because	the	comment	was	successfully
created.	Otherwise,	we	render	the	form	with	a	paragraph	<p>
element	for	each	field	and	include	the	CSRF	token	required	for	POST
requests.	Open	http://127.0.0.1:8000/blog/	in	your	browser	and	click	on
a	post	title	to	take	a	look	at	its	detail	page.	You	will	see	something
like	the	following	screenshot:

Add	a	couple	of	comments	using	the	form.	They	should	appear
under	your	post	in	chronological	order,	as	follows:

Open	http://127.0.0.1:8000/admin/blog/comment/	in	your	browser.	You	will
see	the	admin	page	with	the	list	of	comments	you	created.	Click	on
one	of	them	to	edit	it,	uncheck	the	Active	checkbox,	and	click	on	the
Save	button.	You	will	be	redirected	to	the	list	of	comments	again,
and	the	Active	column	will	display	an	inactive	icon	for	the
comment.	It	should	look	like	the	first	comment	in	the	following
screenshot:

If	you	return	to	the	post	detail	view,	you	will	note	that	the	deleted
comment	is	not	displayed	any	more;	neither	is	it	being	counted	for
the	total	number	of	comments.	Thanks	to	the	active	field,	you	can
deactivate	inappropriate	comments	and	avoid	showing	them	in
your	posts.

Adding	the	tagging
functionality
After	implementing	your	comment	system,	you	will	create	a	way	to
tag	our	posts.	You	will	do	this	by	integrating	a	third-party	Django
tagging	application	in	our	project.	The	django-taggit	module	is	a
reusable	application	that	primarily	offers	you	a	Tag	model	and	a
manager	to	easily	add	tags	to	any	model.	You	can	take	a	look	at	its
source	code	at	https://github.com/alex/django-taggit.

First,	you	will	need	to	install	django-taggit	via	pip	by	running	the
following	command:

pip	install	django_taggit==0.22.2

Then,	open	the	settings.py	file	of	the	mysite	project	and	add	taggit	to
your	INSTALLED_APPS	setting,	as	follows:

INSTALLED_APPS	=	[

				#	...

				'blog.apps.BlogConfig',

				'taggit',

]

Open	the	models.py	file	of	your	blog	application	and	add	the
TaggableManager	manager	provided	by	django-taggit	to	the	Post	model	using
the	following	code:

from	taggit.managers	import	TaggableManager

class	Post(models.Model):

				#	...

				tags	=	TaggableManager()

https://github.com/alex/django-taggit

The	tags	manager	will	allow	you	to	add,	retrieve,	and	remove	tags
from	Post	objects.

Run	the	following	command	to	create	a	migration	for	your	model
changes:

python	manage.py	makemigrations	blog

You	should	get	the	following	output:

Migrations	for	'blog':

		blog/migrations/0003_post_tags.py

				-	Add	field	tags	to	post

Now,	run	the	following	command	to	create	the	required	database
tables	for	django-taggit	models	and	to	synchronize	your	model
changes:

python	manage.py	migrate		

You	will	see	an	output	indicating	that	migrations	have	been	applied,
as	follows:

Applying	taggit.0001_initial...	OK

Applying	taggit.0002_auto_20150616_2121...	OK

Applying	blog.0003_post_tags...	OK

Your	database	is	now	ready	to	use	django-taggit	models.	Let's	learn
how	to	use	the	tags	manager.	Open	the	terminal	with	the	python
manage.py	shell	command	and	enter	the	following	code;	first,	we	will
retrieve	one	of	our	posts	(the	one	with	the	1	ID):

>>>	from	blog.models	import	Post

>>>	post	=	Post.objects.get(id=1)

Then,	add	some	tags	to	it	and	retrieve	its	tags	to	check	whether	they
were	successfully	added:

>>>	post.tags.add('music',	'jazz',	'django')

>>>	post.tags.all()

<QuerySet	[<Tag:	jazz>,	<Tag:	music>,	<Tag:	django>]>

Finally,	remove	a	tag	and	check	the	list	of	tags	again:

>>>	post.tags.remove('django')

>>>	post.tags.all()

<QuerySet	[<Tag:	jazz>,	<Tag:	music>]>

That	was	easy,	right?	Run	the	python	manage.py	runserver	command	to
start	the	development	server	again	and	open
http://127.0.0.1:8000/admin/taggit/tag/	in	your	browser.	You	will	see	the
admin	page	with	the	list	of	Tag	objects	of	the	taggit	application:

Navigate	to	http://127.0.0.1:8000/admin/blog/post/	and	click	on	a	post	to
edit	it.	You	will	see	that	posts	now	include	a	new	Tags	field,	as
follows,	where	you	can	easily	edit	tags:

Now,	we	will	edit	our	blog	posts	to	display	tags.	Open	the
blog/post/list.html	template	and	add	the	following	HTML	code	below
the	post	title:

<p	class="tags">Tags:	{{	post.tags.all|join:",	"	}}</p>

The	join	template	filter	works	as	the	Python	string	join()	method	to
concatenate	elements	with	the	given	string.	Open
http://127.0.0.1:8000/blog/	in	your	browser.	You	should	be	able	to	see
the	list	of	tags	under	each	post	title:

Now,	we	will	edit	our	post_list	view	to	let	users	list	all	posts	tagged
with	a	specific	tag.	Open	the	views.py	file	of	your	blog	application,
import	the	Tag	model	form	django-taggit,	and	change	the	post_list	view
to	optionally	filter	posts	by	a	tag,	as	follows:

from	taggit.models	import	Tag

def	post_list(request,	tag_slug=None):

				object_list	=	Post.published.all()

				tag	=	None

				if	tag_slug:

								tag	=	get_object_or_404(Tag,	slug=tag_slug)

								object_list	=	object_list.filter(tags__in=[tag])

				paginator	=	Paginator(object_list,	3)	#	3	posts	in	each	page

				#	...

The	post_list	view	now	works	as	follows:

1.	 It	takes	an	optional	tag_slug	parameter	that	has	a	None	default

value.	This	parameter	will	come	in	the	URL.

2.	 Inside	the	view,	we	build	the	initial	QuerySet,	retrieving	all

published	posts,	and	if	there	is	a	given	tag	slug,	we	get	the	Tag

object	with	the	given	slug	using	the	get_object_or_404()	shortcut.

3.	 Then,	we	filter	the	list	of	posts	by	the	ones	that	contain	the

given	tag.	Since	this	is	a	many-to-many	relationship,	we

have	to	filter	by	tags	contained	in	a	given	list,	which,	in	our

case,	contains	only	one	element.

Remember	that	QuerySets	are	lazy.	The	QuerySets	to	retrieve	posts
will	only	be	evaluated	when	we	loop	over	the	post	list	when
rendering	the	template.

Finally,	modify	the	render()	function	at	the	bottom	of	the	view	to	pass
the	tag	variable	to	the	template.	The	view	should	finally	look	like
this:

def	post_list(request,	tag_slug=None):	

				object_list	=	Post.published.all()	

				tag	=	None	

	

				if	tag_slug:	

								tag	=	get_object_or_404(Tag,	slug=tag_slug)	

								object_list	=	object_list.filter(tags__in=[tag])	

	

				paginator	=	Paginator(object_list,	3)	#	3	posts	in	each	page	

				page	=	request.GET.get('page')	

				try:	

								posts	=	paginator.page(page)	

				except	PageNotAnInteger:	

								#	If	page	is	not	an	integer	deliver	the	first	page	

								posts	=	paginator.page(1)	

				except	EmptyPage:	

								#	If	page	is	out	of	range	deliver	last	page	of	results	

								posts	=	paginator.page(paginator.num_pages)	

				return	render(request,	'blog/post/list.html',	{'page':	page,	

																																																			'posts':	posts,	

																																																			'tag':	tag})	

Open	the	urls.py	file	of	your	blog	application,	comment	out	the	class-
based	PostListView	URL	pattern,	and	uncomment	the	post_list	view,
like	this:

path('',	views.post_list,	name='post_list'),

#	path('',	views.PostListView.as_view(),	name='post_list'),

Add	the	following	additional	URL	pattern	to	list	posts	by	tag:

path('tag/<slug:tag_slug>/',

					views.post_list,	name='post_list_by_tag'),

As	you	can	see,	both	patterns	point	to	the	same	view,	but	we	are
naming	them	differently.	The	first	pattern	will	call	the	post_list	view
without	any	optional	parameters,	whereas	the	second	pattern	will
call	the	view	with	the	tag_slug	parameter.	We	use	a	slug	path
converter	for	matching	the	parameter	as	a	lowercase	string	with
ASCII	letters	or	numbers,	plus	the	hyphen	and	underscore
characters.

Since	we	are	using	the	post_list	view,	edit	the	blog/post/list.html
template	and	modify	the	pagination	to	use	the	posts	object:

{%	include	"pagination.html"	with	page=posts	%}

Add	the	following	lines	above	the	{%	for	%}	loop:

{%	if	tag	%}

		<h2>Posts	tagged	with	"{{	tag.name	}}"</h2>

{%	endif	%}

If	the	user	is	accessing	the	blog,	they	will	see	the	list	of	all	posts.	If
they	filter	by	posts	tagged	with	a	specific	tag,	they	will	see	the
tag	that	they	are	filtering	by.	Now,	change	the	way	tags	are
displayed,	as	follows:

<p	class="tags">

		Tags:

		{%	for	tag	in	post.tags.all	%}

				

						{{	tag.name	}}

				

				{%	if	not	forloop.last	%},	{%	endif	%}

		{%	endfor	%}

</p>

Now,	we	loop	through	all	the	tags	of	a	post	displaying	a	custom	link
to	the	URL	to	filter	posts	by	that	tag.	We	build	the	URL	with	{%	url
"blog:post_list_by_tag"	tag.slug	%},	using	the	name	of	the	URL	and
the	slug	tag	as	its	parameter.	We	separate	the	tags	by	commas.

Open	http://127.0.0.1:8000/blog/	in	your	browser	and	click	on	any	tag
link.	You	will	see	the	list	of	posts	filtered	by	that	tag,	like	this:

Retrieving	posts	by	similarity
Now	that	we	have	implemented	tagging	for	our	blog	posts,	we	can
do	many	interesting	things	with	them.	Using	tags,	we	can	classify
our	blog	posts	very	well.	Posts	about	similar	topics	will	have	several
tags	in	common.	We	will	build	a	functionality	to	display	similar
posts	by	the	number	of	tags	they	share.	In	this	way,	when	a	user
reads	a	post,	we	can	suggest	to	them	that	they	read	other	related
posts.

In	order	to	retrieve	similar	posts	for	a	specific	post,	we	need	to
perform	the	following	steps:

1.	 Retrieve	all	tags	for	the	current	post

2.	 Get	all	posts	that	are	tagged	with	any	of	those	tags

3.	 Exclude	the	current	post	from	that	list	to	avoid

recommending	the	same	post

4.	 Order	the	results	by	the	number	of	tags	shared	with	the

current	post

5.	 In	case	of	two	or	more	posts	with	the	same	number	of	tags,

recommend	the	most	recent	post

6.	 Limit	the	query	to	the	number	of	posts	we	want	to

recommend

These	steps	are	translated	into	a	complex	QuerySet	that	we	will
include	in	our	post_detail	view.	Open	the	views.py	file	of	your	blog
application	and	add	the	following	import	at	the	top	of	it:

from	django.db.models	import	Count

This	is	the	Count	aggregation	function	of	the	Django	ORM.	This
function	will	allow	us	to	perform	aggregated	counts	of	tags.
django.db.models	includes	the	following	aggregation	functions:

	Avg:	The	value	average

	Max:	The	maximum	value

	Min:	The	minimum	value

	Count:	The	objects	count

You	can	learn	about	aggregation	at	https://docs.djangoproject.com/en/2.0/to
pics/db/aggregation/.

Add	the	following	lines	inside	the	post_detail	view	before	the	render()
function,	with	the	same	indentation	level:

#	List	of	similar	posts

post_tags_ids	=	post.tags.values_list('id',	flat=True)

similar_posts	=	Post.published.filter(tags__in=post_tags_ids)\

																														.exclude(id=post.id)

similar_posts	=	similar_posts.annotate(same_tags=Count('tags'))\

																												.order_by('-same_tags','-publish')[:4]

The	preceding	code	is	as	follows:

1.	 We	retrieve	a	Python	list	of	IDs	for	the	tags	of	the	current

post.	The		values_list()	QuerySet	returns	tuples	with	the

values	for	the	given	fields.	We	pass	flat=True	to	it	to	get	a	flat

list	like	[1,	2,	3,	...].

2.	 We	get	all	posts	that	contain	any	of	these	tags,	excluding	the

current	post	itself.

3.	 We	use	the	Count	aggregation	function	to	generate	a

calculated	field—same_tags—that	contains	the	number	of	tags

https://docs.djangoproject.com/en/2.0/topics/db/aggregation/

shared	with	all	the	tags	queried.

4.	 We	order	the	result	by	the	number	of	shared	tags

(descending	order)	and	by	publish	to	display	recent	posts	first

for	the	posts	with	the	same	number	of	shared	tags.	We	slice

the	result	to	retrieve	only	the	first	four	posts.

Add	the	similar_posts	object	to	the	context	dictionary	for	the	render()
function,	as	follows:

return	render(request,

														'blog/post/detail.html',

														{'post':	post,

															'comments':	comments,

															'new_comment':	new_comment,

															'comment_form':	comment_form,

															'similar_posts':	similar_posts})

Now,	edit	the	blog/post/detail.html	template	and	add	the	following	code
before	the	post	comments	list:

<h2>Similar	posts</h2>

{%	for	post	in	similar_posts	%}

		<p>

				{{	post.title	}}

		</p>

{%	empty	%}

		There	are	no	similar	posts	yet.

{%	endfor	%}

Now,	your	post	detail	page	should	look	like	this:

You	are	now	able	to	successfully	recommend	similar	posts	to	your
users.	django-taggit	also	includes	a	similar_objects()	manager	that	you
can	use	to	retrieve	objects	by	shared	tags.	You	can	take	a	look	at	all
django-taggit	managers	at	https://django-taggit.readthedocs.io/en/latest/api.htm
l.

You	can	also	add	the	list	of	tags	to	your	post	detail	template	the
same	way	we	did	in	the	blog/post/list.html	template.

https://django-taggit.readthedocs.io/en/latest/api.html

Summary
In	this	chapter,	you	learned	how	to	work	with	Django	forms	and
model	forms.	You	created	a	system	to	share	your	site's	content	by
email	and	created	a	comment	system	for	your	blog.	You	added
tagging	to	your	blog	posts,	integrating	a	reusable	application,	and
built	complex	QuerySets	to	retrieve	objects	by	similarity.

In	the	next	chapter,	you	will	learn	how	to	create	custom	template
tags	and	filters.	You	will	also	build	a	custom	sitemap	and	feed	for
your	blog	posts	and	implement	the	full	text	search	functionality	for
your	blog	posts.

Extending	Your	Blog
Application
The	preceding	chapter	went	through	the	basics	of	forms,	and	you
learned	how	to	integrate	third-party	applications	into	your	project.
This	chapter	will	cover	the	following	points:

Creating	custom	template	tags	and	filters

Adding	a	sitemap	and	post	feed

Implementing	full	text	search	with	PostgreSQL

Creating	custom	template	tags
and	filters
Django	offers	a	variety	of	built-in	template	tags,	such	as	{%	if	%}	or	{%
block	%}.	You	have	used	several	in	your	templates.	You	can	find	a
complete	reference	of	built-in	template	tags	and	filters	at	https://docs.
djangoproject.com/en/2.0/ref/templates/builtins/.

However,	Django	also	allows	you	to	create	your	own	template	tags
to	perform	custom	actions.	Custom	template	tags	come	in	very
handy	when	you	need	to	add	a	functionality	to	your	templates	that
is	not	covered	by	the	core	set	of	Django	template	tags.

https://docs.djangoproject.com/en/2.0/ref/templates/builtins/

Creating	custom	template	tags
Django	provides	the	following	helper	functions	that	allow	you	to
create	your	own	template	tags	in	an	easy	manner:

simple_tag:	Processes	the	data	and	returns	a	string

inclusion_tag:	Processes	the	data	and	returns	a	rendered

template

Template	tags	must	live	inside	Django	applications.

Inside	your	blog	application	directory,	create	a	new	directory,	name
it	templatetags,	and	add	an	empty	__init__.py	file	to	it.	Create	another
file	in	the	same	folder	and	name	it	blog_tags.py.	The	file	structure	of
the	blog	application	should	look	like	the	following:

blog/

				__init__.py

				models.py

				...

				templatetags/

								__init__.py

								blog_tags.py

The	way	you	name	the	file	is	important.	You	will	use	the	name	of
this	module	to	load	tags	in	templates.

We	will	start	by	creating	a	simple	tag	to	retrieve	the	total	posts
published	in	the	blog.	Edit	the	blog_tags.py	file	you	just	created	and
add	the	following	code:

from	django	import	template

from	..models	import	Post

register	=	template.Library()

@register.simple_tag

def	total_posts():

				return	Post.published.count()

We	have	created	a	simple	template	tag	that	returns	the	number	of
posts	published	so	far.	Each	template	tags	module	needs	to	contain
a	variable	called	register	to	be	a	valid	tag	library.	This	variable	is	an
instance	of	template.Library,	and	it's	used	to	register	our	own	template
tags	and	filters.	Then,	we	define	a	tag	called	total_posts	with	a	Python
function	and	use	the	@register.simple_tag	decorator	to	register	the
function	as	a	simple	tag.	Django	will	use	the	function's	name	as	the
tag	name.	If	you	want	to	register	it	using	a	different	name,	you	can
do	it	by	specifying	a	name	attribute,	such
as	@register.simple_tag(name='my_tag').

After	adding	a	new	template	tags	module,	you	will	need	to	restart	the
Django	development	server	in	order	to	use	the	new	tags	and	filters	in
templates.

Before	using	custom	template	tags,	you	have	to	make	them
available	for	the	template	using	the	{%	load	%}	tag.	As	mentioned
before,	you	need	to	use	the	name	of	the	Python	module	containing
your	template	tags	and	filters.	Open	the	blog/templates/base.html
template	and	add	{%	load	blog_tags	%}	at	the	top	of	it	to	load	your
template	tags	module.	Then,	use	the	tag	you	created	to	display	your
total	posts.	Just	add	{%	total_posts	%}	to	your	template.	The	template
should	finally	look	like	this:

{%	load	blog_tags	%}

{%	load	static	%}

<!DOCTYPE	html>

<html>

<head>

		<title>{%	block	title	%}{%	endblock	%}</title>

		<link	href="{%	static	"css/blog.css"	%}"	rel="stylesheet">

</head>

<body>

		<div	id="content">

				{%	block	content	%}

				{%	endblock	%}

		</div>

		<div	id="sidebar">

				<h2>My	blog</h2>

				<p>This	is	my	blog.	I've	written	{%	total_posts	%}	posts	so	far.</p>

		</div>

</body>

</html>

We	will	need	to	restart	the	server	to	keep	track	of	the	new	files
added	to	the	project.	Stop	the	development	server	with	Ctrl	+	C	and
run	it	again	using	the	following	command:

python	manage.py	runserver

Open	http://127.0.0.1:8000/blog/	in	your	browser.	You	should	see	the
number	of	total	posts	in	the	sidebar	of	the	site,	as	follows:

The	power	of	custom	template	tags	is	that	you	can	process	any	data
and	add	it	to	any	template	regardless	of	the	view	executed.	You	can
perform	QuerySets	or	process	any	data	to	display	results	in	your
templates.

Now,	we	will	create	another	tag	to	display	the	latest	posts	in	the
sidebar	of	our	blog.	This	time,	we	will	use	an	inclusion	tag.	Using	an
inclusion	tag,	you	can	render	a	template	with	context	variables
returned	by	your	template	tag.	Edit	the	blog_tags.py	file	and	add	the
following	code:

@register.inclusion_tag('blog/post/latest_posts.html')

def	show_latest_posts(count=5):

				latest_posts	=	Post.published.order_by('-publish')[:count]

				return	{'latest_posts':	latest_posts}

In	the	preceding	code,	we	register	the	template	tag
using	@register.inclusion_tag	and	specify	the	template	that	has	to	be
rendered	with	the	returned	values	using	blog/post/latest_posts.html.	Our
template	tag	will	accept	an	optional	count	parameter	that	defaults	to
5.	This	parameter	allows	us	to	specify	the	number	of	posts	we	want
to	display.	We	use	this	variable	to	limit	the	results	of	the
query	Post.published.order_by('-publish')[:count].	Note	that	the	function
returns	a	dictionary	of	variables	instead	of	a	simple	value.	Inclusion
tags	have	to	return	a	dictionary	of	values,	which	is	used	as	the
context	to	render	the	specified	template.	The	template	tag	we	just
created	allows	you	to	specify	the	optional	number	of	posts	to
display	as	{%	show_latest_posts	3	%}.

Now,	create	a	new	template	file	under	blog/post/	and	name	it
latest_posts.html.	Add	the	following	code	to	it:

{%	for	post	in	latest_posts	%}

		

				{{	post.title	}}

		

{%	endfor	%}

In	the	preceding	code,	we	display	an	unordered	list	of	posts	using
the	latest_posts	variable	returned	by	our	template	tag.	Now,	edit	the
blog/base.html	template	and	add	the	new	template	tag	to	display	the
last	three	posts.	The	sidebar	code	should	look	like	the	following:

<div	id="sidebar">

		<h2>My	blog</h2>

		<p>This	is	my	blog.	I've	written	{%	total_posts	%}	posts	so	far.</p>

		<h3>Latest	posts</h3>

		{%	show_latest_posts	3	%}

</div>

The	template	tag	is	called,	passing	the	number	of	posts	to	display,
and	the	template	is	rendered	in	place	with	the	given	context.

Now,	return	to	your	browser	and	refresh	the	page.	The	sidebar
should	now	look	like	this:

Finally,	we	will	create	a	simple	template	tag	that	stores	the	result	in
a	variable	that	can	be	reused	rather	than	directly	outputting	it.	We
will	create	a	tag	to	display	the	most	commented	posts.	Edit	the
blog_tags.py	file	and	add	the	following	import	and	template	tag	in	it:

from	django.db.models	import	Count

@register.simple_tag

def	get_most_commented_posts(count=5):

				return	Post.published.annotate(

															total_comments=Count('comments')

).order_by('-total_comments')[:count]

In	the	preceding	template	tag,	we	build	a	QuerySet	using	the
annotate()	function	to	aggregate	the	total	number	of	comments	for
each	post.	We	use	the	Count	aggregation	function	to	store	the	number
of	comments	in	the	computed	field	total_comments	for	each	Post	object.
We	order	the	QuerySet	by	the	computed	field	in	descending	order.
We	also	provide	an	optional	count	variable	to	limit	the	total	number
of	objects	returned.

In	addition	to	Count,	Django	offers	the	aggregation	functions	Avg,	Max,
Min,	and	Sum.	You	can	read	more	about	aggregation	functions	at
https://docs.djangoproject.com/en/2.0/topics/db/aggregation/.

Edit	the	blog/base.html	template	and	append	the	following	code	to	the
sidebar	<div>	element:

<h3>Most	commented	posts</h3>

{%	get_most_commented_posts	as	most_commented_posts	%}

{%	for	post	in	most_commented_posts	%}

		

				{{	post.title	}}

		

{%	endfor	%}

We	store	the	result	in	a	custom	variable	using	the	as	argument
followed	by	the	variable	name.	For	our	template	tag,	we	use	{%
get_most_commented_posts	as	most_commented_posts	%}	to	store	the	result	of	the
template	tag	in	a	new	variable	named	most_commented_posts.	Then,	we
display	the	returned	posts	using	an	unordered	list.

Now,	open	your	browser	and	refresh	the	page	to	see	the	final	result.
It	should	look	like	the	following:

https://docs.djangoproject.com/en/2.0/topics/db/aggregation/

You	have	now	a	clear	idea	about	how	to	build	custom	template	tags.
You	can	read	more	about	them	at
https://docs.djangoproject.com/en/2.0/howto/custom-template-tags/.

https://docs.djangoproject.com/en/2.0/howto/custom-template-tags/

Creating	custom	template
filters
Django	has	a	variety	of	built-in	template	filters	that	allow	you	to
modify	variables	in	templates.	These	are	Python	functions	that	take
one	or	two	parameters—the	value	of	the	variable	it's	being	applied
to,	and	an	optional	argument.	They	return	a	value	that	can	be
displayed	or	treated	by	another	filter.	A	filter	looks	like	{{
variable|my_filter	}}.	Filters	with	an	argument	look	like	{{
variable|my_filter:"foo"	}}.	You	can	apply	as	many	filters	as	you	like	to	a
variable,	for	example,	{{	variable|filter1|filter2	}},	and	each	of	them
will	be	applied	to	the	output	generated	by	the	preceding	filter.

We	will	create	a	custom	filter	to	be	able	to	use	markdown	syntax	in
our	blog	posts	and	then	convert	the	post	contents	to	HTML	in	the
templates.	Markdown	is	a	plain	text	formatting	syntax	that	is	very
simple	to	use,	and	it's	intended	to	be	converted	into	HTML.	You	can
learn	the	basics	of	this	format	at
https://daringfireball.net/projects/markdown/basics.

First,	install	the	Python	markdown	module	via	pip	using	the
following	command:

pip	install	Markdown==2.6.11

Then,	edit	the	blog_tags.py	file	and	include	the	following	code:

from	django.utils.safestring	import	mark_safe

import	markdown

@register.filter(name='markdown')

def	markdown_format(text):

				return	mark_safe(markdown.markdown(text))

https://daringfireball.net/projects/markdown/basics

We	register	template	filters	in	the	same	way	as	template	tags.	To
avoid	a	collision	between	our	function	name	and	the	markdown	module,
we	name	our	function	markdown_format	and	name	the	filter	markdown	for
usage	in	templates,	such	as	{{	variable|markdown	}}.	Django	escapes	the
HTML	code	generated	by	filters.	We	use	the	mark_safe	function
provided	by	Django	to	mark	the	result	as	safe	HTML	to	be	rendered
in	the	template.	By	default,	Django	will	not	trust	any	HTML	code
and	will	escape	it	before	placing	it	in	the	output.	The	only
exceptions	are	variables	that	are	marked	as	safe	from	escaping.	This
behavior	prevents	Django	from	outputting	potentially	dangerous
HTML	and	allows	you	to	create	exceptions	for	returning	safe
HTML.

Now,	load	your	template	tags	module	in	the	post	list	and	detail
templates.	Add	the	following	line	at	the	top	of	the	blog/post/list.html
and	blog/post/detail.html	templates	after	the	{%	extends	%}	tag:

{%	load	blog_tags	%}

In	the	post/detail.html	templates,	take	a	look	at	the	following	line:

{{	post.body|linebreaks	}}

Replace	it	with	the	following	one:

{{	post.body|markdown	}}

Then,	in	the	post/list.html	file,	replace	the	following	line:

{{	post.body|truncatewords:30|linebreaks	}}

Then,	swap	it	with	the	following	one:

{{	post.body|markdown|truncatewords_html:30	}}

The	truncatewords_html	filter	truncates	a	string	after	a	certain	number	of
words,	avoiding	unclosed	HTML	tags.

Now,	open	http://127.0.0.1:8000/admin/blog/post/add/	in	your	browser	and
add	a	post	with	the	following	body:

This	is	a	post	formatted	with	markdown

This	is	emphasized	and	**this	is	more	emphasized**.

Here	is	a	list:

*	One

*	Two

*	Three

And	a	[link	to	the	Django	website](https://www.djangoproject.com/)

Open	your	browser	and	take	a	look	at	how	the	post	is	rendered.	You
should	see	the	following	output:

As	you	can	see	in	the	preceding	screenshot,	custom	template	filters
are	very	useful	to	customize	formatting.	You	can	find	more
information	about	custom	filters	at
https://docs.djangoproject.com/en/2.0/howto/custom-template-tags/#writing-custom-

template-filters.

https://docs.djangoproject.com/en/2.0/howto/custom-template-tags/#writing-custom-template-filters

Adding	a	sitemap	to	your	site
Django	comes	with	a	sitemap	framework,	which	allows	you	to
generate	sitemaps	for	your	site	dynamically.	A	sitemap	is	an	XML
file	that	tells	search	engines	the	pages	of	your	website,	their
relevance,	and	how	frequently	they	are	updated.	Using	a	sitemap,
you	will	help	crawlers	that	index	your	website's	content.

The	Django	sitemap	framework	depends	on	django.contrib.sites,	which
allows	you	to	associate	objects	to	particular	websites	that	are
running	with	your	project.	This	comes	handy	when	you	want	to	run
multiple	sites	using	a	single	Django	project.	To	install	the	sitemap
framework,	you	will	need	to	activate	both	the	sites	and	the	sitemap
applications	in	our	project.	Edit	the	settings.py	file	of	your	project
and	add	django.contrib.sites	and	django.contrib.sitemaps	to	the	INSTALLED_APPS
setting.	Also,	define	a	new	setting	for	the	site	ID,	as	follows:

SITE_ID	=	1

#	Application	definition

INSTALLED_APPS	=	[

				#	...

				'django.contrib.sites',

				'django.contrib.sitemaps',

]

Now,	run	the	following	command	to	create	the	tables	of	the	Django
site	application	in	the	database:

python	manage.py	migrate

You	should	see	an	output	that	contains	the	following	lines:

Applying	sites.0001_initial...	OK

Applying	sites.0002_alter_domain_unique...	OK

The	sites	application	is	now	synced	with	the	database.	Now,	create	a
new	file	inside	your	blog	application	directory	and	name	it	sitemaps.py.
Open	the	file	and	add	the	following	code	to	it:

from	django.contrib.sitemaps	import	Sitemap

from	.models	import	Post

class	PostSitemap(Sitemap):

				changefreq	=	'weekly'

				priority	=	0.9

				def	items(self):

								return	Post.published.all()

				def	lastmod(self,	obj):

								return	obj.updated

We	create	a	custom	sitemap	by	inheriting	the	Sitemap	class	of	the
sitemaps	module.	The	changefreq	and	priority	attributes	indicate	the
change	frequency	of	your	post	pages	and	their	relevance	in	your
website	(the	maximum	value	is	1).	The	items()	method	returns	the
QuerySet	of	objects	to	include	in	this	sitemap.	By	default,	Django
calls	the	get_absolute_url()	method	on	each	object	to	retrieve	its	URL.
Remember	that	we	created	this	method	in	Chapter	1,	Building	a	Blog
Application,	to	retrieve	the	canonical	URL	for	posts.	If	you	want	to
specify	the	URL	for	each	object,	you	can	add	a	location	method	to
your	sitemap	class.	The	lastmod	method	receives	each	object	returned
by	items()	and	returns	the	last	time	the	object	was	modified.	Both
changefreq	and	priority	methods	can	also	be	either	methods	or
attributes.	You	can	take	a	look	at	the	complete	sitemap	reference	in
the	official	Django	documentation	located
at	https://docs.djangoproject.com/en/2.0/ref/contrib/sitemaps/.

Finally,	you	will	just	need	to	add	your	sitemap	URL.	Edit	the	main
urls.py	file	of	your	project	and	add	the	sitemap,	as	follows:

https://docs.djangoproject.com/en/2.0/ref/contrib/sitemaps/

from	django.urls	import	path,	include

from	django.contrib	import	admin

from	django.contrib.sitemaps.views	import	sitemap

from	blog.sitemaps	import	PostSitemap

sitemaps	=	{

				'posts':	PostSitemap,

}

urlpatterns	=	[

				path('admin/',	admin.site.urls),

				path('blog/',	include('blog.urls',	namespace='blog')),

				path('sitemap.xml',	sitemap,	{'sitemaps':	sitemaps},

									name='django.contrib.sitemaps.views.sitemap')

]

In	the	preceding	code,	we	included	the	required	imports	and
defined	a	dictionary	of	sitemaps.	We	defined	a	URL	pattern	that
matches	with	sitemap.xml	and	uses	the	sitemap	view.	The	sitemaps
dictionary	is	passed	to	the	sitemap	view.	Now,	run	the	development
server	and	open	http://127.0.0.1:8000/sitemap.xml	in	your	browser.	You
will	note	the	following	XML	output:

<?xml	version="1.0"	encoding="utf-8"?>

<urlset	xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">

		<url>

				<loc>http://example.com/blog/2017/12/15/markdown-post/</loc>

				<lastmod>2017-12-15</lastmod>

				<changefreq>weekly</changefreq>

				<priority>0.9</priority>

		</url>

		<url>

				<loc>

http://example.com/blog/2017/12/14/who-was-django-reinhardt/

</loc>

				<lastmod>2017-12-14</lastmod>

				<changefreq>weekly</changefreq>

				<priority>0.9</priority>

		</url>

</urlset>

The	URL	for	each	post	has	been	built	calling	its	get_absolute_url()
method.
The	lastmod	attribute	corresponds	to	the	post	updated	date	field,	as	we

specified	in	our	sitemap,	and	the	changefreq	and	priority	attributes	are
also	taken	from	our	PostSitemap	class.	You	can	see	that	the	domain
used	to	build	the	URLs	is	example.com.	This	domain	comes	from	a	Site
object	stored	in	the	database.	This	default	object	has	been	created
when	we	synced	the	site's	framework	with	our	database.	Open
http://127.0.0.1:8000/admin/sites/site/	in	your	browser.	You	should	see
something	like	this:

The	preceding	screenshot	contains	the	list	display	admin	view	for
the	site's	framework.	Here,	you	can	set	the	domain	or	host	to	be
used	by	the	site's	framework	and	the	applications	that	depend	on	it.
In	order	to	generate	URLs	that	exist	in	our	local	environment,
change	the	domain	name	to	localhost:8000,	as	shown	in	the	following

screenshot,	and	save	it:

The	URLs	displayed	in	your	feed	will	now	be	built	using	this
hostname.	In	a	production	environment,	you	will	have	to	use	your
own	domain	name	for	the	site's	framework.

Creating	feeds	for	your	blog
posts
Django	has	a	built-in	syndication	feed	framework	that	you	can	use
to	dynamically	generate	RSS	or	Atom	feeds	in	a	similar	manner	to
creating	sitemaps	using	the	site's	framework.	A	web	feed	is	a	data
format	(usually	XML)	that	provides	users	with	frequently	updated
content.	Users	will	be	able	to	subscribe	to	your	feed	using	a	feed
aggregator,	a	software	that	is	used	to	read	feeds	and	get	new
content	notifications.

Create	a	new	file	in	your	blog	application	directory	and	name	it
feeds.py.	Add	the	following	lines	to	it:

from	django.contrib.syndication.views	import	Feed

from	django.template.defaultfilters	import	truncatewords

from	.models	import	Post

class	LatestPostsFeed(Feed):

				title	=	'My	blog'

				link	=	'/blog/'

				description	=	'New	posts	of	my	blog.'

				def	items(self):

								return	Post.published.all()[:5]

				def	item_title(self,	item):

								return	item.title

				def	item_description(self,	item):

								return	truncatewords(item.body,	30)

First,	we	subclass	the	Feed	class	of	the	syndication	framework.	The
title,	link,	and	description	attributes	correspond	to	the	<title>,	<link>,
and	<description>	RSS	elements,	respectively.

The	items()	method	retrieves	the	objects	to	be	included	in	the	feed.
We	are	retrieving	only	the	last	five	published	posts	for	this	feed.	The
item_title()	and	item_description()	methods	receive	each	object	returned
by	items()	and	return	the	title	and	description	for	each	item.	We	use
the	truncatewords	built-in	template	filter	to	build	the	description	of	the
blog	post	with	the	first	30	words.

Now,	edit	the	blog/urls.py	file,	import	LatestPostsFeed	you	just	created,
and	instantiate	the	feed	in	a	new	URL	pattern:

from	.feeds	import	LatestPostsFeed

urlpatterns	=	[

				#	...

				path('feed/',	LatestPostsFeed(),	name='post_feed'),

]

Navigate	to	http://127.0.0.1:8000/blog/feed/	in	your	browser.	You	should
now	see	the	RSS	feed,	including	the	last	five	blog	posts:

<?xml	version="1.0"	encoding="utf-8"?>

<rss	xmlns:atom="http://www.w3.org/2005/Atom"	version="2.0">

		<channel>

				<title>My	blog</title>

				<link>http://localhost:8000/blog/</link>

				<description>New	posts	of	my	blog.</description>

				<atom:link	href="http://localhost:8000/blog/feed/"	rel="self"/>

				<language>en-us</language>

				<lastBuildDate>Fri,	15	Dec	2017	09:56:40	+0000</lastBuildDate>

				<item>

						<title>Who	was	Django	Reinhardt?</title>

						<link>http://localhost:8000/blog/2017/12/14/who-was-django-	

						reinhardt/</link>

						<description>Who	was	Django	Reinhardt.</description>

						<guid>http://localhost:8000/blog/2017/12/14/who-was-django-

						reinhardt/</guid>

				</item>

				...

		</channel>

</rss>

If	you	open	the	same	URL	in	an	RSS	client,	you	will	be	able	to	see

your	feed	with	a	user-friendly	interface.

The	final	step	is	to	add	a	feed	subscription	link	to	the	blog's	sidebar.
Open	the	blog/base.html	template	and	add	the	following	line	under	the
number	of	total	posts	inside	the	sidebar	div:

<p>Subscribe	to	my	RSS	feed</p>

Now,	open	http://127.0.0.1:8000/blog/	in	your	browser	and	take	a	look	at
the	sidebar.	The	new	link	should	take	you	to	your	blog's	feed:

Adding	full-text	search	to	your
blog
Now,	you	will	add	search	capabilities	to	your	blog.	The	Django	ORM
allows	you	to	perform	simple	matching	operations	using,	for
example,	the	contains	filter	(or	its	case-insensitive	version,	icontains).
You	can	use	the	following	query	to	find	posts	that	contain	the
word	framework	in	their	body:

from	blog.models	import	Post

Post.objects.filter(body__contains='framework')

However,	if	you	want	to	perform	complex	search	lookups,	retrieving
results	by	similarity	or	by	weighting	terms,	you	will	need	to	use	a
full-text	search	engine.

Django	provides	a	powerful	search	functionality	built	on	top
of	PostgreSQL	full-text	search
features.	The	django.contrib.postgres	module	provides	functionalities
offered	by	PostgreSQL	that	are	not	shared	by	the	other	databases
that	Django	supports.	You	can	learn	about	PostgreSQL	full-text
search	at	https://www.postgresql.org/docs/10/static/textsearch.html.

Although	Django	is	a	database-agnostic	web	framework,	it	provides	a	
module	that	supports	part	of	the	rich	feature	set	offered	by	PostgreSQL,	not
shared	by	other	databases	that	Django	supports.

https://www.postgresql.org/docs/10/static/textsearch.html

Installing	PostgreSQL
You	are	currently	using	SQLite	for	your	blog	project.	This	is
sufficient	for	development	purposes.	However,	for	a	production
environment,	you	will	need	a	more	powerful	database,	such	as
PostgreSQL,	MySQL,	or	Oracle.	We	will	change	our	database	to
PostgreSQL	to	benefit	from	its	full-text	search	features.

If	you	are	using	Linux,	install	dependencies	for	PostgreSQL	to	work
with	Python,	like	this:

sudo	apt-get	install	libpq-dev	python-dev

Then,	install	PostgreSQL	with	the	following	command:

sudo	apt-get	install	postgresql	postgresql-contrib

If	you	are	using	macOS	X	or	Windows,	download	PostgreSQL	from	
https://www.postgresql.org/download/	and	install	it.

You	also	need	to	install	the	Psycopg2	PostgreSQL	adapter	for
Python.	Run	the	following	command	in	the	shell	to	install	it:

pip	install	psycopg2==2.7.4

Let's	create	a	user	for	our	PostgreSQL	database.	Open	the	shell	and
run	the	following	commands:

su	postgres

createuser	-dP	blog

https://www.postgresql.org/download/

You	will	be	prompted	a	password	for	the	new	user.	Enter	the
desired	password	and	then	create	the	blog	database	and	give	the
ownership	to	the	blog	user	you	just	created	with	the	following
command:

createdb	-E	utf8	-U	blog	blog

Then,	edit	the	settings.py	file	of	your	project	and	modify
the	DATABASES	setting	to	make	it	look	as	follows:

DATABASES	=	{

				'default':	{

								'ENGINE':	'django.db.backends.postgresql',

								'NAME':	'blog',

								'USER':	'blog',

								'PASSWORD':	'*****',

				}

}

Replace	the	preceding	data	with	the	database	name	and	credentials
for	the	user	you	created.	The	new	database	is	empty.	Run	the
following	command	to	apply	all	database	migrations:

python	manage.py	migrate

Finally,	create	a	superuser	with	the	following	command:

python	manage.py	createsuperuser

You	can	now	run	the	development	server	and	access	the
administration	site	at	http://127.0.0.1:8000/admin/	with	the	new
superuser.

Since	we	switched	the	database,	there	are	no	posts	stored	in
it.	Populate	your	new	database	with	a	couple	of	sample	blog	posts
so	that	you	can	perform	searches	against	the	database.

Simple	search	lookups
Edit	the	settings.py	file	of	your	project	and	add	django.contrib.postgres	to
the	INSTALLED_APPS	setting,	as	follows:

INSTALLED_APPS	=	[

				#	...

				'django.contrib.postgres',

]

Now,	you	can	search	against	a	single	field	using	the	search	QuerySet
lookup,	like	this:

from	blog.models	import	Post

Post.objects.filter(body__search='django')

This	query	uses	PostgreSQL	to	create	a	search	vector	for	the	body
field	and	a	search	query	from	the	term	django.	Results	are	obtained
by	matching	the	query	with	the	vector.

Searching	against	multiple
fields
You	might	want	to	search	against	multiple	fields.	In	this	case,	you
will	need	to	define	SearchVector.	Let's	build	a	vector	that	allows	us	to
search	against	the	title	and	body	fields	of	the	Post	model:

from	django.contrib.postgres.search	import	SearchVector

from	blog.models	import	Post

Post.objects.annotate(

				search=SearchVector('title',	'body'),

).filter(search='django')

Using	annotate	and	defining	SearchVector	with	both	fields,	we	provide
a	functionality	to	match	the	query	against	both	the	title	and	body	of
the	posts.

Full-text	search	is	an	intensive	process.	If	you	are	searching	for	more	than	a
few	hundred	rows,	you	should	define	a	functional	index	that	matches	the
search	vector	you	are	using.	Django	provides	a	SearchVectorField	field	for	your
models.	You	can	read	more	about	this	at	https://docs.djangoproject.com/en/2.0/ref/contrib/
postgres/search/#performance.

https://docs.djangoproject.com/en/2.0/ref/contrib/postgres/search/#performance

Building	a	search	view
Now,	we	will	create	a	custom	view	to	allow	our	users	to	search
posts.	First,	we	will	need	a	search	form.	Edit	the	forms.py	file	of
the	blog	application	and	add	the	following	form:

class	SearchForm(forms.Form):

				query	=	forms.CharField()

We	will	use	the	query	field	to	let	the	users	introduce	search	terms.
Edit	the	views.py	file	of	the	blog	application	and	add	the	following	code
to	it:

from	django.contrib.postgres.search	import	SearchVector

from	.forms	import	EmailPostForm,	CommentForm,	SearchForm

def	post_search(request):

				form	=	SearchForm()

				query	=	None

				results	=	[]

				if	'query'	in	request.GET:

								form	=	SearchForm(request.GET)

								if	form.is_valid():

												query	=	form.cleaned_data['query']

												results	=	Post.objects.annotate(

																search=SearchVector('title',	'body'),

).filter(search=query)

				return	render(request,

																		'blog/post/search.html',

																		{'form':	form,

																			'query':	query,

																			'results':	results})

In	the	preceding	view,	first,	we	instantiate	the	SearchForm	form.	We
plan	to	submit	the	form	using	the	GET	method	so	that	the	resulting
URL	includes	the	query	parameter.	To	check	whether	the	form	is
submitted,	we	look	for	the	query	parameter	in

the	request.GET	dictionary.	When	the	form	is	submitted,	we	instantiate
it	with	the	submitted	GET	data,	and	we	verify	that	the	form	data	is
valid.	If	the	form	is	valid,	we	search	for	posts	with	a
custom		SearchVector	instance	built	with	the	title	and	body	fields.

The	search	view	is	ready	now.	We	need	to	create	a	template	to
display	the	form	and	the	results	when	the	user	performs	a	search.
Create	a	new	file	inside	the	/blog/post/	template	directory,	name
it	search.html,	and	add	the	following	code	to	it:

{%	extends	"blog/base.html"	%}

{%	block	title	%}Search{%	endblock	%}

{%	block	content	%}

		{%	if	query	%}

				<h1>Posts	containing	"{{	query	}}"</h1>

				<h3>

						{%	with	results.count	as	total_results	%}

										Found	{{	total_results	}}	result{{	total_results|pluralize	}}

						{%	endwith	%}

				</h3>

				{%	for	post	in	results	%}

								<h4>{{	post.title	}}</h4>

								{{	post.body|truncatewords:5	}}

				{%	empty	%}

						<p>There	are	no	results	for	your	query.</p>

				{%	endfor	%}

				<p>Search	again</p>

		{%	else	%}

				<h1>Search	for	posts</h1>

				<form	action="."	method="get">

						{{	form.as_p	}}

						<input	type="submit"	value="Search">

				</form>

		{%	endif	%}

{%	endblock	%}

As	in	the	search	view,	we	can	distinguish	whether	the	form	has	been
submitted	by	the	presence	of	the	query	parameter.	Before	the	post	is
submitted,	we	display	the	form	and	a	submit	button.	After	the	post
is	submitted,	we	display	the	query	performed,	the	total	number	of
results,	and	the	list	of	posts	returned.

Finally,	edit	the	urls.py	file	of	your	blog	application	and	add	the
following	URL	pattern:

path('search/',	views.post_search,	name='post_search'),

Now,	open	http://127.0.0.1:8000/blog/search/	in	your	browser.	You	should
see	the	following	search	form:

Enter	a	query	and	click	on	the	Search	button.	You	will	see	the
results	of	the	search	query,	as	follows:

Congratulations!	You	have	created	a	basic	search	engine	for	your
blog.

Stemming	and	ranking	results
Django	provides	a	SearchQuery	class	to	translate	the	terms	into	a
search	query	object.	By	default,	the	terms	are	passed	through
stemming	algorithms,	which	helps	you	to	obtain	better	matches.
You	also	may	want	to	order	results	by	relevancy.	PostgreSQL
provides	a	ranking	function	that	orders	results	based	on	how	often
the	query	terms	appear	and	how	close	together	they	are.	Edit	the
views.py	file	of	your	blog	application	and	add	the	following	imports:

from	django.contrib.postgres.search	import	SearchVector,	SearchQuery,	

SearchRank

Then,	take	a	look	at	the	following	lines:

results	=	Post.objects.annotate(

																search=SearchVector('title',	'body'),

).filter(search=query)

Replace	them	with	the	following	ones:

search_vector	=	SearchVector('title',	'body')

search_query	=	SearchQuery(query)

results	=	Post.objects.annotate(

														search=search_vector,

														rank=SearchRank(search_vector,	search_query)

).filter(search=search_query).order_by('-rank')

In	the	preceding	code,	we	created	a	SearchQuery	object,	filtered	results
by	it,	and	used	SearchRank	to	order	the	results	by	relevancy.	You	can
open	http://127.0.0.1:8000/blog/search/	in	your	browser	and	test	different
searches	to	test	stemming	and	ranking.	The	following	is	an	example
of	ranking	by	the	number	of	occurrences	for	the	word	django	in	the
title	and	body	of	the	posts:

Weighting	queries
You	can	boost	specific	vectors	so	that	more	weight	is	attributed	to
them	when	ordering	results	by	relevancy.	For	example,	you	can	use
this	to	give	more	relevance	to	posts	that	are	matched	by	title	rather
than	by	content.	Edit	the	previous	lines	of	the	views.py	file
of	your	blog	application	and	make	them	look	like	this:

search_vector	=	SearchVector('title',	weight='A')	+	SearchVector('body',	

weight='B')

search_query	=	SearchQuery(query)

results	=	Post.objects.annotate(

	rank=SearchRank(search_vector,	search_query)

).filter(rank__gte=0.3).order_by('-rank')

In	the	preceding	code,	we	apply	different	weights	to	the	search
vectors	built	using	the	title	and	body	fields.	The	default	weights	are	D,
C,	B,	and	A	that	refer	to	the	numbers	0.1,	0.2,	0.4,	and	1.0,	respectively.
We	apply	a	weight	of	1.0	to	the	title	search	vector	and	a	weight	of	0.4
to	the	body	vector:	title	matches	will	prevail	over	body	content
matches.	We	filter	the	results	to	display	only	the	ones	with	a	rank
higher	than	0.3.

Searching	with	trigram
similarity
Another	search	approach	is	trigram	similarity.	A	trigram	is	a	group
of	three	consecutive	characters.	You	can	measure	the	similarity	of
two	strings	by	counting	the	number	of	trigrams	they	share.	This
approach	turns	out	to	be	very	effective	for	measuring	the	similarity
of	words	in	many	languages.

In	order	to	use	trigrams	in	PostgreSQL,	you	will	need	to	install	the
pg_trgm	extension	first.	Execute	the	following	command	from	the
shell	to	connect	to	your	database:

psql	blog

Then,	execute	the	following	command	to	install	the	pg_trgm
extension:

CREATE	EXTENSION	pg_trgm;

Let's	edit	our	view	and	modify	it	to	search	for	trigrams.	Edit
the	views.py	file	of	your	blog	application	and	add	the	following	import:

from	django.contrib.postgres.search	import	TrigramSimilarity

Then,	replace	Post	search	query	with	the	following	lines:

results	=	Post.objects.annotate(

				similarity=TrigramSimilarity('title',	query),

).filter(similarity__gt=0.3).order_by('-similarity')

Open	http://127.0.0.1:8000/blog/search/	in	your	browser	and	test	different
searches	for	trigrams.	The	following	example	displays
a	hypothetical	typo	in	the	django	term,	showing	search	results
for	yango:

Now,	you	have	a	powerful	search	engine	built	into	your	project.	You
can	find	more	information	about	full-text	search	at	https://docs.djangop
roject.com/en/2.0/ref/contrib/postgres/search/.

https://docs.djangoproject.com/en/2.0/ref/contrib/postgres/search/

Other	full-text	search	engines
You	may	want	to	use	a	full-text	search	engine	different	from
PostgreSQL.	If	you	want	to	use	Solr	or	Elasticsearch,	you	can
integrate	them	into	your	Django	project	using	Haystack.	Haystack
is	a	Django	application	that	works	as	an	abstraction	layer	for
multiple	search	engines.	It	offers	a	simple	search	API	very	similar	to
Django	QuerySets.	You	can	find	more	information	about	Haystack
at	http://haystacksearch.org/.

http://haystacksearch.org/

Summary
In	this	chapter,	you	learned	how	to	create	custom	Django	template
tags	and	filters	to	provide	templates	with	a	custom	functionality.
You	also	created	a	sitemap	for	search	engines	to	crawl	your	site	and
an	RSS	feed	for	users	to	subscribe	to	your	blog.	You	also	built	a
search	engine	for	your	blog	using	the	full-text	search	engine	of
PostgreSQL.

In	the	next	chapter,	you	will	learn	how	to	build	a	social	website
using	the	Django	authentication	framework,	create	custom	user
profiles,	and	build	social	authentication.

Building	a	Social	Website
In	the	preceding	chapter,	you	learned	how	to	create	sitemaps	and
feeds	and	built	a	search	engine	for	your	blog	application.	In	this
chapter,	you	will	develop	a	social	application.	You	will	create	a
functionality	for	users	to	log	in,	log	out,	edit,	and	reset	their
password.	You	will	learn	how	to	create	a	custom	profile	for	your
users,	and	you	will	add	social	authentication	to	your	site.

This	chapter	will	cover	the	following	topics:

Using	the	Django	authentication	framework

Creating	user	registration	views

Extending	the	user	model	with	a	custom	profile	model

Adding	social	authentication	with	python-social-auth

Let's	start	by	creating	our	new	project.

Creating	a	social	website
project
We	will	create	a	social	application	that	will	allow	users	to	share
images	they	find	on	the	internet.	We	will	need	to	build	the	following
elements	for	this	project:

An	authentication	system	for	users	to	register,	log	in,	edit

their	profile,	and	change	or	reset	their	password

A	followers'	system	to	allow	users	to	follow	each	other

A	functionality	to	display	shared	images	and	implement	a

bookmarklet	for	users	to	share	images	from	any	website

An	activity	stream	for	each	user	that	allows	users	to	see	the

content	uploaded	by	the	people	they	follow

This	chapter	addresses	the	first	point	mentioned	in	the	preceding
list.

Starting	your	social	website
project
Open	the	terminal,	and	use	the	following	commands	to	create	a
virtual	environment	for	your	project	and	activate	it:

mkdir	env

virtualenv	env/bookmarks

source	env/bookmarks/bin/activate

The	shell	prompt	will	display	your	active	virtual	environment,	as
follows:

(bookmarks)laptop:~	zenx$

Install	Django	in	your	virtual	environment	with	the	following
command:

pip	install	Django==2.0.5

Run	the	following	command	to	create	a	new	project:

django-admin	startproject	bookmarks

After	creating	the	initial	project	structure,	use	the	following
commands	to	get	into	your	project	directory	and	create	a	new
application	named	account:

cd	bookmarks/

django-admin	startapp	account

Remember	that	you	should	activate	the	new	application	in	your
project	by	adding	it	to	the	INSTALLED_APPS	setting	in	the	settings.py	file.
Place	it	in	the	INSTALLED_APPS	list	before	any	of	the	other	installed	apps:

INSTALLED_APPS	=	[

				'account.apps.AccountConfig',

				#	...

]

We	will	define	Django	authentication	templates	later	on.	By	placing
our	app	first	in	the	INSTALLED_APPS	setting,	we		ensure	that	our
authentication	templates	will	be	used	by	default	instead	of	any
other	authentication	templates	contained	in	other	apps.	Django
looks	for	templates	by	order	of	app	appearance	in	the	INSTALLED_APPS
setting.

Run	the	next	command	to	sync	the	database	with	the	models	of	the
default	applications	included	in	the	INSTALLED_APPS	setting:

python	manage.py	migrate

You	will	see	that	all	initial	Django	database	migrations	get	applied.
We	will	build	an	authentication	system	into	our	project	using	the
Django	authentication	framework.

Using	the	Django
authentication	framework
Django	comes	with	a	built-in	authentication	framework	that	can
handle	user	authentication,	sessions,	permissions,	and	user	groups.
The	authentication	system	includes	views	for	common	user	actions
such	as	login,	logout,	password	change,	and	password	reset.

The	authentication	framework	is	located	at	django.contrib.auth	and	is
used	by	other	Django	contrib	packages.	Remember	that	you	have
already	used	the	authentication	framework	in	Chapter	1,	Building	a
Blog	Application,	to	create	a	superuser	for	your	blog	application	to
access	the	administration	site.

When	you	create	a	new	Django	project	using	the	startproject
command,	the	authentication	framework	is	included	in	the	default
settings	of	your	project.	It	consists	of	the	django.contrib.auth
application	and	the	following	two	middleware	classes	found	in	the
MIDDLEWARE	setting	of	your	project:

AuthenticationMiddleware:	Associates	users	with	requests	using

sessions

SessionMiddleware:	Handles	the	current	session	across	requests

A	middleware	is	a	class	with	methods	that	are	globally	executed
during	the	request	or	response	phase.	You	will	use	middleware
classes	on	several	occasions	throughout	this	book,	and	you	will
learn	to	create	custom	middleware	in	Chapter	13,	Going	Live.

The	authentication	framework	also	includes	the	following	models:

User:	A	user	model	with	basic	fields;	the	main	fields	of	this

model	are	username,	password,	email,	first_name,	last_name,	and	is_active

Group:	A	group	model	to	categorize	users

Permission:	Flags	for	users	or	groups	to	perform	certain	actions

The	framework	also	includes	default	authentication	views	and
forms	that	we	will	use	later.

Creating	a	login	view
We	will	start	this	section	by	using	the	Django	authentication
framework	to	allow	users	to	log	in	to	our	website.	Our	view	should
perform	the	following	actions	to	log	in	a	user:

1.	 Get	the	username	and	password	by	posting	a	form

2.	 Authenticate	the	user	against	the	data	stored	in	the	database

3.	 Check	whether	the	user	is	active

4.	 Log	the	user	into	the	website	and	start	an	authenticated

session

First,	we	will	create	a	login	form.	Create	a	new	forms.py	file	in	your
account	application	directory	and	add	the	following	lines	to	it:

from	django	import	forms

class	LoginForm(forms.Form):

				username	=	forms.CharField()

				password	=	forms.CharField(widget=forms.PasswordInput)

This	form	will	be	used	to	authenticate	users	against	the	database.
Note	that	we	use	the	PasswordInput	widget	to	render	its	HTML	input
element,	including	a	type="password"	attribute,	so	that	the	browser
treats	it	as	a	password	input.	Edit	the	views.py	file	of	your	account
application	and	add	the	following	code	to	it:

from	django.http	import	HttpResponse

from	django.shortcuts	import	render

from	django.contrib.auth	import	authenticate,	login

from	.forms	import	LoginForm

def	user_login(request):

				if	request.method	==	'POST':

								form	=	LoginForm(request.POST)

								if	form.is_valid():

												cd	=	form.cleaned_data

												user	=	authenticate(request,

																																username=cd['username'],

																																password=cd['password'])

												if	user	is	not	None:

																if	user.is_active:

																				login(request,	user)

																				return	HttpResponse('Authenticated	'\

																																								'successfully')

																else:

																				return	HttpResponse('Disabled	account')

												else:

																return	HttpResponse('Invalid	login')

				else:

								form	=	LoginForm()

				return	render(request,	'account/login.html',	{'form':	form})

This	is	what	our	basic	login	view	does:	when	the	user_login	view	is
called	with	a	GET	request,	we	instantiate	a	new	login	form	with	form	=
LoginForm()	to	display	it	in	the	template.	When	the	user	submits	the
form	via	POST,	we	perform	the	following	actions:

1.	 Instantiate	the	form	with	the	submitted	data	with	form	=

LoginForm(request.POST).

2.	 Check	whether	the	form	is	valid	with	form.is_valid().	If	it	is	not

valid,	we	display	the	form	errors	in	our	template	(for

example,	if	the	user	didn't	fill	in	one	of	the	fields).

3.	 If	the	submitted	data	is	valid,	we	authenticate	the	user

against	the	database	using	the	authenticate()	method.	This

method	takes	the	request	object,	the	username,	and

the	password	parameters	and	returns	the	User	object	if	the	user

has	been	successfully	authenticated,	or	None	otherwise.	If	the

user	has	not	been	authenticated,	we	return	a	raw	HttpResponse,

displaying	the	Invalid	login	message.

4.	 If	the	user	was	successfully	authenticated,	we	check	whether

the	user	is	active,	accessing	its	is_active	attribute.	This	is	an

attribute	of	Django's	user	model.	If	the	user	is	not	active,	we

return	an	HttpResponse	that	displays	the	Disabled

account	message.

5.	 If	the	user	is	active,	we	log	the	user	into	the	website.	We	set

the	user	in	the	session	by	calling	the	login()	method	and

return	the	Authenticated	successfully	message.

Note	the	difference	between	authenticate	and	login:	authenticate()	checks	user
credentials	and	returns	a	User	object	if	they	are	right;	login()	sets	the	user	in
the	current	session.

Now,	you	will	need	to	create	a	URL	pattern	for	this	view.	Create	a
new	urls.py	file	in	your	account	application	directory	and	add	the
following	code	to	it:

from	django.urls	import	path

from	.	import	views

urlpatterns	=	[

				#	post	views

				path('login/',	views.user_login,	name='login'),

]

Edit	the	main	urls.py	file	located	in	your	bookmarks	project	directory,
import	include,	and	add	the	URL	patterns	of	the	account	application,	as
follows:

from	django.conf.urls	import	path,	include

from	django.contrib	import	admin

urlpatterns	=	[

				path('admin/',	admin.site.urls),

				path('account/',	include('account.urls')),

]

The	login	view	can	now	be	accessed	by	a	URL.	It	is	time	to	create	a

template	for	this	view.	Since	you	don't	have	any	templates	for	this
project,	you	can	start	by	creating	a	base	template	that	can	be
extended	by	the	login	template.	Create	the	following	files	and
directories	inside	the	account	application	directory:

templates/

				account/

								login.html

				base.html

Edit	the	base.html	file	and	add	the	following	code	to	it:

{%	load	staticfiles	%}

<!DOCTYPE	html>

<html>

<head>

		<title>{%	block	title	%}{%	endblock	%}</title>

		<link	href="{%	static	"css/base.css"	%}"	rel="stylesheet">

</head>

<body>

		<div	id="header">

				Bookmarks

		</div>

		<div	id="content">

				{%	block	content	%}

				{%	endblock	%}

		</div>

</body>

</html>

This	will	be	the	base	template	for	the	website.	As	we	did	in	our
previous	project,	we	include	the	CSS	styles	in	the	main	template.
You	can	find	these	static	files	in	the	code	that	comes	along	with	this
chapter.	Copy	the	static/	directory	of	the	account	application	from	the
chapter's	source	code	to	the	same	location	in	your	project	so	that
you	can	use	the	static	files.

The	base	template	defines	a	title	block	and	a	content	block	that	can	be
filled	with	content	by	the	templates	that	extend	from	it.

Let's	fill	in	the	template	for	our	login	form.	Open	the	account/login.html

template	and	add	the	following	code	to	it:

{%	extends	"base.html"	%}

{%	block	title	%}Log-in{%	endblock	%}

{%	block	content	%}

		<h1>Log-in</h1>

		<p>Please,	use	the	following	form	to	log-in:</p>

		<form	action="."	method="post">

				{{	form.as_p	}}

				{%	csrf_token	%}

				<p><input	type="submit"	value="Log	in"></p>

		</form>

{%	endblock	%}

This	template	includes	the	form	that	is	instantiated	in	the	view.
Since	our	form	will	be	submitted	via	POST,	we	will	include	the	{%
csrf_token	%}	template	tag	for	CSRF	protection.	You	learned	about
CSRF	protection	in	Chapter	2,	Enhancing	Your	Blog	with	Advanced
Features.

There	are	no	users	in	your	database,	yet.	You	will	need	to	create	a
superuser	first	in	order	to	be	able	to	access	the	administration	site
to	manage	other	users.	Open	the	command	line	and	execute	python
manage.py	createsuperuser.	Fill	in	the	desired	username,	email,	and
password.	Then,	run	the	development	server	using	the	python	manage.py
runserver	command	and	open	http://127.0.0.1:8000/admin/	in	your	browser.
Access	the	administration	site	using	the	credentials	of	the	user	you
just	created.	You	will	see	the	Django	administration	site,	including
the	User	and	Group	models	of	the	Django	authentication	framework.

It	will	look	as	follows:

Create	a	new	user	using	the	administration	site	and	open
http://127.0.0.1:8000/account/login/	in	your	browser.	You	should	see	the
rendered	template,	including	the	login	form:

Now,	submit	the	form,	leaving	one	of	the	fields	empty.	In	this	case,
you	will	see	that	the	form	is	not	valid	and	displays	errors,	as
follows:

Note	that	some	modern	browsers	will	prevent	you	from	submitting
the	form	with	empty	or	erroneous	fields.	This	is	because	of	form
validation	done	by	the	browser	based	on	field	types	and	restrictions
per	field.	In	this	case,	the	form	won't	be	submitted	and	the	browser
will	display	an	error	message	for	the	fields	that	are	wrong.

If	you	enter	a	non-existing	user	or	a	wrong	password,	you	will	get
an	Invalid	login	message.

If	you	enter	valid	credentials,	you	will	get	an	Authenticated
successfully	message,	like	this:

Using	Django	authentication
views
Django	includes	several	forms	and	views	in	the	authentication
framework	that	you	can	use	straight	away.	The	login	view	you	have
created	is	a	good	exercise	to	understand	the	process	of	user
authentication	in	Django.	However,	you	can	use	the	default	Django
authentication	views	in	most	cases.

Django	provides	the	following	class-based	views	to	deal	with
authentication.	All	of	them	are	located	in	django.contrib.auth.views:

LoginView:	Handles	a	login	form	and	logs	in	a	user

LogoutView:	Logs	out	a	user

Django	provides	the	following	views	to	handle	password	changes:

PasswordChangeView:	Handles	a	form	to	change	the	user	password

PasswordChangeDoneView:	The	success	view	the	user	is	redirected	to

after	a	successful	password	change

Django	also	includes	the	following	views	to	allow	users	to	reset	their
password:

PasswordResetView:	Allows	users	to	reset	their	password.	It

generates	a	one-time	use	link	with	a	token	and	sends	it	to

the	user's	email	account.

PasswordResetDoneView:	Tells	users	that	an	email—including	a	link

to	reset	their	password—has	been	sent	to	them.

PasswordResetConfirmView:	Allows	users	to	set	a	new	password.

PasswordResetCompleteView:	The	success	view	the	user	is	redirected

to	after	successfully	resetting	the	password.

The	views	listed	in	the	preceding	list	can	save	you	a	lot	of	time	when
creating	a	website	with	user	accounts.	The	views	use	default	values
that	you	can	override,	such	as	the	location	of	the	template	to	be
rendered,	or	the	form	to	be	used	by	the	view.

You	can	get	more	information	about	the	built-in	authentication
views	at	https://docs.djangoproject.com/en/2.0/topics/auth/default/#all-authentic
ation-views.

https://docs.djangoproject.com/en/2.0/topics/auth/default/#all-authentication-views

Login	and	logout	views
Edit	the	urls.py	of	your	account	application,	like	this:

from	django.urls	import	path

from	django.contrib.auth	import	views	as	auth_views

from	.	import	views

urlpatterns	=	[

				#	previous	login	view

				#	path('login/',	views.user_login,	name='login'),

				path('login/',	auth_views.LoginView.as_view(),	name='login'),

				path('logout/',	auth_views.LogoutView.as_view(),	name='logout'),

]

We	comment	out	the	URL	pattern	for	the	user_login	view	we	have
created	previously	to	use	the	LoginView	view	of	Django's
authentication	framework.	We	also	add	a	URL	pattern	for
the		LogoutView	view.

Create	a	new	directory	inside	the	templates	directory	of	your	account
application	and	name	it	registration.	This	is	the	default	path	where
the	Django	authentication	views	expect	your	authentication
templates	to	be.	

The	django.contrib.admin	module	includes	some	of	the	authentication
templates	that	are	used	for	the	administration	site.	We	have	placed
the	account	application	at	the	top	of	the	INSTALLED_APPS	setting	so	that
Django	uses	our	templates	by	default	instead	of	any	authentication
templates	defined	in	other	apps.

Create	a	new	file	inside	the	templates/registration	directory,	name	it
login.html,	and	add	the	following	code	to	it:

{%	extends	"base.html"	%}

{%	block	title	%}Log-in{%	endblock	%}

{%	block	content	%}

		<h1>Log-in</h1>

		{%	if	form.errors	%}

				<p>

						Your	username	and	password	didn't	match.

						Please	try	again.

				</p>

		{%	else	%}

				<p>Please,	use	the	following	form	to	log-in:</p>

		{%	endif	%}

		<div	class="login-form">

				<form	action="{%	url	'login'	%}"	method="post">

						{{	form.as_p	}}

						{%	csrf_token	%}

						<input	type="hidden"	name="next"	value="{{	next	}}"	/>

						<p><input	type="submit"	value="Log-in"></p>

				</form>

		</div>

{%	endblock	%}

This	login	template	is	quite	similar	to	the	one	we	created	before.
Django	uses	the	AuthenticationForm	form	located	at	django.contrib.auth.forms
by	default.	This	form	tries	to	authenticate	the	user	and	raises	a
validation	error	if	login	was	unsuccessful.	In	this	case,	we	can	look
for	errors	using	{%	if	form.errors	%}	in	the	template	to	check	whether
the	credentials	provided	are	wrong.	Note	that	we	have	added	a
hidden	HTML	<input>	element	to	submit	the	value	of	a	variable	called
next.	This	variable	is	first	set	by	the	login	view	when	you	pass	a	next
parameter	in	the	request	(for
example,	http://127.0.0.1:8000/account/login/?next=/account/).

The	next	parameter	has	to	be	a	URL.	If	this	parameter	is	given,	the
Django	login	view	will	redirect	the	user	to	the	given	URL	after	a
successful	login.

Now,	create	a	logged_out.html	template	inside	the	registration	template
directory	and	make	it	look	like	this:

{%	extends	"base.html"	%}

{%	block	title	%}Logged	out{%	endblock	%}

{%	block	content	%}

		<h1>Logged	out</h1>

		<p>You	have	been	successfully	logged	out.	You	can	<a	href="{%	url		

		"login"	%}">log-in	again.</p>

{%	endblock	%}

This	is	the	template	that	Django	will	display	after	the	user	logs	out.

After	adding	the	URL	patterns	and	the	templates	for	login	and
logout	views,	your	website	is	ready	for	users	to	log	in	using	Django
authentication	views.

Now,	we	will	create	a	new	view	to	display	a	dashboard	when	users
log	in	to	their	account.	Open	the	views.py	file	of	your	account
application	and	add	the	following	code	to	it:

from	django.contrib.auth.decorators	import	login_required

@login_required

def	dashboard(request):

				return	render(request,

																		'account/dashboard.html',

																		{'section':	'dashboard'})

We	decorate	our	view	with	the	login_required	decorator	of	the
authentication	framework.	The	login_required	decorator	checks
whether	the	current	user	is	authenticated.	If	the	user	is
authenticated,	it	executes	the	decorated	view;	if	the	user	is	not
authenticated,	it	redirects	the	user	to	the	login	URL	with	the
originally	requested	URL	as	a	GET	parameter	named	next.	By	doing	so,
the	login	view	redirects	users	to	the	URL	they	were	trying	to	access
after	they	successfully	log	in.	Remember	that	we	added	a	hidden
input	in	the	form	of	our	login	template	for	this	purpose.

We	also	define	a	section	variable.	We	will	use	this	variable	to	track
the	site's	section	that	the	user	is	browsing.	Multiple	views	may

correspond	to	the	same	section.	This	is	a	simple	way	to	define	the
section	that	each	view	corresponds	to.

Now,	you	will	need	to	create	a	template	for	the	dashboard	view.
Create	a	new	file	inside	the	templates/account/	directory	and	name	it
dashboard.html.	Make	it	look	like	this:

{%	extends	"base.html"	%}

{%	block	title	%}Dashboard{%	endblock	%}

{%	block	content	%}

		<h1>Dashboard</h1>

		<p>Welcome	to	your	dashboard.</p>

{%	endblock	%}

Then,	add	the	following	URL	pattern	for	this	view	in	the	urls.py	file
of	the	account	application:

urlpatterns	=	[

				#	...

				path('',	views.dashboard,	name='dashboard'),

]

Edit	the	settings.py	file	of	your	project	and	add	the	following	code	to
it:

LOGIN_REDIRECT_URL	=	'dashboard'

LOGIN_URL	=	'login'

LOGOUT_URL	=	'logout'

The	settings	mentioned	in	the	preceding	code	are	as	follows:

LOGIN_REDIRECT_URL:	Tells	Django	which	URL	to	redirect	after	a

successful	login	if	no	next	parameter	is	present	in	the	request

LOGIN_URL:	The	URL	to	redirect	the	user	to	log	in	(for	example,

views	using	the	login_required	decorator)

LOGOUT_URL:	The	URL	to	redirect	the	user	to	log	out

We	are	using	the	names	of	the	URL	patterns	we	previously	defined
using	the	name	attribute	of	the	path()	function.	Hardcoded	URLs
instead	of	URL	names	can	also	be	used	for	these	settings.

Let's	summarize	what	you	have	done	so	far:

You	have	added	the	built-in	Django	authentication	login	and

logout	views	to	your	project

You	have	created	custom	templates	for	both	views	and

defined	a	simple	dashboard	view	to	redirect	users	after	they

log	in

Finally,	you	have	configured	your	settings	for	Django	to	use

these	URLs	by	default

Now,	we	will	add	login	and	logout	links	to	our	base	template	to	put
everything	together.	In	order	to	do	this,	we	have	to	determine
whether	the	current	user	is	logged	in	or	not	in	order	to	display	the
appropriate	link	for	each	case.	The	current	user	is	set	in	the
HttpRequest	object	by	the	authentication	middleware.	You	can	access	it
with	request.user.	You	will	find	a	User	object	in	the	request	even	if	the
user	is	not	authenticated.	A	non-authenticated	user	is	set	in	the
request	as	an	instance	of	AnonymousUser.	The	best	way	to	check	whether
the	current	user	is	authenticated	is	by	accessing	its	read-only
attribute	is_authenticated.

Edit	your	base.html	template	and	modify	the	<div>	element	with
a	header	ID,	like	this:

<div	id="header">

		Bookmarks

		{%	if	request.user.is_authenticated	%}

				<ul	class="menu">

						<li	{%	if	section	==	"dashboard"	%}class="selected"{%	endif	%}>

								My	dashboard

						

						<li	{%	if	section	==	"images"	%}class="selected"{%	endif	%}>

								Images

						

						<li	{%	if	section	==	"people"	%}class="selected"{%	endif	%}>

								People

						

				

		{%	endif	%}

		

				{%	if	request.user.is_authenticated	%}

						Hello	{{	request.user.first_name	}},

						Logout

				{%	else	%}

						Log-in

				{%	endif	%}

		

</div>

As	you	can	see	in	the	preceding	code,	we	only	display	the	site's
menu	to	authenticated	users.	We	also	check	the	current	section	to
add	a	selected	class	attribute	to	the	corresponding		item	in	order
to	highlight	the	current	section	in	the	menu	using	CSS.	We	also
display	the	user's	first	name	and	a	link	to	log	out	if	the	user	is
authenticated,	or	a	link	to	log	in	otherwise.

Now,	open	http://127.0.0.1:8000/account/login/	in	your	browser.	You
should	see	the	login	page.	Enter	a	valid	username	and	password
and	click	on	the	Log-in	button.	You	should	see	the	following	output:

You	can	see	that	the	My	dashboard	section	is	highlighted	with	CSS
because	it	has	a	selected	class.	Since	the	user	is	authenticated,	the
first	name	of	the	user	is	displayed	on	the	right	side	of	the	header.
Click	on	the	Logout	link.	You	should	see	the	following	page:

In	the	page	mentioned	in	the	preceding	screenshot,	you	can	see	that
the	user	is	logged	out,	and,	therefore,	the	menu	of	the	website	is	not
being	displayed	anymore.	Now,	the	link	on	the	right	side	of	the
header	shows	Log-in.

If	you	see	the	logout	page	of	the	Django	administration	site	instead	of	your
own	log	out	page,	check	the	INSTALLED_APPS	setting	of	your	project	and	make
sure	that	django.contrib.admin	comes	after	the	account	application.	Both	templates
are	located	in	the	same	relative	path,	and	the	Django	template	loader	will
use	the	first	one	it	finds.

Changing	password	views
We	also	need	our	users	to	be	able	to	change	their	password	after
they	log	in	to	our	site.	We	will	integrate	Django	authentication
views	for	password	change.	Open	the	urls.py	file	of	the	account
application	and	add	the	following	URL	patterns	to	it:

#	change	password	urls

path('password_change/',

					auth_views.PasswordChangeView.as_view(),	

					name='password_change'),

path('password_change/done/',

						auth_views.PasswordChangeDoneView.as_view(),	

						name='password_change_done'),

The	PasswordChangeView	view	will	handle	the	form	to	change	the
password,	and	the	PasswordChangeDoneView	view	will	display	a	success
message	after	the	user	has	successfully	changed	his	password.	Let's
create	a	template	for	each	view.

Add	a	new	file	inside	the	templates/registration/	directory	of	your	account
application	and	name	it	password_change_form.html.	Add	the	following
code	to	it:

{%	extends	"base.html"	%}

{%	block	title	%}Change	you	password{%	endblock	%}

{%	block	content	%}

		<h1>Change	you	password</h1>

		<p>Use	the	form	below	to	change	your	password.</p>

		<form	action="."	method="post">

				{{	form.as_p	}}

				<p><input	type="submit"	value="Change"></p>

				{%	csrf_token	%}

		</form>

{%	endblock	%}

The	password_change_form.html	template	includes	the	form	to	change	the
password.	Now,	create	another	file	in	the	same	directory	and	name
it	password_change_done.html.	Add	the	following	code	to	it:

{%	extends	"base.html"	%}

{%	block	title	%}Password	changed{%	endblock	%}

{%	block	content	%}

		<h1>Password	changed</h1>

		<p>Your	password	has	been	successfully	changed.</p>

{%	endblock	%}

The	password_change_done.html	template	only	contains	the	success
message	to	be	displayed	when	the	user	has	successfully	changed
their	password.

Open	http://127.0.0.1:8000/account/password_change/	in	your	browser.	If	your
user	is	not	logged	in,	the	browser	will	redirect	you	to	the	login	page.
After	you	are	successfully	authenticated,	you	will	see	the	following
change	password	page:

Fill	in	the	form	with	your	current	password	and	your	new	password,
and	click	on	the	CHANGE	button.	You	will	see	the	following	success
page:

Log	out	and	log	in	again	using	your	new	password	to	verify	that
everything	works	as	expected.

Resetting	password	views
Add	the	following	URL	patterns	for	password	restoration	to	the
urls.py	file	of	the	account	application:

#	reset	password	urls

path('password_reset/',

					auth_views.PasswordResetView.as_view(),

					name='password_reset'),

path('password_reset/done/',

					auth_views.PasswordResetDoneView.as_view(),

					name='password_reset_done'),

path('reset/<uidb64>/<token>/',

					auth_views.PasswordResetConfirmView.as_view(),

					name='password_reset_confirm'),

path('reset/done/',

					auth_views.PasswordResetCompleteView.as_view(),

					name='password_reset_complete'),

Add	a	new	file	in	the	templates/registration/	directory	of	your	account
application	and	name	it	password_reset_form.html.	Add	the	following	code
to	it:

{%	extends	"base.html"	%}

{%	block	title	%}Reset	your	password{%	endblock	%}

{%	block	content	%}

		<h1>Forgotten	your	password?</h1>

		<p>Enter	your	e-mail	address	to	obtain	a	new	password.</p>

		<form	action="."	method="post">

				{{	form.as_p	}}

				<p><input	type="submit"	value="Send	e-mail"></p>

				{%	csrf_token	%}

		</form>

{%	endblock	%}

Now,	create	another	file	in	the	same	directory	and	name	it

password_reset_email.html.	Add	the	following	code	to	it:

Someone	asked	for	password	reset	for	email	{{	email	}}.	Follow	the	link	

below:	

{{	protocol	}}://{{	domain	}}{%	url	"password_reset_confirm"	uidb64=uid	

token=token	%}

Your	username,	in	case	you've	forgotten:	{{	user.get_username	}}

The	password_reset_email.html	template	will	be	used	to	render	the	email
sent	to	users	to	reset	their	password.

Create	another	file	in	the	same	directory	and	name	it
password_reset_done.html.	Add	the	following	code	to	it:

{%	extends	"base.html"	%}

{%	block	title	%}Reset	your	password{%	endblock	%}

{%	block	content	%}

		<h1>Reset	your	password</h1>

		<p>We've	emailed	you	instructions	for	setting	your	password.</p>

		<p>If	you	don't	receive	an	email,	please	make	sure	you've	entered	the	

address	you	registered	with.</p>

{%	endblock	%}

Create	another	template	in	the	same	directory	and	name	it
password_reset_confirm.html.	Add	the	following	code	to	it:

{%	extends	"base.html"	%}

{%	block	title	%}Reset	your	password{%	endblock	%}

{%	block	content	%}

		<h1>Reset	your	password</h1>

		{%	if	validlink	%}

				<p>Please	enter	your	new	password	twice:</p>

				<form	action="."	method="post">

						{{	form.as_p	}}

						{%	csrf_token	%}

						<p><input	type="submit"	value="Change	my	password"	/></p>

				</form>

		{%	else	%}

				<p>The	password	reset	link	was	invalid,	possibly	because	it	has		

				already	been	used.	Please	request	a	new	password	reset.</p>

		{%	endif	%}

{%	endblock	%}

We	check	whether	the	provided	link	is	valid.	The	view
PasswordResetConfirmView	sets	this	variable	and	puts	it	in	the	context	of
the	password_reset_confirm.html	template.	If	the	link	is	valid,	we	display
the	user	password	reset	form.

Create	another	template	and	name	it	password_reset_complete.html.	Enter
the	following	code	into	it:

{%	extends	"base.html"	%}

{%	block	title	%}Password	reset{%	endblock	%}

{%	block	content	%}

		<h1>Password	set</h1>

		<p>Your	password	has	been	set.	You	can	log	in	

now</p>

{%	endblock	%}

Finally,	edit	the	registration/login.html	template	of	the	account
application,	and	add	the	following	code	after	the	<form>	element:

<p>Forgotten	your	

	password?</p>

Now,	open	http://127.0.0.1:8000/account/login/	in	your	browser	and	click
on	the	Forgotten	your	password?	link.	You	should	see	the	following
page:

At	this	point,	you	need	to	add	an	SMTP	configuration	to	the
settings.py	file	of	your	project	so	that	Django	is	able	to	send	emails.
You	learned	how	to	add	email	settings	to	your	project	in	Chapter	2,
Enhancing	Your	Blog	with	Advanced	Features.	However,	during
development,	you	can	configure	Django	to	write	emails	to	the
standard	output	instead	of	sending	them	through	an	SMTP	server.
Django	provides	an	email	backend	to	write	emails	to	the	console.
Edit	the	settings.py	file	of	your	project,	and	add	the	following	line:

EMAIL_BACKEND	=	'django.core.mail.backends.console.EmailBackend'

The	EMAIL_BACKEND	setting	indicates	the	class	to	use	to	send	emails.

Return	to	your	browser,	enter	the	email	address	of	an	existing	user,
and	click	on	the	SEND	E-MAIL	button.	You	should	see	the
following	page:

Take	a	look	at	the	console	where	you	are	running	the	development
server.	You	will	see	the	generated	email,	as	follows:

Content-Type:	text/plain;	charset="utf-8"

MIME-Version:	1.0

Content-Transfer-Encoding:	7bit

Subject:	Password	reset	on	127.0.0.1:8000

From:	webmaster@localhost

To:	user@domain.com

Date:	Fri,	15	Dec	2017	14:35:08	-0000

Message-ID:	<20150924143508.62996.55653@zenx.local>

Someone	asked	for	password	reset	for	email	user@domain.com.	Follow	the	link	

below:

http://127.0.0.1:8000/account/reset/MQ/45f-9c3f30caafd523055fcc/

Your	username,	in	case	you've	forgotten:	zenx

The	email	is	rendered	using	the	password_reset_email.html	template	we
created	earlier.	The	URL	to	reset	your	password	includes	a	token
that	was	generated	dynamically	by	Django.	Copy	the	URL	and	open
it	in	your	browser.	You	should	see	the	following	page:

The	page	to	set	a	new	password	corresponds	to	the
password_reset_confirm.html	template.	Fill	in	a	new	password	and	click	on
the	CHANGE	MY	PASSWORD	button.	Django	creates	a	new
encrypted	password	and	saves	it	in	the	database.	You	will	see	the
following	success	page:

Now,	you	can	log	back	into	your	account	using	your	new	password.

Each	token	to	set	a	new	password	can	be	used	only	once.	If	you
open	the	link	you	received	again,	you	will	get	a	message	stating	that
the	token	is	invalid.

You	have	integrated	the	views	of	the	Django	authentication
framework	in	your	project.	These	views	are	suitable	for	most	cases.
However,	you	can	create	your	own	views	if	you	need	a	different
behavior.

Django	also	provides	the	authentication	URL	patterns	we	just
created.	You	can	comment	out	the	authentication	URL	patterns	we
added	to	the	urls.py	file	of	the	account	application	and	include
django.contrib.auth.urls	instead,	as	follows:

from	django.urls	import	path,	include

#	...

urlpatterns	=	[

				#	...

				path('',	include('django.contrib.auth.urls')),

]

You	can	see	the	authentication	URL	patterns	included	at	https://githu
b.com/django/django/blob/stable/2.0.x/django/contrib/auth/urls.py.

https://github.com/django/django/blob/stable/2.0.x/django/contrib/auth/urls.py

User	registration	and	user
profiles
Existing	users	can	now	log	in,	log	out,	change	their	password,	and
reset	their	password.	Now,	we	will	need	to	build	a	view	to	allow
visitors	to	create	a	user	account.

User	registration
Let's	create	a	simple	view	to	allow	user	registration	on	our	website.
Initially,	we	have	to	create	a	form	to	let	the	user	enter	a	username,
their	real	name,	and	a	password.
Edit	the	forms.py	file	located	inside	the	account	application	directory
and	add	the	following	code	to	it:

from	django.contrib.auth.models	import	User

class	UserRegistrationForm(forms.ModelForm):

				password	=	forms.CharField(label='Password',

																															widget=forms.PasswordInput)

				password2	=	forms.CharField(label='Repeat	password',

																																widget=forms.PasswordInput)

				class	Meta:

								model	=	User

								fields	=	('username',	'first_name',	'email')

				def	clean_password2(self):

								cd	=	self.cleaned_data

								if	cd['password']	!=	cd['password2']:

												raise	forms.ValidationError('Passwords	don\'t	match.')

								return	cd['password2']

We	have	created	a	model	form	for	the	user	model.	In	our	form,	we
include	only	the	username,	first_name,	and	email	fields	of	the	model.	These
fields	will	be	validated	based	on	their	corresponding	model	fields.
For	example,	if	the	user	chooses	a	username	that	already	exists,
they	will	get	a	validation	error	because	username	is	a	field	defined	with
unique=True.	We	have	added	two	additional	fields—password	and	password2
—for	users	to	set	their	password	and	confirm	it.	We	have	defined	a
clean_password2()	method	to	check	the	second	password	against	the
first	one	and	not	let	the	form	validate	if	the	passwords	don't	match.
This	check	is	done	when	we	validate	the	form	calling	its	is_valid()
method.	You	can	provide	a	clean_<fieldname>()	method	to	any	of	your

form	fields	in	order	to	clean	the	value	or	raise	form	validation
errors	for	a	specific	field.	Forms	also	include	a	general	clean()
method	to	validate	the	entire	form,	which	is	useful	to	validate	fields
that	depend	on	each	other.

Django	also	provides	a	UserCreationForm	form	that	you	can	use,	which
resides	in	django.contrib.auth.forms	and	is	very	similar	to	the	one	we
have	created.

Edit	the	views.py	file	of	the	account	application	and	add	the	following
code	to	it:

from	.forms	import	LoginForm,	UserRegistrationForm

def	register(request):

				if	request.method	==	'POST':

								user_form	=	UserRegistrationForm(request.POST)

								if	user_form.is_valid():

												#	Create	a	new	user	object	but	avoid	saving	it	yet

												new_user	=	user_form.save(commit=False)

												#	Set	the	chosen	password

												new_user.set_password(

																user_form.cleaned_data['password'])

												#	Save	the	User	object

												new_user.save()

												return	render(request,

																										'account/register_done.html',

																										{'new_user':	new_user})

				else:

								user_form	=	UserRegistrationForm()

				return	render(request,

																		'account/register.html',

																		{'user_form':	user_form})

The	view	for	creating	user	accounts	is	quite	simple.	Instead	of
saving	the	raw	password	entered	by	the	user,	we	use	the	set_password()
method	of	the	user	model	that	handles	encryption	to	save	for	safety
reasons.

Now,	edit	the	urls.py	file	of	your	account	application	and	add	the
following	URL	pattern:

path('register/',	views.register,	name='register'),

Finally,	create	a	new	template	in	the	account/	template	directory,
name	it	register.html,	and	make	it	look	as	follows:

{%	extends	"base.html"	%}

{%	block	title	%}Create	an	account{%	endblock	%}

{%	block	content	%}

		<h1>Create	an	account</h1>

		<p>Please,	sign	up	using	the	following	form:</p>

		<form	action="."	method="post">

				{{	user_form.as_p	}}

				{%	csrf_token	%}

				<p><input	type="submit"	value="Create	my	account"></p>

		</form>

{%	endblock	%}

Add	a	template	file	in	the	same	directory	and	name	it
register_done.html.	Add	the	following	code	to	it:

{%	extends	"base.html"	%}

{%	block	title	%}Welcome{%	endblock	%}

{%	block	content	%}

		<h1>Welcome	{{	new_user.first_name	}}!</h1>

		<p>Your	account	has	been	successfully	created.	Now	you	can	<a	href="{%	url	

"login"	%}">log	in.</p>

{%	endblock	%}

Now,	open	http://127.0.0.1:8000/account/register/	in	your	browser.	You
will	see	the	registration	page	you	have	created:

Fill	in	the	details	for	a	new	user	and	click	on	the	CREATE	MY
ACCOUNT	button.	If	all	fields	are	valid,	the	user	will	be	created,
and	you	will	get	the	following	success	message:

Click	on	the	log	in	link	and	enter	your	username	and	password	to
verify	that	you	can	access	your	account.

Now,	you	can	also	add	a	link	to	registration	in	your	login	template.
Edit	the	registration/login.html	template;	take	a	look	at	the	following
line:

<p>Please,	use	the	following	form	to	log-in:</p>

Replace	it	with	the	following:

<p>Please,	use	the	following	form	to	log-in.	If	you	don't	have	an	account	register	here</p>

We	made	the	signup	page	accessible	from	the	login	page.

Extending	the	user	model
When	you	have	to	deal	with	user	accounts,	you	will	find	that	the
user	model	of	the	Django	authentication	framework	is	suitable	for
common	cases.	However,	the	user	model	comes	with	very	basic
fields.	You	may	wish	to	extend	the	user	model	to	include	additional
data.	The	best	way	to	do	this	is	by	creating	a	profile	model	that
contains	all	additional	fields	and	a	one-to-one	relationship	with	the
Django	user	model.

Edit	the	models.py	file	of	your	account	application	and	add	the	following
code	to	it:

from	django.db	import	models

from	django.conf	import	settings

class	Profile(models.Model):

				user	=	models.OneToOneField(settings.AUTH_USER_MODEL,

																																on_delete=models.CASCADE)

				date_of_birth	=	models.DateField(blank=True,	null=True)

				photo	=	models.ImageField(upload_to='users/%Y/%m/%d/',

																														blank=True)

				def	__str__(self):

								return	'Profile	for	user	{}'.format(self.user.username)

In	order	to	keep	your	code	generic,	use	the	get_user_model()	method	to	retrieve
the	user	model	and	the	AUTH_USER_MODEL	setting	to	refer	to	it	when	defining	a
model's	relations	to	the	user	model,	instead	of	referring	to	the	auth	user
model	directly.

The	user	one-to-one	field	allows	you	to	associate	profiles	with
users.	We	use	CASCADE	for	the		on_delete	parameter	so	that	its	related
profile	also	gets	deleted	when	a	user	is	deleted.	The	photo	field	is	an
ImageField	field.	You	will	need	to	install	the	Pillow	library	to	handle
images.	Install	Pillow	by	running	the	following	command	in	your
shell:

pip	install	Pillow==5.1.0

For	Django	to	serve	media	files	uploaded	by	users	with	the
development	server,	add	the	following	settings	to	the	settings.py	file
of	your	project:

MEDIA_URL	=	'/media/'

MEDIA_ROOT	=	os.path.join(BASE_DIR,	'media/')

MEDIA_URL	is	the	base	URL	to	serve	the	media	files	uploaded	by	users,
and	MEDIA_ROOT	is	the	local	path	where	they	reside.	We	build	the	path
dynamically	relative	to	our	project	path	to	make	our	code	more
generic.

Now,	edit	the	main	urls.py	file	of	the	bookmarks	project	and	modify	the
code,	as	follows:

from	django.contrib	import	admin

from	django.urls	import	path,	include

from	django.conf	import	settings

from	django.conf.urls.static	import	static

urlpatterns	=	[

				path('admin/',	admin.site.urls),

				path('account/',	include('account.urls')),

]

if	settings.DEBUG:

				urlpatterns	+=	static(settings.MEDIA_URL,

																										document_root=settings.MEDIA_ROOT)

In	this	way,	the	Django	development	server	will	be	in	charge	of
serving	the	media	files	during	development	(that	is	when	the	DEBUG
setting	is	set	to	True).

The	static()	helper	function	is	suitable	for	development,	but	not	for
production	use.	Never	serve	your	static	files	with	Django	in	a	production
environment.

Open	the	shell	and	run	the	following	command	to	create	the

database	migration	for	the	new	model:

python	manage.py	makemigrations

You	will	get	the	following	output:

Migrations	for	'account':

		account/migrations/0001_initial.py

				-	Create	model	Profile

Next,	sync	the	database	with	the	following	command:

python	manage.py	migrate

You	will	see	an	output	that	includes	the	following	line:

Applying	account.0001_initial...	OK

Edit	the	admin.py	file	of	the	account	application	and	register	the	Profile
model	in	the	administration	site,	like	this:

from	django.contrib	import	admin

from	.models	import	Profile

@admin.register(Profile)

class	ProfileAdmin(admin.ModelAdmin):

				list_display	=	['user',	'date_of_birth',	'photo']

Run	the	development	server	using	the	python	manage.py	runserver
command	and	open	http://127.0.0.1:8000/admin/	in	your	browser.	Now,
you	should	be	able	to	see	the	Profiles	model	in	the	administration
site	of	your	project,	as	follows:

Now,	we	will	let	users	edit	their	profile	on	the	website.	Add	the
following	import	and	model	forms	to	the	forms.py	file	of	the	account
application:

from	.models	import	Profile

class	UserEditForm(forms.ModelForm):

				class	Meta:

								model	=	User

								fields	=	('first_name',	'last_name',	'email')

class	ProfileEditForm(forms.ModelForm):

				class	Meta:

								model	=	Profile

								fields	=	('date_of_birth',	'photo')

These	forms	are	as	follows:

UserEditForm:	This	will	allow	users	to	edit	their	first	name,	last

name,	and	email,	which	are	attributes	of	the	built-in	Django

user	model.

ProfileEditForm:	This	will	allow	users	to	edit	the	profile	data	we

save	in	the	custom	Profile	model.	Users	will	be	able	to	edit

their	date	of	birth	and	upload	a	picture	for	their	profile.

Edit	the	views.py	file	of	the	account	application	and	import	the	Profile
model,	like	this:

from	.models	import	Profile

Then,	add	the	following	lines	to	the	register	view	below	new_user.save():

#	Create	the	user	profile

Profile.objects.create(user=new_user)

When	users	register	on	our	site,	we	will	create	an	empty	profile
associated	with	them.	You	should	create	a	Profile	object	manually
using	the	administration	site	for	the	users	you	created	before.

Now,	we	will	let	users	edit	their	profile.	Add	the	following	code	to
the	same	file:

from	.forms	import	LoginForm,	UserRegistrationForm,	\

																			UserEditForm,	ProfileEditForm

@login_required

def	edit(request):

				if	request.method	==	'POST':

								user_form	=	UserEditForm(instance=request.user,

																																	data=request.POST)

								profile_form	=	ProfileEditForm(

																																				instance=request.user.profile,

																																				data=request.POST,

																																				files=request.FILES)

								if	user_form.is_valid()	and	profile_form.is_valid():

												user_form.save()

												profile_form.save()

				else:

								user_form	=	UserEditForm(instance=request.user)

								profile_form	=	ProfileEditForm(

																																				instance=request.user.profile)

				return	render(request,

																		'account/edit.html',

																		{'user_form':	user_form,

																			'profile_form':	profile_form})

We	use	the	login_required	decorator	because	users	have	to	be
authenticated	to	edit	their	profile.	In	this	case,	we	are	using	two
model	forms:	UserEditForm	to	store	the	data	of	the	built-in	user	model
and	ProfileEditForm	to	store	the	additional	profile	data	in	the
custom	Profile	model.	To	validate	the	submitted	data,	we	will
execute	the	is_valid()	method	of	both	forms.	If	both	forms	contain

valid	data,	we	will	save	both	forms,	calling	the	save()	method	to
update	the	corresponding	objects	in	the	database.

Add	the	following	URL	pattern	to	the	urls.py	file	of	the	account
application:

path('edit/',	views.edit,	name='edit'),

Finally,	create	a	template	for	this	view	in	templates/account/	and	name
it	edit.html.	Add	the	following	code	to	it:

{%	extends	"base.html"	%}

{%	block	title	%}Edit	your	account{%	endblock	%}

{%	block	content	%}

		<h1>Edit	your	account</h1>

		<p>You	can	edit	your	account	using	the	following	form:</p>

		<form	action="."	method="post"	enctype="multipart/form-data">

				{{	user_form.as_p	}}

				{{	profile_form.as_p	}}

				{%	csrf_token	%}

				<p><input	type="submit"	value="Save	changes"></p>

		</form>

{%	endblock	%}

We	include	enctype="multipart/form-data"	in	our	form	to	enable	file
uploads.	We	use	an	HTML	form	to	submit	both	the	user_form	and	the
profile_form	forms.

Register	a	new	user	and	open	http://127.0.0.1:8000/account/edit/.	You
should	see	the	following	page:

Now,	you	can	also	edit	the	dashboard	page	and	include	links	to	the
edit	profile	and	change	password	pages.	Open	the	account/dashboard.html
template:

<p>Welcome	to	your	dashboard.</p>

Replace	the	preceding	line	with	the	following	one:

<p>Welcome	to	your	dashboard.	You	can	edit	your	

profile	or	change	your	

password.</p>

Users	can	now	access	the	form	to	edit	their	profile	from	their
dashboard.	Open	http://127.0.0.1:8000/account/	in	your	browser	and	test
the	new	link	to	edit	the	user's	profile:

Using	a	custom	user	model
Django	also	offers	a	way	to	substitute	the	whole	user	model	with
your	own	custom	model.	Your	user	class	should	inherit	from
Django's	AbstractUser	class,	which	provides	the	full	implementation	of
the	default	user	as	an	abstract	model.	You	can	read	more	about	this
method
at	https://docs.djangoproject.com/en/2.0/topics/auth/customizing/#substituting-a-
custom-user-model.

Using	a	custom	user	model	will	give	you	more	flexibility,	but	it
might	also	result	in	more	difficult	integration	with	pluggable
applications	that	interact	with	Django's	auth	user	model.

https://docs.djangoproject.com/en/2.0/topics/auth/customizing/#substituting-a-custom-user-model

Using	the	messages	framework
When	allowing	users	to	interact	with	your	platform,	there	are	many
cases	where	you	might	want	to	inform	them	about	the	result	of	their
actions.	Django	has	a	built-in	messages	framework	that	allows	you
to	display	one-time	notifications	to	your	users.

The	messages	framework	is	located	at	django.contrib.messages	and	is
included	in	the	default	INSTALLED_APPS	list	of	the	settings.py	file	when	you
create	new	projects	using	python	manage.py	startproject.	You	will	note
that	your	settings	file	contains	a	middleware	named
django.contrib.messages.middleware.MessageMiddleware	in	the	MIDDLEWARE	settings.

The	messages	framework	provides	a	simple	way	to	add	messages	to
users.	Messages	are	stored	in	a	cookie	by	default	(falling	back	to
session	storage),	and	they	are	displayed	in	the	next	request	the	user
does.	You	can	use	the	messages	framework	in	your	views	by
importing	the	messages	module	and	adding	new	messages	with	simple
shortcuts,	as	follows:

from	django.contrib	import	messages

messages.error(request,	'Something	went	wrong')

You	can	create	new	messages	using	the	add_message()	method	or	any	of
the	following	shortcut	methods:

success():	Success	messages	to	be	displayed	after	an	action

was	successful

info():	Informational	messages

warning():	Something	has	not	yet	failed	but	may	fail

imminently

error():	An	action	was	not	successful,	or	something	failed

debug():	Debug	messages	that	will	be	removed	or	ignored	in	a

production	environment

Let's	add	messages	to	our	platform.	Since	the	messages	framework
applies	globally	to	the	project,	we	can	display	messages	for	the	user
in	our	base	template.	Open	the	base.html	template	of	the	account
application	and	add	the	following	code	between	the	<div>	element
with	the	header	ID	and	the	<div>	element	with	the	content	ID:

{%	if	messages	%}

		<ul	class="messages">

				{%	for	message	in	messages	%}

						<li	class="{{	message.tags	}}">

								{{	message|safe	}}

										x

						

				{%	endfor	%}

		

{%	endif	%}

The	messages	framework	includes	the	context
processor	django.contrib.messages.context_processors.messages	that	adds	a
messages	variable	to	the	request	context.	You	can	find	it	in	the
context_processors	list	of	the	TEMPLATES	setting	of	your	project.	You	can	use
this	variable	in	your	templates	to	display	all	existing	messages	to
the	user.

Now,	let's	modify	our	edit	view	to	use	the	messages	framework.	Edit
the	views.py	file	of	the	account	application,	import	messages,	and	make	the
edit	view	look	as	follows:

from	django.contrib	import	messages

@login_required

def	edit(request):

				if	request.method	==	'POST':

								#	...

								if	user_form.is_valid()	and	profile_form.is_valid():

												user_form.save()

												profile_form.save()

												messages.success(request,	'Profile	updated	'\

																																						'successfully')

								else:

												messages.error(request,	'Error	updating	your	profile')

				else:

								user_form	=	UserEditForm(instance=request.user)

								#	...

We	add	a	success	message	when	the	user	successfully	updates	their
profile.	If	any	of	the	forms	contain	invalid	data,	we	add	an	error
message	instead.

Open	http://127.0.0.1:8000/account/edit/	in	your	browser	and	edit	your
profile.	When	the	profile	is	successfully	updated,	you	should	see	the
following	message:

When	data	is	not	valid,	for	example,	using	an	incorrectly	formatted
date	for	the	Date	of	birth	field,	you	should	see	the	following
message:

You	can	learn	more	about	the	messages	framework	at	https://docs.djan
goproject.com/en/2.0/ref/contrib/messages/.

https://docs.djangoproject.com/en/2.0/ref/contrib/messages/

Building	a	custom
authentication	backend
Django	allows	you	to	authenticate	against	different	sources.	The
AUTHENTICATION_BACKENDS	setting	includes	the	list	of	authentication
backends	for	your	project.	By	default,	this	setting	is	set	as	follows:

['django.contrib.auth.backends.ModelBackend']

The	default	ModelBackend	authenticates	users	against	the	database
using	the	user	model	of	django.contrib.auth.	This	will	suit	most	of	your
projects.	However,	you	can	create	custom	backends	to	authenticate
your	user	against	other	sources,	such	as	an	LDAP	directory	or	any
other	system.

You	can	read	more	information	about	customizing	authentication	at
https://docs.djangoproject.com/en/2.0/topics/auth/customizing/#other-

authentication-sources.

Whenever	you	use	the	authenticate()	function	of	django.contrib.auth,
Django	tries	to	authenticate	the	user	against	each	of	the	backends
defined	in	AUTHENTICATION_BACKENDS	one	by	one,	until	one	of	them
successfully	authenticates	the	user.	Only	if	all	of	the	backends	fail	to
authenticate	will	the	user	not	be	authenticated	into	your	site.

Django	provides	a	simple	way	to	define	your	own	authentication
backends.	An	authentication	backend	is	a	class	that	provides	the
following	two	methods:

authenticate():	It	takes	the	request	object	and	user	credentials	as

parameters.	It	has	to	return	a	user	object	that	matches	those

https://docs.djangoproject.com/en/2.0/topics/auth/customizing/#other-authentication-sources

credentials	if	the	credentials	are	valid,	or	None	otherwise.	The

request	parameter	is	an	HttpRequest	object,	or	None	if	it's	not

provided	to	authenticate().

get_user():	Takes	a	user	ID	parameter	and	has	to	return	a	user

object.

Creating	a	custom	authentication	backend	is	as	simple	as	writing	a
Python	class	that	implements	both	methods.	We	will	create	an
authentication	backend	to	let	users	authenticate	in	our	site	using
their	email	address	instead	of	their	username.

Create	a	new	file	inside	your	account	application	directory	and	name
it	authentication.py.	Add	the	following	code	to	it:

from	django.contrib.auth.models	import	User

class	EmailAuthBackend(object):

				"""

				Authenticate	using	an	e-mail	address.

				"""

				def	authenticate(self,	request,	username=None,	password=None):

								try:

												user	=	User.objects.get(email=username)

												if	user.check_password(password):

																return	user

												return	None

								except	User.DoesNotExist:

												return	None

				def	get_user(self,	user_id):

								try:

												return	User.objects.get(pk=user_id)

								except	User.DoesNotExist:

												return	None

The	preceding	code	is	a	simple	authentication	backend.	The
authenticate()	method	receives	a	request	object	and	the	username	and
password	optional	parameters.	We	could	use	different	parameters,	but
we	use	username	and	password	to	make	our	backend	work	with	the

authentication	framework	views	straight	away.	The	preceding	code
works	as	follows:

authenticate():	We	try	to	retrieve	a	user	with	the	given	email

address	and	check	the	password	using	the	built-in

check_password()	method	of	the	user	model.	This	method

handles	the	password	hashing	to	compare	the	given

password	against	the	password	stored	in	the	database.

get_user():	We	get	a	user	through	the	ID	set	in	the	user_id

parameter.	Django	uses	the	backend	that	authenticated	the

user	to	retrieve	the	User	object	for	the	duration	of	the	user

session.

Edit	the	settings.py	file	of	your	project	and	add	the	following	setting:

AUTHENTICATION_BACKENDS	=	[

				'django.contrib.auth.backends.ModelBackend',

				'account.authentication.EmailAuthBackend',

]

In	the	preceding	setting,	we	kept	the	default	ModelBackend	that	is	used
to	authenticate	with	username	and	password	and	included	our	own
email-based	authentication	backend.	Now,	open
http://127.0.0.1:8000/account/login/	in	your	browser.	Remember	that
Django	will	try	to	authenticate	the	user	against	each	of	the
backends,	so	now	we	should	be	able	to	log	in	seamlessly	using	your
username	or	email	account.	User	credentials	will	be	checked	using
the	ModelBackend	authentication	backend,	and	if	no	user	is	returned,
credentials	will	be	checked	using	our	custom	EmailAuthBackend	backend.

The	order	of	the	backends	listed	in	the	AUTHENTICATION_BACKENDS	setting	matters.	If
the	same	credentials	are	valid	for	multiple	backends,	Django	will	stop	at	the
first	backend	that	successfully	authenticates	the	user.

Adding	social	authentication	to
your	site
You	might	also	want	to	add	social	authentication	to	your	site	using
services	such	as	Facebook,	Twitter,	or	Google.	Python	Social	Auth	is
a	Python	module	that	simplifies	the	process	of	adding	social
authentication	to	our	website.	Using	this	module,	you	can	let	your
users	log	in	to	your	website	using	their	account	of	other	services.
You	can	find	the	code	of	this	module	at	https://github.com/python-social-au
th.

This	module	comes	with	authentication	backends	for	different
Python	frameworks,	including	Django.	To	install	the	Django
package	via	pip,	open	the	console	and	run	the	following	command:

pip	install	social-auth-app-django==2.1.0

Then,	add	social_django	to	the	INSTALLED_APPS	setting	in	the	settings.py	file
of	your	project:

INSTALLED_APPS	=	[

				#...

				'social_django',

]

This	is	the	default	application	to	add	python-social-auth	to	Django
projects.	Now,	run	the	following	command	to	sync	python-social-
auth	models	with	your	database:

python	manage.py	migrate

https://github.com/python-social-auth

You	should	see	that	the	migrations	for	the	default	application	are
applied	as	follows:

Applying	social_django.0001_initial...	OK

Applying	social_django.0002_add_related_name...	OK

...

Applying	social_django.0008_partial_timestamp...	OK

Python-social-auth	includes	backends	for	multiple	services.	You	can
see	a	list	of	all	backends	at	https://python-social-auth.readthedocs.io/en/lates
t/backends/index.html#supported-backends.

We	will	include	authentication	backends	for	Facebook,	Twitter,	and
Google.

You	will	need	to	add	social	login	URL	patterns	to	your	project.	Open
the	main	urls.py	file	of	the	bookmarks	project	and	include	the	social_django
URL	patterns	as	follows:

urlpatterns	=	[

				path('admin/',	admin.site.urls),

				path('account/',	include('account.urls')),

				path('social-auth/',	

									include('social_django.urls',	namespace='social')),

]

Several	social	services	will	not	allow	the	redirecting	of	users	to
127.0.0.1	or	localhost	after	a	successful	authentication.	In	order	to
make	social	authentication	work,	you	will	need	a	domain.	In	order
to	fix	this,	under	Linux	or	macOS	X,	edit	your	/etc/hosts	file	and	add
the	following	line	to	it:

127.0.0.1	mysite.com

This	will	tell	your	computer	to	point	the	mysite.com	hostname	to	your
own	machine.	If	you	are	using	Windows,	your	hosts	file	is	located	at
C:\Windows\System32\Drivers\etc\hosts.

https://python-social-auth.readthedocs.io/en/latest/backends/index.html#supported-backends

To	verify	that	your	host	redirection	worked,	start	the	development
server	with	python	manage.py	runserver	and	open
http://mysite.com:8000/account/login/	in	your	browser.	You	will	see	the
following	error:

Django	controls	the	hosts	able	to	serve	your	application	using
the	ALLOWED_HOSTS	setting.	This	is	a	security	measure	to	prevent	HTTP
host	header	attacks.	Django	will	only	allow	the	hosts	included	in
this	list	to	serve	the	application.	You	can	learn	more	about
the	ALLOWED_HOSTS	setting	at	https://docs.djangoproject.com/en/2.0/ref/settings/#a
llowed-hosts.

Edit	the	settings.py	file	of	your	project	and	edit	the	ALLOWED_HOSTS	setting
as	follows:

ALLOWED_HOSTS	=	['mysite.com',	'localhost',	'127.0.0.1']

Besides	the	mysite.com	host,	we	explicitly	include	localhost	and	127.0.0.1.
We	do	this	to	be	able	to	access	the	site	through	localhost,	which	is	the
default	Django's	behavior	when	DEBUG	is	True	and	ALLOWED_HOSTS	is	empty.
Now,	you	should	be	able	to	open	http://mysite.com:8000/account/login/	in
your	browser.	

https://docs.djangoproject.com/en/2.0/ref/settings/#allowed-hosts

Authentication	using	Facebook
In	order	to	let	your	users	log	in	with	their	Facebook	account	to	your
site,	add	the	following	line	to	the	AUTHENTICATION_BACKENDS	setting	in	the
settings.py	file	of	your	project:

'social_core.backends.facebook.FacebookOAuth2',

In	order	to	add	social	authentication	with	Facebook,	you	will	need	a
Facebook	developer	account	and	to	create	a	new	Facebook
application.	Open	https://developers.facebook.com/apps/	in	your	browser.
You	will	see	the	following	header	in	the	site:

Click	on	the	Add	a	New	App	button.	You	will	see	the	following	form
to	create	a	new	app	ID:

https://developers.facebook.com/apps/

Enter	Bookmarks	as	Display	Name,	add	a	contact	email	address,	and
click	on	Create	App	ID.	You	will	see	a	dashboard	for	your	new	app
that	displays	different	features	you	can	set	up	for	your	app.	Look	for
the	following	Facebook	Login	box	and	click	on	Set	Up:

You	will	be	asked	to	choose	the	platform,	as	follows:

Select	the	Web	platform.	You	will	see	the	following	form:

Enter	http://mysite.com:8000/	as	your	Site	URL	and	click	on	the	Save
button.	You	can	skip	the	rest	of	the	quickstart	process.	In	the	left-
hand	menu,	click	on	Dashboard.	You	will	see	something	similar	to
the	following:

Copy	the	App	ID	and	App	Secret	keys	and	add	them	to	the	settings.py
file	of	your	project,	as	follows:

SOCIAL_AUTH_FACEBOOK_KEY	=	'XXX'	#	Facebook	App	ID

SOCIAL_AUTH_FACEBOOK_SECRET	=	'XXX'	#	Facebook	App	Secret

Optionally,	you	can	define	a	SOCIAL_AUTH_FACEBOOK_SCOPE	setting	with	the
extra	permissions	you	want	to	ask	Facebook	users	for:

SOCIAL_AUTH_FACEBOOK_SCOPE	=	['email']

Now,	go	back	to	Facebook	and	click	on	Settings.	You	will	see	a	form
with	multiple	settings	for	your	app.	Add	mysite.com	under	App
Domains,	as	follows:

Click	on	Save	Changes.	Then,	in	the	left-hand	menu,	click	on
Facebook	Login.	Ensure	that	only	the	following	settings	are	active:

Client	OAuth	Login

Web	OAuth	Login

Embedded	Browser	OAuth	Login

Enter	http://mysite.com:8000/social-auth/complete/facebook/	under	Valid
OAuth	redirect	URIs.	The	selection	should	look	like	this:

Open	the	registration/login.html	template	of	your	account	application	and
append	the	following	code	at	the	bottom	of	the	content	block:

<div	class="social">

		

				<li	class="facebook">Sign	

in	with	Facebook

		

</div>

Open	http://mysite.com:8000/account/login/	in	your	browser.	Now,	the
login	page	will	look	as	follows:

Click	on	the	Sign	in	with	Facebook	button.	You	will	be	redirected	to

Facebook,	and	you	will	see	a	modal	dialog	asking	for	your
permission	to	let	the	Bookmarks	application	access	your	public
Facebook	profile:

Click	on	the	Continue	as	...	button.	You	will	be	logged	in	and
redirected	to	the	dashboard	page	of	your	site.	Remember	that	we
have	set	this	URL	in	the	LOGIN_REDIRECT_URL	setting.	As	you	can	see,
adding	social	authentication	to	your	site	is	pretty	straightforward.

Authentication	using	Twitter
For	social	authentication	using	Twitter,	add	the	following	line	to	the
AUTHENTICATION_BACKENDS	setting	in	the	settings.py	file	of	your	project:

'social_core.backends.twitter.TwitterOAuth',

You	will	need	to	create	a	new	application	in	your	Twitter	account.
Open	https://apps.twitter.com/app/new	in	your	browser.	You	will	see	the
following	form:

https://apps.twitter.com/app/new

Enter	the	details	of	your	application,	including	the	following
settings:

Website:	http://mysite.com:8000/

Callback	URL:	http://mysite.com:8000/social-auth/complete/twitter/

Then,	click	on	Create	your	Twitter	application.	You	will	see	the
application	details.	Click	on	Keys	and	Access	Tokens.	You	should
see	the	following	information:

Copy	the	Consumer	Key	and	Consumer	Secret	keys	into	the
following	settings	in	the	settings.py	file	of	your	project:

SOCIAL_AUTH_TWITTER_KEY	=	'XXX'	#	Twitter	Consumer	Key

SOCIAL_AUTH_TWITTER_SECRET	=	'XXX'	#	Twitter	Consumer	Secret

Now,	edit	the	registration/login.html	template	and	add	the	following
code	to	the		element:

<li	class="twitter"><a	href="{%	url	"social:begin"	"twitter"	

	%}">Login	with	Twitter

Open	http://mysite.com:8000/account/login/	in	your	browser	and	click	on
the	Login	with	Twitter	link.	You	will	be	redirected	to	Twitter,	and	it
will	ask	you	to	authorize	the	application	as	follows:

Click	on	Authorize	app.	You	will	be	logged	in	and	redirected	to	the
dashboard	page	of	your	site.

Authentication	using	Google
Google	offers	OAuth2	authentication.	You	can	read	about	Google's
OAuth2	implementation	at	https://developers.google.com/identity/protocols/
OAuth2.

To	implement	authentication	using	Google,	add	the	following	line
to	the	AUTHENTICATION_BACKENDS	setting	in	the	settings.py	file	of	your	project:

'social_core.backends.google.GoogleOAuth2',

First,	you	will	need	to	create	an	API	key	in	your	Google	Developer
Console.	Open	https://console.developers.google.com/apis/credentials	in	your
browser.	Click	on	Select	a	project	and	create	a	new	project,	as
follows:

https://developers.google.com/identity/protocols/OAuth2
https://developers.google.com/accounts/docs/OAuth2
https://console.developers.google.com/apis/credentials

After	the	project	is	created,	under	Credentials,	click	on	Create
credentials	and	choose	OAuth	client	ID,	as	follows:

Google	will	ask	you	to	configure	the	consent	screen	first:

The	preceding	page	is	the	page	that	will	be	shown	to	users	to	give
their	consent	to	access	your	site	with	their	Google	account.	Click	on
the	Configure	consent	screen	button.	Select	your	email	address,
enter	Bookmarks	under	Product	name,	and	click	on	the	Save	button.
The	consent	screen	for	your	application	will	be	configured,	and	you

will	be	redirected	to	finish	creating	your	client	ID.

Fill	in	the	form	with	the	following	information:

Application	type:	Select	Web	application

Name:	Enter	Bookmarks

Authorized	redirect	URIs:	Add	http://mysite.com:8000/social-

auth/complete/google-oauth2/

The	form	should	look	like	this:

Click	on	the	Create	button.	You	will	get	the	Client	ID	and	Client
Secret	keys.	Add	them	to	your	settings.py	file,	like	this:

SOCIAL_AUTH_GOOGLE_OAUTH2_KEY	=	'XXX'	#	Google	Consumer	Key

SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET	=	'XXX'	#	Google	Consumer	Secret

In	the	left-hand	menu	of	the	Google	Developers	Console,	under	the
APIs	&	Services	section,	click	on	the	Library	link.	You	will	see	a	list
that	contains	all	Google	APIs.	Click	on	Google+	API	and	then	click
on	the	ENABLE	button	in	the	following	page:

Edit	the	login.html	template	and	add	the	following	code	to	the	
element:

<li	class="google">Login	

with	Google

Open	http://mysite.com:8000/account/login/	in	your	browser.	The	login
page	should	now	look	as	follows:

Click	on	the	Login	with	Google	button.	You	will	be	logged	in	and
redirected	to	the	dashboard	page	of	your	website.

You	have	added	social	authentication	to	your	project.	You	can	easily
implement	social	authentication	with	other	popular	online	services
using	Python	Social	Auth.

Summary
In	this	chapter,	you	learned	how	to	build	an	authentication	system
into	your	site	and	created	custom	user	profiles.	You	also	added
social	authentication	to	your	site.

In	the	next	chapter,	you	will	learn	how	to	create	an	image
bookmarking	system,	generate	image	thumbnails,	and	build	AJAX
views.

Sharing	Content	in	Your
Website
In	the	preceding	chapter,	you	built	user	registration	and
authentication	into	your	website.	You	learned	how	to	create	a
custom	profile	model	for	your	users	and	added	social
authentication	to	your	site	with	major	social	networks.

In	this	chapter,	you	will	learn	how	to	create	a	JavaScript
bookmarklet	to	share	content	from	other	sites	into	your	website,
and	you	will	implement	AJAX	features	into	your	project	using
jQuery	and	Django.

This	chapter	will	cover	the	following	points:

Creating	many-to-many	relationships

Customizing	behavior	for	forms

Using	jQuery	with	Django

Building	a	jQuery	bookmarklet

Generating	image	thumbnails	using	sorl-thumbnail

Implementing	AJAX	views	and	integrating	them	with

jQuery

Creating	custom	decorators	for	views

Building	AJAX	pagination

Creating	an	image
bookmarking	website
We	will	allow	users	to	bookmark	and	share	images	they	find	on
other	websites	and	on	our	site.	For	this,	we	will	need	to	do	the
following	tasks:

1.	 Define	a	model	to	store	images	and	their	information

2.	 Create	a	form	and	a	view	to	handle	image	uploads

3.	 Build	a	system	for	users	to	be	able	to	post	images	they	find

on	external	websites

First,	create	a	new	application	inside	your	bookmarks	project	directory
with	the	following	command:

django-admin	startapp	images

Add	the	new	app	to	the	INSTALLED_APPS	setting	in	the	settings.py	file,	as
follows:

INSTALLED_APPS	=	[

				#	...

				'images.apps.ImagesConfig',

]

We	have	activated	the	images	application	in	the	project.

Building	the	image	model
Edit	the	models.py	file	of	the	images	application	and	add	the	following
code	to	it:

from	django.db	import	models

from	django.conf	import	settings

class	Image(models.Model):

				user	=	models.ForeignKey(settings.AUTH_USER_MODEL,

																													related_name='images_created',

																													on_delete=models.CASCADE)

				title	=	models.CharField(max_length=200)

				slug	=	models.SlugField(max_length=200,

																												blank=True)

				url	=	models.URLField()

				image	=	models.ImageField(upload_to='images/%Y/%m/%d/')

				description	=	models.TextField(blank=True)

				created	=	models.DateField(auto_now_add=True,

																															db_index=True)

				def	__str__(self):

								return	self.title

This	is	the	model	we	will	use	to	store	images	bookmarked	from
different	sites.	Let's	take	a	look	at	the	fields	of	this	model:

user:	This	indicates	the	User	object	that	bookmarked	this

image.	This	is	a	foreign	key	field	because	it	specifies	a	one-

to-many	relationship.	A	user	can	post	multiple	images,	but

each	image	is	posted	by	a	single	user.	We	use	CASCADE	for	the

on_delete	parameter	so	that	related	images	are	also

deleted	when	a	user	is	deleted.

title:	A	title	for	the	image.

slug:	A	short	label	that	contains	only	letters,	numbers,

underscores,	or	hyphens	to	be	used	for	building	beautiful

SEO-friendly	URLs.

url:	The	original	URL	for	this	image.

image:	The	image	file.

description:	An	optional	description	for	the	image.

created:	The	date	and	time	that	indicate	when	the	object	has

been	created	in	the	database.	Since	we	use	auto_now_add,	this

datetime	is	automatically	set	when	the	object	is	created.	We

use	db_index=True	so	that	Django	creates	an	index	in	the

database	for	this	field.

Database	indexes	improve	query	performance.	Consider	setting	db_index=True
for	fields	that	you	frequently	query	using	filter(),	exclude(),	or	order_by().
ForeignKey	fields	or	fields	with	unique=True	imply	the	creation	of	an	index.	You	can
also	use	Meta.index_together	to	create	indexes	for	multiple	fields.

We	will	override	the	save()	method	of	the	Image	model	to
automatically	generate	the	slug	field	based	on	the	value	of	the	title
field.	Import	the	slugify()	function	and	add	a	save()	method	to	the
Image	model,	as	follows:

from	django.utils.text	import	slugify

class	Image(models.Model):

				#	...

				def	save(self,	*args,	**kwargs):

				if	not	self.slug:

								self.slug	=	slugify(self.title)

				super(Image,	self).save(*args,	**kwargs)

In	the	preceding	code,	we	use	the	slugify()	function	provided	by
Django	to	automatically	generate	the	image	slug	for	the	given	title
when	no	slug	is	provided.	Then,	we	save	the	object.	We	will

generate	slugs	for	images	automatically	so	that	users	don't	have
to	manually	enter	a	slug	for	each	image.

Creating	many-to-many
relationships
We	will	add	another	field	to	the	Image	model	to	store	the	users	who
like	an	image.	We	will	need	a	many-to-many	relationship	in	this
case	because	a	user	might	like	multiple	images	and	each	image	can
be	liked	by	multiple	users.

Add	the	following	field	to	the	Image	model:

users_like	=	models.ManyToManyField(settings.AUTH_USER_MODEL,

																																				related_name='images_liked',

																																				blank=True)

When	you	define	a	ManyToManyField,	Django	creates	an	intermediary
join	table	using	the	primary	keys	of	both	models.	The	ManyToManyField
can	be	defined	in	any	of	the	two	related	models.

As	with	ForeignKey	fields,	the	related_name	attribute	of	ManyToManyField
allows	us	to	name	the	relationship	from	the	related	object	back	to
this	one.	The	ManyToManyField	fields	provide	a	many-to-many	manager
that	allows	us	to	retrieve	related	objects,	such	as	image.users_like.all(),
or	from	a	user	object,	such	as	user.images_liked.all().

Open	the	command	line	and	run	the	following	command	to	create
an	initial	migration:

python	manage.py	makemigrations	images

You	should	see	the	following	output:

Migrations	for	'images':

		images/migrations/0001_initial.py

				-	Create	model	Image

Now,	run	the	following	command	to	apply	your	migration:

python	manage.py	migrate	images

You	will	get	an	output	that	includes	the	following	line:

Applying	images.0001_initial...	OK

The	Image	model	is	now	synced	to	the	database.

Registering	the	image	model	in
the	administration	site
Edit	the	admin.py	file	of	the	images	application	and	register	the	Image
model	into	the	administration	site,	as	follows:

from	django.contrib	import	admin

from	.models	import	Image

@admin.register(Image)

class	ImageAdmin(admin.ModelAdmin):

				list_display	=	['title',	'slug',	'image',	'created']

				list_filter	=	['created']

Start	the	development	server	with	the	python	manage.py
runserver	command.	Open	http://127.0.0.1:8000/admin/	in	your	browser,
and	you	will	see	the	Image	model	in	the	administration	site,	like	this:

Posting	content	from	other
websites
We	will	allow	users	to	bookmark	images	from	external	websites.
The	user	will	provide	the	URL	of	the	image,	a	title,	and	optional
description.	Our	application	will	download	the	image	and	create	a
new	Image	object	in	the	database.

Let's	start	by	building	a	form	to	submit	new	images.	Create	a	new
forms.py	file	inside	the	Images	application	directory	and	add	the
following	code	to	it:

from	django	import	forms

from	.models	import	Image

class	ImageCreateForm(forms.ModelForm):

				class	Meta:

								model	=	Image

								fields	=	('title',	'url',	'description')

								widgets	=	{

												'url':	forms.HiddenInput,

								}

As	you	would	notice	in	this	preceding	code,	this	form	is	a
ModelForm	form	built	from	the	Image	model,	including	only	the	title,	url,
and	description	fields.	Users	will	not	enter	the	image	URL	directly	in
the	form.	Instead,	we	will	provide	them	with	a	JavaScript	tool	to
choose	an	image	from	an	external	site,	and	our	form	will	receive	its
URL	as	a	parameter.	We	override	the	default	widget	of	the	url	field
to	use	a	HiddenInput	widget.	This	widget	is	rendered	as	an	HTML	input
element	with	a	type="hidden"	attribute.	We	use	this	widget	because	we
don't	want	this	field	to	be	visible	to	users.

Cleaning	form	fields
In	order	to	verify	that	the	provided	image	URL	is	valid,	we	will
check	that	the	filename	ends	with	a	.jpg	or	.jpeg	extension	to	only
allow	JPEG	files.	As	you	saw	in	the	preceding	chapter,	Django
allows	you	to	define	form	methods	to	clean	specific	fields	using
the	clean_<fieldname>()	notation.	This	method	is	executed	for	each	field,
if	present,	when	you	call	is_valid()	on	a	form	instance.	In	the	clean
method,	you	can	alter	the	field's	value	or	raise	any	validation	errors
for	this	specific	field	when	needed.	Add	the	following	method	to
ImageCreateForm:

def	clean_url(self):

				url	=	self.cleaned_data['url']

				valid_extensions	=	['jpg',	'jpeg']

				extension	=	url.rsplit('.',	1)[1].lower()

				if	extension	not	in	valid_extensions:

								raise	forms.ValidationError('The	given	URL	does	not	'	\

																																				'match	valid	image	extensions.')

				return	url

In	the	preceding	code,	we	define	a	clean_url()	method	to	clean	the	url
field.	The	code	works	as	follows:

1.	 We	get	the	value	of	the	url	field	by	accessing	the	cleaned_data

dictionary	of	the	form	instance.

2.	 We	split	the	URL	to	get	the	file	extension	and	check	whether

it	is	one	of	the	valid	extensions.	If	the	extension	is	invalid,

we	raise	ValidationError	and	the	form	instance	will	not	be

validated.	Here,	we	are	performing	a	very	simple	validation.

You	could	use	more	advanced	methods	to	check	whether	the

given	URL	provides	a	valid	image	file.

In	addition	to	validating	the	given	URL,	we	will	also	need	to
download	the	image	file	and	save	it.	We	could,	for	example,	use	the
view	that	handles	the	form	to	download	the	image	file.	Instead,	we
will	take	a	more	general	approach	by	overriding	the	save()	method	of
our	model	form	to	perform	this	task	every	time	the	form	is	saved.

Overriding	the	save()	method
of	a	ModelForm
As	you	know,	ModelForm	provides	a	save()	method	to	save	the	current
model	instance	to	the	database	and	return	the	object.	This	method
receives	a	boolean	commit	parameter,	which	allows	you	to	specify
whether	the	object	has	to	be	persisted	to	the	database.	If	commit	is
False,	the	save()	method	will	return	a	model	instance	but	will	not	save
it	to	the	database.	We	will	override	the	save()	method	of	our	form	in
order	to	retrieve	the	given	image	and	save	it.

Add	the	following	imports	at	the	top	of	the	forms.py	file:

from	urllib	import	request

from	django.core.files.base	import	ContentFile

from	django.utils.text	import	slugify

Then,	add	the	following	save()	method	to	the	ImageCreateForm	form:

def	save(self,	force_insert=False,

															force_update=False,

															commit=True):

				image	=	super(ImageCreateForm,	self).save(commit=False)

				image_url	=	self.cleaned_data['url']

				image_name	=	'{}.{}'.format(slugify(image.title),

																														image_url.rsplit('.',	1)[1].lower())

				#	download	image	from	the	given	URL

				response	=	request.urlopen(image_url)

				image.image.save(image_name,

																					ContentFile(response.read()),

																					save=False)

				if	commit:

								image.save()

				return	image

We	override	the	save()	method,	keeping	the	parameters	required	by
ModelForm.	The	preceding	code	is	explained	as	follows:

1.	 We	create	a	new	image	instance	by	calling	the	save()	method	of

the	form	with	commit=False.

2.	 We	get	the	URL	from	the	cleaned_data	dictionary	of	the	form.

3.	 We	generate	the	image	name	by	combining	the	image	title	slug

with	the	original	file	extension.

4.	 We	use	the	Python	urllib	module	to	download	the	image	and

then	we	call	the	save()	method	of	the	image	field,	passing	it	a

ContentFile	object	that	is	instantiated	with	the	downloaded	file

content.	In	this	way,	we	save	the	file	to	the	media	directory

of	our	project.	We	also	pass	the	save=False	parameter	to	avoid

saving	the	object	to	the	database,	yet.

5.	 In	order	to	maintain	the	same	behavior	as	the	save()	method

we	override,	we	save	the	form	to	the	database	only	when	the

commit	parameter	is	True.

Now,	we	will	need	a	view	for	handling	the	form.	Edit	the	views.py	file
of	the	images	application	and	add	the	following	code	to	it:

from	django.shortcuts	import	render,	redirect

from	django.contrib.auth.decorators	import	login_required

from	django.contrib	import	messages

from	.forms	import	ImageCreateForm

@login_required

def	image_create(request):

				if	request.method	==	'POST':

								#	form	is	sent

								form	=	ImageCreateForm(data=request.POST)

								if	form.is_valid():

												#	form	data	is	valid

												cd	=	form.cleaned_data

												new_item	=	form.save(commit=False)

												#	assign	current	user	to	the	item

												new_item.user	=	request.user

												new_item.save()

												messages.success(request,	'Image	added	successfully')

												#	redirect	to	new	created	item	detail	view

												return	redirect(new_item.get_absolute_url())

				else:

								#	build	form	with	data	provided	by	the	bookmarklet	via	GET

								form	=	ImageCreateForm(data=request.GET)

				return	render(request,

																		'images/image/create.html',

																		{'section':	'images',

																			'form':	form})

We	add	a	login_required	decorator	to	the	image_create	view	to	prevent
access	for	unauthenticated	users.	This	is	how	this	view	works:

1.	 We	expect	initial	data	via	GET	in	order	to	create	an	instance	of

the	form.	This	data	will	consist	of	the	url	and	title	attributes

of	an	image	from	an	external	website	and	will	be	provided

via	GET	by	the	JavaScript	tool	we	will	create	later.	For	now,

we	just	assume	that	this	data	will	be	there	initially.

2.	 If	the	form	is	submitted,	we	check	whether	it	is	valid.	If	the

form	data	is	valid,	we	create	a	new	Image	instance,	but	prevent

the	object	from	being	saved	to	the	database	yet	by	passing

commit=False	to	the	form's	save()	method.

3.	 We	assign	the	current	user	to	the	new	image	object.	This	is

how	we	can	know	who	uploaded	each	image.

4.	 We	save	the	image	object	to	the	database.

5.	 Finally,	we	create	a	success	message	using	the	Django

messaging	framework	and	redirect	the	user	to	the	canonical

URL	of	the	new	image.	We	haven't	yet	implemented	the

get_absolute_url()	method	of	the	Image	model;	we	will	do	that

later.

Create	a	new	urls.py	file	inside	the	images	application	and	add	the
following	code	to	it:

from	django.urls	import	path

from	.	import	views

app_name	=	'images'

urlpatterns	=	[

				path('create/',	views.image_create,	name='create'),

]

Edit	the	main	urls.py	file	of	the	bookmarks	project	to	include	the
patterns	for	the	images	application,	as	follows:

urlpatterns	=	[

				path('admin/',	admin.site.urls),

				path('account/',	include('account.urls')),

				path('social-auth/',

									include('social_django.urls',	namespace='social')),

				path('images/',	include('images.urls',	namespace='images')),

]

Finally,	you	will	need	to	create	a	template	to	render	the	form.
Create	the	following	directory	structure	inside	the	images	application
directory:

templates/

		images/

				image/

						create.html

Edit	the	new	create.html	template	and	add	the	following	code	to	it:

{%	extends	"base.html"	%}

{%	block	title	%}Bookmark	an	image{%	endblock	%}

{%	block	content	%}

		<h1>Bookmark	an	image</h1>

		

		<form	action="."	method="post">

				{{	form.as_p	}}

				{%	csrf_token	%}

				<input	type="submit"	value="Bookmark	it!">

		</form>

{%	endblock	%}

Now,	open	http://127.0.0.1:8000/images/create/?title=...&url=...	in	your
browser,	including	a	title	and	url	GET	parameters,	providing	an
existing	JPEG	image	URL	in	the	latter.

For	example,	you	can	use	the	following	URL:
http://127.0.0.1:8000/images/create/?

title=%20Django%20and%20Duke&url=http://upload.wikimedia.org/wikipedia/commons/8/85

/Django_Reinhardt_and_Duke_Ellington_%28Gottlieb%29.jpg.

You	will	see	the	form	with	an	image	preview,	like	the	following	one:

Add	a	description	and	click	on	the	BOOKMARK	IT!	button.	A	new

Image	object	will	be	saved	in	your	database.	However,	you	will	get	an
error	that	indicates	that	the	Image	model	has	no	get_absolute_url()
method,	as	follows:

Don't	worry	about	this	for	now;	we	are	going	to	add	this	method
later.	Open	http://127.0.0.1:8000/admin/images/image/	in	your	browser	and
verify	that	the	new	image	object	has	been	saved,	like	this:

Building	a	bookmarklet	with
jQuery
A	bookmarklet	is	a	bookmark	stored	in	a	web	browser	that	contains
JavaScript	code	to	extend	the	browser's	functionality.	When	you
click	on	the	bookmark,	the	JavaScript	code	is	executed	on	the
website	being	displayed	in	the	browser.	This	is	very	useful	to	build
tools	that	interact	with	other	websites.

Some	online	services,	such	as	Pinterest,	implement	their	own
bookmarklets	to	let	users	share	content	from	other	sites	onto	their
platform.	We	will	create	a	bookmarklet,	in	a	similar	way,	to	let	users
share	images	from	other	sites	in	our	website.

We	will	use	jQuery	to	build	our	bookmarklet.	jQuery	is	a	popular
JavaScript	framework	that	allows	you	to	develop	client-side
functionality	faster.	You	can	read	more	about	jQuery	at	its	official
website,	https://jquery.com/.

This	is	how	your	users	will	add	a	bookmarklet	to	their	browser	and
use	it:

1.	 The	user	drags	a	link	from	your	site	to	his	browser's

bookmarks.	The	link	contains	JavaScript	code	in	its	href

attribute.	This	code	will	be	stored	in	the	bookmark.

2.	 The	user	navigates	to	any	website	and	clicks	on	the

bookmark.	The	JavaScript	code	of	the	bookmark	is

executed.

Since	the	JavaScript	code	will	be	stored	as	a	bookmark,	you	will	not

https://jquery.com/

be	able	to	update	it	later.	This	is	an	important	drawback	that	you
can	solve	by	implementing	a	launcher	script	to	load	the	actual
JavaScript	bookmarklet	from	a	URL.	Your	users	will	save	this
launcher	script	as	a	bookmark,	and	you	will	be	able	to	update	the
code	of	the	bookmarklet	at	any	time.	This	is	the	approach	we	will
take	to	build	our	bookmarklet.	Let's	start!

Create	a	new	template	under	images/templates/	and	name
it	bookmarklet_launcher.js.	This	will	be	the	launcher	script.	Add	the
following	JavaScript	code	to	this	file:

(function(){

				if	(window.myBookmarklet	!==	undefined){

								myBookmarklet();

				}

				else	{

								

document.body.appendChild(document.createElement('script')).src='http://127.0

.0.1:8000/static/js/bookmarklet.js?

r='+Math.floor(Math.random()*99999999999999999999);

				}

})();

The	preceding	script	discovers	whether	the	bookmarklet	has	been
already	loaded	by	checking	whether	the	myBookmarklet	variable	is
defined.	By	doing	so,	we	avoid	loading	it	again	if	the	user	clicks	on
the	bookmarklet	repeatedly.	If	myBookmarklet	is	not	defined,	we	load
another	JavaScript	file	by	adding	a	<script>	element	to	the	document.
The	script	tag	loads	the	bookmarklet.js	script	using	a	random	number
as	a	parameter	to	prevent	loading	the	file	from	the	browser's	cache.

The	actual	bookmarklet	code	will	reside	in	the	bookmarklet.js	static
file.	This	will	allow	us	to	update	our	bookmarklet	code	without
requiring	our	users	to	update	the	bookmark	they	previously	added
to	their	browser.	Let's	add	the	bookmarklet	launcher	to	the
dashboard	pages	so	that	our	users	can	copy	it	to	their	bookmarks.

Edit	the	account/dashboard.html	template	of	the	account	application	and
make	it	look	like	the	following:

{%	extends	"base.html"	%}

{%	block	title	%}Dashboard{%	endblock	%}

{%	block	content	%}

		<h1>Dashboard</h1>

		{%	with	total_images_created=request.user.images_created.count	%}

				<p>Welcome	to	your	dashboard.	You	have	bookmarked	{{	total_images_created	

}}	image{{	total_images_created|pluralize	}}.</p>

		{%	endwith	%}

		<p>Drag	the	following	button	to	your	bookmarks	toolbar	to	bookmark	images	

from	other	websites	→	<a	href="javascript:{%	include	

"bookmarklet_launcher.js"	%}"	class="button">Bookmark	it<p>

		<p>You	can	also	edit	your	profile	or	change	your	password.<p>

{%	endblock	%}

The	dashboard	now	displays	the	total	number	of	images
bookmarked	by	the	user.	We	use	the	{%	with	%}	template	tag	to	set	a
variable	with	the	total	number	of	images	bookmarked	by	the
current	user.	We	also	include	a	link	with	an	href	attribute	that
contains	the	bookmarklet	launcher	script.	We	will	include	this
JavaScript	code	from	the	bookmarklet_launcher.js	template.

Open	http://127.0.0.1:8000/account/	in	your	browser.	You	should	see	the
following	page:

Now,	create	the	following	directories	and	files	inside	the	images
application	directory:

static/

		js/

				bookmarklet.js

You	will	find	a	static/css/	directory	under	the	images	application
directory,	in	the	code	that	comes	along	with	this	chapter.	Copy	the
css/	directory	into	the	static/	directory	of	your	code.	The
css/bookmarklet.css	file	provides	the	styles	for	our	JavaScript
bookmarklet.

Edit	the	bookmarklet.js	static	file	and	add	the	following	JavaScript
code	to	it:

(function(){

		var	jquery_version	=	'3.3.1';

		var	site_url	=	'http://127.0.0.1:8000/';

		var	static_url	=	site_url	+	'static/';

		var	min_width	=	100;

		var	min_height	=	100;

		function	bookmarklet(msg)	{

				//	Here	goes	our	bookmarklet	code

		};

		//	Check	if	jQuery	is	loaded

		if(typeof	window.jQuery	!=	'undefined')	{

				bookmarklet();

		}	else	{

				//	Check	for	conflicts

				var	conflict	=	typeof	window.$!=	'undefined';

				//	Create	the	script	and	point	to	Google	API

				var	script	=	document.createElement('script');

				script.src	=	'//ajax.googleapis.com/ajax/libs/jquery/'	+	

						jquery_version	+	'/jquery.min.js';

				//	Add	the	script	to	the	'head'	for	processing

				document.head.appendChild(script);

				//	Create	a	way	to	wait	until	script	loading

				var	attempts	=	15;

				(function(){

						//	Check	again	if	jQuery	is	undefined

						if(typeof	window.jQuery	==	'undefined')	{

								if(--attempts	>	0)	{

										//	Calls	himself	in	a	few	milliseconds

										window.setTimeout(arguments.callee,	250)

								}	else	{

										//	Too	much	attempts	to	load,	send	error

										alert('An	error	ocurred	while	loading	jQuery')

								}

						}	else	{

										bookmarklet();

						}

				})();

		}

})()

This	is	the	main	jQuery	loader	script.	It	takes	care	of	using	jQuery	if
it	has	already	been	loaded	on	the	current	website.	If	jQuery	is	not
loaded,	the	script	loads	jQuery	from	Google's	content	delivery
network,	which	hosts	popular	JavaScript	frameworks.	When	jQuery
is	loaded,	it	executes	the	bookmarklet()	function	that	will	contain	our
bookmarklet	code.	We	also	set	some	variables	at	the	top	of	the	file:

jquery_version:	The	jQuery	version	to	load

site_url	and	static_url:	The	base	URL	for	our	website	and	base

static	files'	URL

min_width	and	min_height:	Minimum	width	and	height	in	pixels

for	the	images	our	bookmarklet	will	try	to	find	on	the	site

Now,	let's	implement	the	bookmarklet	function.	Edit	the	bookmarklet()
function	to	make	it	look	like	this:

function	bookmarklet(msg)	{

		//	load	CSS

		var	css	=	jQuery('<link>');

		css.attr({

				rel:	'stylesheet',

				type:	'text/css',

				href:	static_url	+	'css/bookmarklet.css?r='	+	

Math.floor(Math.random()*99999999999999999999)

		});

		jQuery('head').append(css);

		//	load	HTML

		box_html	=	'<div	id="bookmarklet">×

<h1>Select	an	image	to	bookmark:</h1><div	class="images"></div></div>';

		jQuery('body').append(box_html);

		//	close	event

		jQuery('#bookmarklet	#close').click(function(){

					jQuery('#bookmarklet').remove();

		});

};

The	preceding	code	works	as	follows:

1.	 We	load	the	bookmarklet.css	stylesheet	using	a	random	number

as	a	parameter	to	prevent	the	browser	from	returning	a

cached	file.

2.	 We	add	custom	HTML	to	the	document	<body>	element	of	the

current	website.	This	consists	of	a	<div>	element	that	will

contain	the	images	found	on	the	current	website.

3.	 We	add	an	event	that	removes	our	HTML	from	the

document	when	the	user	clicks	on	the	close	link	of	our

HTML	block.	We	use	the	#bookmarklet	#close	selector	to	find	the

HTML	element	with	an	ID	named	close,	which	has	a	parent

element	with	an	ID	named	bookmarklet.	jQuery	selectors	allow

you	to	find	HTML	elements.	A	jQuery	selector	returns	all

elements	found	by	the	given	CSS	selector.	You	can	find	a	list

of	jQuery	selectors	at	https://api.jquery.com/category/selectors/.

After	loading	the	CSS	styles	and	the	HTML	code	for	the
bookmarklet,	we	will	need	to	find	the	images	on	the	website.	Add
the	following	JavaScript	code	at	the	bottom	of	the	bookmarklet()
function:

//	find	images	and	display	them

jQuery.each(jQuery('img[src$="jpg"]'),	function(index,	image)	{

		if	(jQuery(image).width()	>=	min_width	&&	jQuery(image).height()	

		>=	min_height)

		{

				image_url	=	jQuery(image).attr('src');

				jQuery('#bookmarklet	.images').append('<img	src="'+		

				image_url	+'"	/>');

		}

});

The	preceding	code	uses	the	img[src$="jpg"]	selector	to	find	all	
HTML	elements,	whose	src	attribute	finishes	with	a	jpg	string.	This
means	that	we	will	search	all	JPEG	images	displayed	on	the	current
website.	We	iterate	over	the	results	using	the	each()	method	of
jQuery.	We	add	the	images	with	a	size	larger	than	the	one	specified
with	the	min_width	and	min_height	variables	to	our	<div
class="images">	HTML	container.

You	will	need	to	be	able	to	load	the	bookmarklet	on	any	site,
including	sites	served	through	HTTPS.	SSL	has	become
widely	used,	and	most	websites	serve	content	through	HTTPS
nowadays.	For	security	reasons,	your	browser	will	prevent	you	from

https://api.jquery.com/category/selectors/

running	the	bookmarklet	over	HTTP	on	a	site	served	through
HTTPS.

The	Django	development	server	is	intended	only	for	development
and	doesn't	support	HTTPS.	To	test	the	bookmarklet	over	HTTPS,
we	will	use	Ngrok.	Ngrok	is	a	tool	that	creates	a	tunnel	to	expose
your	localhost	to	the	internet	through	HTTP	and	HTTPS.

Download	Ngrok	for	your	operating	system	from
https://ngrok.com/download	and	run	it	from	the	shell	using	the	following
command:

./ngrok	http	8000

With	the	preceding	command,	you	tell	Ngrok	to	create	a	tunnel	to
your	localhost	on	the	8000	port	and	assign	an	internet-accessible
hostname	for	it.	You	should	see	an	output	similar	to	this	one:

Session	Status								online

Version															2.2.8

Region																United	States	(us)

Web	Interface									http://127.0.0.1:4040

Forwarding												http://3f6ad53c.ngrok.io	->	localhost:8000

Forwarding												https://3f6ad53c.ngrok.io	->	localhost:8000

Connnections										ttl					opn					rt1					rt5					p50					p90

																						0							0							0.00				0.00				0.00				0.00

Ngrok	tells	us	that	our	site,	running	locally	at	localhost	on
the	8000	port	using	Django's	development	server,	is	made	available
on	the	internet	through
the	http://3f6ad53c.ngrok.io	and	https://3f6ad53c.ngrok.io	URLs	using	the
HTTP	and	HTTPS	protocols,	respectively.	Ngrok	also	provides	a
URL	to	access	a	web	interface	that	displays	information	about
requests	sent	to	the	server	in	the	localhost	at	the	4040	port.	

Edit	the	settings.py	file	of	your	project	and	add	the	host	provided	by
Ngrok	to	the	ALLOWED_HOSTS	setting,	as	follows:

https://ngrok.com/download

ALLOWED_HOSTS	=	[

				'mysite.com',

				'localhost',

				'127.0.0.1',

				'3f6ad53c.ngrok.io'

]

This	will	allow	you	to	serve	the	application	through	the	new
hostname.	Then,	open	the	URL	https://3f6ad53c.ngrok.io/account/login/	in
your	browser,	replacing	the	host	with	the	one	provided	by	Ngrok.
You	will	be	able	to	see	the	login	site.

Edit	the	bookmarklet_launcher.js	template	and	replace
the	http://127.0.0.1:8000/	URL	with	the	HTTPS	URL	provided	by
Ngrok,	as	follows:

(function(){

				if	(window.myBookmarklet	!==	undefined){

								myBookmarklet();

				}

				else	{

								

document.body.appendChild(document.createElement('script')).src='https://3f6a

d53c.ngrok.io/static/js/bookmarklet.js?

r='+Math.floor(Math.random()*99999999999999999999);

				}

})();

Edit	the	js/bookmarklet.js	static	file,	and	take	a	look	at	the	following
line:

var	site_url	=	'http://127.0.0.1:8000/';

Replace	the	preceding	line	with	the	following	one,	including	the
HTTPS	URL	provided	by	Ngrok:

var	site_url	=	'https://3f6ad53c.ngrok.io/';

Open	https://3f6ad53c.ngrok.io/account/	in	your	browser,	replacing	the

host	with	the	one	provided	by	Ngrok.	Log	in	with	an	existing	user
and	then	drag	the	BOOKMARK	IT	button	to	the	bookmarks	toolbar
of	your	browser	as	follows:

Open	a	website	of	your	own	choice	in	your	browser	and	click	on
your	bookmarklet.	You	will	see	that	a	new	white	box	appears	on	the
website,	displaying	all	JPEG	images	found	with	dimensions	higher
than	100	x	100	pixels.	It	should	look	like	the	following	example:

The	HTML	container	includes	the	images	that	can	be	bookmarked.
We	want	the	user	to	click	on	the	desired	image	and	bookmark	it.
Edit	the	js/bookmarklet.js	static	file	and	add	the	following	code	at	the
bottom	of	the	bookmarklet()	function:

//	when	an	image	is	selected	open	URL	with	it

jQuery('#bookmarklet	.images	a').click(function(e){

		selected_image	=	jQuery(this).children('img').attr('src');

		//	hide	bookmarklet

		jQuery('#bookmarklet').hide();

		//	open	new	window	to	submit	the	image

		window.open(site_url	+'images/create/?url='

														+	encodeURIComponent(selected_image)

														+	'&title='

														+	encodeURIComponent(jQuery('title').text()),

														'_blank');

});

The	preceding	code	works	as	follows:

1.	 We	attach	a	click()	event	to	the	images'	link	elements.

2.	 When	a	user	clicks	on	an	image,	we	set	a	new	variable	called

selected_image	that	contains	the	URL	of	the	selected	image.

3.	 We	hide	the	bookmarklet	and	open	a	new	browser	window

with	the	URL	for	bookmarking	a	new	image	on	our	site.	We

pass	the	<title>	element	of	the	website	and	the	selected	image

URL	as	GET	parameters.

Open	a	new	URL	with	your	browser	and	click	on	your	bookmarklet
again	to	display	the	image	selection	box.	If	you	click	on	an	image,
you	will	be	redirected	to	the	image	create	page,	passing	the	title	of
the	website	and	the	URL	of	the	selected	image	as	GET	parameters:

Congratulations!	This	is	your	first	JavaScript	bookmarklet,	and	it	is
fully	integrated	into	your	Django	project.

Creating	a	detail	view	for
images
We	will	now	create	a	simple	detail	view	to	display	an	image	that	has
been	saved	into	our	site.	Open	the	views.py	file	of	the	images
application	and	add	the	following	code	to	it:

from	django.shortcuts	import	get_object_or_404

from	.models	import	Image

def	image_detail(request,	id,	slug):

				image	=	get_object_or_404(Image,	id=id,	slug=slug)

				return	render(request,

																		'images/image/detail.html',

																		{'section':	'images',

																			'image':	image})

This	is	a	simple	view	to	display	an	image.	Edit	the	urls.py	file	of	the
images	application	and	add	the	following	URL	pattern:

path('detail/<int:id>/<slug:slug>/',

					views.image_detail,	name='detail'),

Edit	the	models.py	file	of	the	images	application	and	add	the
get_absolute_url()	method	to	the	Image	model,	as	follows:

from	django.urls	import	reverse

class	Image(models.Model):

				#	...

				def	get_absolute_url(self):

								return	reverse('images:detail',	args=[self.id,	self.slug])

Remember	that	the	common	pattern	for	providing	canonical	URLs

for	objects	is	to	define	a	get_absolute_url()	method	in	the	model.

Finally,	create	a	template	inside	the	/images/image/	template	directory
of	the	images	application	and	name	it	detail.html.	Add	the	following
code	to	it:

{%	extends	"base.html"	%}

{%	block	title	%}{{	image.title	}}{%	endblock	%}

{%	block	content	%}

		<h1>{{	image.title	}}</h1>

		

		{%	with	total_likes=image.users_like.count	%}

				<div	class="image-info">

						<div>

								

										{{	total_likes	}}	like{{	total_likes|pluralize	}}

								

						</div>

						{{	image.description|linebreaks	}}

				</div>

				<div	class="image-likes">

						{%	for	user	in	image.users_like.all	%}

								<div>

										

										<p>{{	user.first_name	}}</p>

								</div>

						{%	empty	%}

								Nobody	likes	this	image	yet.

						{%	endfor	%}

				</div>

		{%	endwith	%}

{%	endblock	%}

This	is	the	template	to	display	the	detail	of	a	bookmarked	image.
We	make	use	of	the	{%	with	%}	tag	to	store	the	result	of	the	QuerySet,
counting	all	user	likes	in	a	new	variable	called	total_likes.	By	doing
so,	we	avoid	evaluating	the	same	QuerySet	twice.	We	also	include
the	image	description	and	iterate	over	image.users_like.all	to	display	all
the	users	who	like	this	image.

Using	the	{%	with	%}	template	tag	is	useful	to	prevent	Django	from
evaluating	QuerySets	multiple	times.

Now,	bookmark	a	new	image	using	the	bookmarklet.	You	will	be
redirected	to	the	image	detail	page	after	you	post	the	image.	The
page	will	include	a	success	message,	as	follows:

Creating	image	thumbnails
using	sorl-thumbnail
We	display	the	original	image	on	the	detail	page,	but	dimensions	for
different	images	may	vary	a	lot.	Also,	the	original	files	for	some
images	might	be	huge,	and	loading	them	might	take	too	long.	The
best	way	to	display	optimized	images	in	a	uniform	way	is	to
generate	thumbnails.	We	will	use	a	Django	application	called	sorl-
thumbnail	for	this	purpose.

Open	the	terminal	and	install	sorl-thumbnail	using	the	following
command:

pip	install	sorl-thumbnail==12.4.1

Edit	the	settings.py	file	of	the	bookmarks	project	and	add
sorl.thumbnail	to	the	INSTALLED_APPS	setting,	as	follows:

INSTALLED_APPS	=	[

				#	...

				'sorl.thumbnail',

]

Then,	run	the	following	command	to	sync	the	application	with	your
database:

python	manage.py	migrate

You	should	see	an	output	that	includes	the	following	line:

Applying	thumbnail.0001_initial...	OK

The	sorl-thumbnail	application	offers	you	different	ways	to	define
image	thumbnails.	The	application	provides	a	{%	thumbnail	%}	template
tag	to	generate	thumbnails	in	templates	and	a	custom	ImageField	if
you	want	to	define	thumbnails	in	your	models.	We	will	use	the
template	tag	approach.	Edit	the	images/image/detail.html	template	and
replace	the	following	line:

The	following	lines	should	replace	the	preceding	one:

{%	load	thumbnail	%}

{%	thumbnail	image.image	"300"	as	im	%}

		

				

		

{%	endthumbnail	%}

Here,	we	define	a	thumbnail	with	a	fixed	width	of	300	pixels.	The
first	time	a	user	loads	this	page,	a	thumbnail	image	will	be	created.
The	generated	thumbnail	will	be	served	in	the	following	requests.
Start	the	development	server	with	the	python	manage.py	runserver
command	and	access	the	image	detail	page	for	an	existing	image.
The	thumbnail	will	be	generated	and	displayed	on	the	site.

The	sorl-thumbnail	application	offers	several	options	to	customize	your
thumbnails,	including	cropping	algorithms	and	different	effects	that
can	be	applied.	If	you	have	any	difficulty	generating	thumbnails,
you	can	add	THUMBNAIL_DEBUG	=	True	to	your	settings.py	file	in	order	to
obtain	debug	information.	You	can	read	the	full	documentation	of
the	sorl-thumbnail	application	at	https://sorl-thumbnail.readthedocs.io/.

https://sorl-thumbnail.readthedocs.io/

Adding	AJAX	actions	with
jQuery
Now,	we	will	add	AJAX	actions	to	our	application.	AJAX	comes
from	Asynchronous	JavaScript	and	XML.	This	term
encompasses	a	group	of	techniques	to	make	asynchronous	HTTP
requests.	It	consists	of	sending	and	retrieving	data	from	the	server
asynchronously,	without	reloading	the	whole	page.	Despite	the
name,	XML	is	not	required.	You	can	send	or	retrieve	data	in	other
formats,	such	as	JSON,	HTML,	or	plain	text.

We	will	add	a	link	to	the	image	detail	page	to	let	users	click	on	it	in
order	to	like	an	image.	We	will	perform	this	action	with	an	AJAX
call	to	avoid	reloading	the	whole	page.	First,	we	will	create	a	view
for	users	to	like/unlike	images.	Edit	the	views.py	file	of	the
images	application	and	add	the	following	code	to	it:

from	django.http	import	JsonResponse

from	django.views.decorators.http	import	require_POST

@login_required

@require_POST

def	image_like(request):

				image_id	=	request.POST.get('id')

				action	=	request.POST.get('action')

				if	image_id	and	action:

								try:

												image	=	Image.objects.get(id=image_id)

												if	action	==	'like':

																image.users_like.add(request.user)

												else:

																image.users_like.remove(request.user)

												return	JsonResponse({'status':'ok'})

								except:

												pass

				return	JsonResponse({'status':'ko'})

We	will	use	two	decorators	for	our	view.	The	login_required	decorator
prevents	users	that	are	not	logged	in	from	accessing	this	view.	The
require_POST	decorator	returns	an	HttpResponseNotAllowed	object	(status
code	405)	if	the	HTTP	request	is	not	done	via	POST.	This	way,	we	only
allow	POST	requests	for	this	view.	Django	also	provides	a	require_GET
decorator	to	only	allow	GET	requests	and	a	require_http_methods	decorator
to	which	you	can	pass	a	list	of	allowed	methods	as	an	argument.

In	this	view,	we	use	two	GET	parameters:

image_id:	The	ID	of	the	image	object	on	which	the	user	is

performing	the	action

action:	The	action	that	the	user	wants	to	perform,	which	we

assume	to	be	a	string	with	the	value	like	or	unlike

We	use	the	manager	provided	by	Django	for	the	users_like	many-to-
many	field	of	the	Image	model	in	order	to	add	or	remove	objects	from
the	relationship	using	the	add()	or	remove()	methods.	Calling	add(),	that
is,	passing	an	object	that	is	already	present	in	the	related	object	set
does	not	duplicate	it,	and	thus,	calling	remove(),	passing	an	object	that
is	not	in	the	related	object	set	does	nothing.	Another	useful	method
of	the	many-to-many	manager	is	clear(),	which	removes	all	objects
from	the	related	object	set.

Finally,	we	use	the	JsonResponse	class	provided	by	Django,	which
returns	an	HTTP	response	with	an	application/json	content	type,
converting	the	given	object	into	a	JSON	output.

Edit	the	urls.py	file	of	the	images	application	and	add	the	following
URL	pattern	to	it:

path('like/',	views.image_like,	name='like'),

Loading	jQuery
We	will	need	to	add	the	AJAX	functionality	to	our	image	detail
template.	In	order	to	use	jQuery	in	our	templates,	we	will	include	it
in	the	base.html	template	of	our	project	first.	Edit	the	base.html
template	of	the	account	application	and	include	the	following	code
before	the	closing	</body>	HTML	tag:

<script	

src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js">

</script>

<script>

		$(document).ready(function(){

				{%	block	domready	%}

				{%	endblock	%}

		});

</script>

We	load	the	jQuery	framework	from	Google's	CDN.	You	can	also
download	jQuery	from	https://jquery.com/	and	add	it	to	the	static
directory	of	your	application	instead.

We	add	a	<script>	tag	to	include	JavaScript	code.	$(document).ready()	is	a
jQuery	function	that	takes	a	handler	that	is	executed	when	the	DOM
hierarchy	has	been	fully	constructed.	DOM	comes	from
Document	Object	Model.	The	DOM	is	created	by	the	browser
when	a	web	page	is	loaded,	and	is	constructed	as	a	tree	of	objects.
By	including	our	code	inside	this	function,	we	will	make	sure	that
all	HTML	elements	we	are	going	to	interact	with	are	loaded	in	the
DOM.	Our	code	will	only	be	executed	once	the	DOM	is	ready.

Inside	the	document-ready	handler	function,	we	include	a	Django
template	block	called	domready,	in	which	templates	that	extend	the
base	template	will	be	able	to	include	specific	JavaScript.

https://jquery.com/

Don't	get	confused	with	the	JavaScript	code	and	Django	template
tags.	Django	template	language	is	rendered	on	the	server	side
outputting	the	final	HTML	document	and	JavaScript	is	executed	on
the	client	side.	In	some	cases,	it	is	useful	to	generate	JavaScript
code	dynamically	using	Django.

In	the	examples	in	this	chapter,	we	include	JavaScript	code	in
Django	templates.	The	preferred	way	to	include	JavaScript	code	is
by	loading	.js	files,	which	are	served	as	static	files,	especially	when
they	are	large	scripts.

Cross-Site	Request	Forgery	in
AJAX	requests
You	have	learned	Cross-Site	Request	Forgery	in	Chapter	2,
Enhancing	Your	Blog	with	Advanced	Features.	With	the	CSRF
protection	active,	Django	checks	for	a	CSRF	token	in	all	POST
requests.	When	you	submit	forms,	you	can	use	the	{%	csrf_token	%}
template	tag	to	send	the	token	along	with	the	form.	However,	it	is	a
bit	inconvenient	for	AJAX	requests	to	pass	the	CSRF	token	as	a	POST
data	in	with	every	POST	request.	Therefore,	Django	allows	you	to	set	a
custom	X-CSRFToken	header	in	your	AJAX	requests	with	the	value	of
the	CSRF	token.	This	allows	you	to	set	up	jQuery	or	any	other
JavaScript	library	to	automatically	set	the	X-CSRFToken	header	in	every
request.

In	order	to	include	the	token	in	all	requests,	you	need	to	take	the
following	steps:

1.	 Retrieve	the	CSRF	token	from	the	csrftoken	cookie,	which	is

set	if	CSRF	protection	is	active

2.	 Send	the	token	in	the	AJAX	request	using	the	X-CSRFToken

header

You	can	find	more	information	about	CSRF	protection	and	AJAX
at	https://docs.djangoproject.com/en/2.0/ref/csrf/#ajax.

Edit	the	last	code	you	included	in	your	base.html	template	and	make	it
look	like	the	following:

<script	

https://docs.djangoproject.com/en/2.0/ref/csrf/#ajax

src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js">

</script>

<script	src="https://cdn.jsdelivr.net/npm/js-cookie@2/src/js.cookie.min.js">

</script>

<script>

		var	csrftoken	=	Cookies.get('csrftoken');

		function	csrfSafeMethod(method)	{

				//	these	HTTP	methods	do	not	require	CSRF	protection

				return	(/^(GET|HEAD|OPTIONS|TRACE)$/.test(method));

		}

		$.ajaxSetup({

				beforeSend:	function(xhr,	settings)	{

						if	(!csrfSafeMethod(settings.type)	&&	!this.crossDomain)	{

								xhr.setRequestHeader("X-CSRFToken",	csrftoken);

						}

				}

		});

		$(document).ready(function(){

				{%	block	domready	%}

				{%	endblock	%}

		});

</script>

The	preceding	code	is	as	follows:

1.	 We	load	the	JS	Cookie	plugin	from	a	public	CDN	so	that	we

can	easily	interact	with	cookies.	JS	Cookie	is	a	lightweight

JavaScript	for	handling	cookies.	You	can	learn	more	about	it

at	https://github.com/js-cookie/js-cookie.

2.	 We	read	the	value	of	the	csrftoken	cookie	with	Cookies.get().

3.	 We	define	the	csrfSafeMethod()	function	to	check	whether	an

HTTP	method	is	safe.	Safe	methods	don't	require	CSRF

protection—these	are	GET,	HEAD,	OPTIONS,	and	TRACE.

4.	 We	set	up	jQuery	AJAX	requests	using	$.ajaxSetup().	Before

each	AJAX	request	is	performed,	we	check	whether	the

request	method	is	safe	and	the	current	request	is	not	cross-

domain.	If	the	request	is	unsafe,	we	set	the	X-CSRFToken	header

https://github.com/js-cookie/js-cookie

with	the	value	obtained	from	the	cookie.	This	setup	will

apply	to	all	AJAX	requests	performed	with	jQuery.

The	CSRF	token	will	be	included	in	all	AJAX	requests	that	use
unsafe	HTTP	methods,	such	as	POST	or	PUT.

Performing	AJAX	requests	with
jQuery
Edit	the	images/image/detail.html	template	of	the	images	application,	and
consider	the	following	line:

{%	with	total_likes=image.users_like.count	%}

Replace	the	preceding	one	with	the	following	one:

{%	with	total_likes=image.users_like.count	users_like=image.users_like.all	%}

Then,	modify	the	<div>	element	with	the	image-info	class,	as	follows:

<div	class="image-info">

		<div>

				

						{{	total_likes	}}

						like{{	total_likes|pluralize	}}

				

				<a	href="#"	data-id="{{	image.id	}}"	data-action="{%	if		

				request.user	in	users_like	%}un{%	endif	%}like"	

				class="like	button">

						{%	if	request.user	not	in	users_like	%}

								Like

						{%	else	%}

								Unlike

						{%	endif	%}

				

		</div>

		{{	image.description|linebreaks	}}

</div>

First,	we	added	another	variable	to	the	{%	with	%}	template	tag	in
order	to	store	the	results	of	the	image.users_like.all	query	and	avoid

executing	it	twice.	We	display	the	total	number	of	users	that	like
this	image	and	include	a	link	to	like/unlike	the	image:	we	check
whether	the	user	is	in	the	related	object	set	of	users_like	to	display
either	like	or	unlike,	based	on	the	current	relationship	between	the
user	and	this	image.	We	add	the	following	attributes	to	the	<a>
HTML	element:

data-id:	The	ID	of	the	image	displayed

data-action:	The	action	to	run	when	the	user	clicks	on	the	link.

This	can	be	like	or	unlike

We	will	send	the	value	of	both	attributes	in	the	AJAX	request	to	the
image_like	view.	When	a	user	clicks	on	the	like/unlike	link,	we	will	need
to	perform	the	following	actions	on	the	client	side:

1.	 Call	the	AJAX	view,	passing	the	image	ID	and	the	action

parameters	to	it.

2.	 If	the	AJAX	request	is	successful,	update	the	data-action

attribute	of	the	<a>	HTML	element	with	the	opposite	action

(like	/	unlike),	and	modify	its	display	text	accordingly.

3.	 Update	the	total	number	of	likes	that	is	displayed.

Add	the	domready	block	at	the	bottom	of	the	images/image/detail.html
template	with	the	following	JavaScript	code:

{%	block	domready	%}

		$('a.like').click(function(e){

				e.preventDefault();

				$.post('{%	url	"images:like"	%}',

						{

								id:	$(this).data('id'),

								action:	$(this).data('action')

						},

						function(data){

								if	(data['status']	==	'ok')

								{

										var	previous_action	=	$('a.like').data('action');

										//	toggle	data-action

										$('a.like').data('action',	previous_action	==	'like'	?	

										'unlike'	:	'like');

										//	toggle	link	text

										$('a.like').text(previous_action	==	'like'	?	'Unlike'	:	

										'Like');

										//	update	total	likes

										var	previous_likes	=	parseInt($('span.count	.total').text());

										$('span.count	.total').text(previous_action	==	'like'	?	

										previous_likes	+	1	:	previous_likes	-	1);

								}

						}

);

		});

{%	endblock	%}

The	preceding	code	works	as	follows:

1.	 We	use	the	$('a.like')	jQuery	selector	to	find	all	<a>	elements

of	the	HTML	document	with	the	like	class.

2.	 We	define	a	handler	function	for	the	click	event.	This

function	will	be	executed	every	time	the	user	clicks	on	the

like/unlike	link.

3.	 Inside	the	handler	function,	we	use	e.preventDefault()	to	avoid

the	default	behavior	of	the	<a>	element.	This	will	prevent	the

link	from	taking	us	anywhere.

4.	 We	use	$.post()	to	perform	an	asynchronous	POST	request	to

the	server.	jQuery	also	provides	a	$.get()	method	to	perform

GET	requests	and	a	low-level	$.ajax()	method.

5.	 We	use	Django's	{%	url	%}	template	tag	to	build	the	URL	for

the	AJAX	request.

6.	 We	build	the	POST	parameters	dictionary	to	send	in	the

request.	These	are	the	ID	and	action	parameters	expected	by

our	Django	view.	We	retrieve	these	values	from	the	<a>

element's	data-id	and	data-action	attributes.

7.	 We	define	a	callback	function	that	is	executed	when	the

HTTP	response	is	received;	it	takes	a	data	attribute	that

contains	the	content	of	the	response.

8.	 We	access	the	status	attribute	of	the	data	received	and	check

whether	it	equals	ok.	If	the	returned	data	is	as	expected,	we

toggle	the	data-action	attribute	of	the	link	and	its	text.	This

allows	the	user	to	undo	their	action.

9.	 We	increase	or	decrease	the	total	likes	count	by	one,

depending	on	the	action	performed.

Open	the	image	detail	page	in	your	browser	for	an	image	you	have
uploaded.	You	should	be	able	to	see	the	following	initial	likes	count
and	the	LIKE	button,	as	follows:

Click	on	the	UNLIKE	button.	You	will	note	that	the	total	likes	count
decreases	by	one	and	the	button	text	changes	to	UNLIKE,	as
follows:

When	you	click	on	the	UNLIKE	button,	the	action	is	performed,	the
button's	text	changes	back	to	LIKE,	and	the	total	count	changes
accordingly.

When	programming	JavaScript,	especially	when	performing	AJAX

requests,	it	is	recommended	that	you	use	a	tool	for	debugging
JavaScript	and	HTTP	requests.	Most	modern	browsers	include
developer	tools	to	debug	JavaScript.	Usually,	you	can	right-click
anywhere	on	the	website	and	click	on	Inspect	element	to	access	the
web	developer	tools.

Creating	custom	decorators	for
your	views
We	will	restrict	our	AJAX	views	to	allow	only	requests	generated	via
AJAX.	The	Django	request	object	provides	an	is_ajax()	method	that
checks	whether	the	request	is	being	made	with	XMLHttpRequest,	which
means	it	is	an	AJAX	request.	This	value	is	set	in	the
HTTP_X_REQUESTED_WITH	HTTP	header,	which	is	included	in	AJAX	requests	by
most	JavaScript	libraries.

We	will	create	a	decorator	for	checking	the	HTTP_X_REQUESTED_WITH	header
in	our	views.	A	decorator	is	a	function	that	takes	another	function
and	extends	the	behavior	of	the	latter	without	explicitly	modifying
it.	If	the	concept	of	decorators	is	foreign	to	you,	you	might	like	to
take	a	look	at	https://www.python.org/dev/peps/pep-0318/	before	you	continue
reading.

Since	our	decorator	will	be	generic	and	could	be	applied	to	any
view,	we	will	create	a	common	Python	package	in	our	project.	Create
the	following	directory	and	files	inside	the	bookmarks	project	directory:

common/

				__init__.py

				decorators.py

Edit	the	decorators.py	file	and	add	the	following	code	to	it:

from	django.http	import	HttpResponseBadRequest

def	ajax_required(f):

				def	wrap(request,	*args,	**kwargs):

								if	not	request.is_ajax():

												return	HttpResponseBadRequest()

https://www.python.org/dev/peps/pep-0318/

								return	f(request,	*args,	**kwargs)

				wrap.__doc__=f.__doc__

				wrap.__name__=f.__name__

				return	wrap

The	preceding	code	is	our	custom	ajax_required	decorator.	It	defines	a
wrap	function	that	returns	an	HttpResponseBadRequest	object	(HTTP	400
code)	if	the	request	is	not	AJAX.	Otherwise,	it	returns	the	decorated
function.

Now,	you	can	edit	the	views.py	file	of	the	images	application	and	add
this	decorator	to	your	image_like	AJAX	view,	as	follows:

from	common.decorators	import	ajax_required

@ajax_required

@login_required

@require_POST

def	image_like(request):

				#	...

If	you	try	to	access	http://127.0.0.1:8000/images/like/	directly	with	your
browser,	you	will	get	an	HTTP	400	response.

Build	custom	decorators	for	your	views	if	you	find	that	you	are	repeating	the
same	checks	in	multiple	views.

Adding	AJAX	pagination	to
your	list	views
We	will	need	to	list	all	bookmarked	images	on	our	website.	We	will
use	AJAX	pagination	to	build	infinite	scroll	functionality.	Infinite
scroll	is	achieved	by	loading	the	next	results	automatically	when	the
user	scrolls	to	the	bottom	of	the	page.

We	will	implement	an	image	list	view	that	will	handle	both	standard
browser	requests	and	AJAX	requests,	including	pagination.	When
the	user	initially	loads	the	image	list	page,	we	will	display	the	first
page	of	images.	When	they	scroll	to	the	bottom	of	the	page,	we	load
the	following	page	of	items	via	AJAX	and	append	it	to	the	bottom	of
the	main	page.

The	same	view	will	handle	both	standard	and	AJAX	pagination.
Edit	the	views.py	file	of	the	images	application	and	add	the	following
code	to	it:

from	django.http	import	HttpResponse

from	django.core.paginator	import	Paginator,	EmptyPage,	\

																																		PageNotAnInteger

@login_required

def	image_list(request):

				images	=	Image.objects.all()

				paginator	=	Paginator(images,	8)

				page	=	request.GET.get('page')

				try:

								images	=	paginator.page(page)

				except	PageNotAnInteger:

								#	If	page	is	not	an	integer	deliver	the	first	page

								images	=	paginator.page(1)

				except	EmptyPage:

								if	request.is_ajax():

												#	If	the	request	is	AJAX	and	the	page	is	out	of	range

												#	return	an	empty	page

												return	HttpResponse('')

								#	If	page	is	out	of	range	deliver	last	page	of	results

								images	=	paginator.page(paginator.num_pages)

				if	request.is_ajax():

								return	render(request,

																						'images/image/list_ajax.html',

																						{'section':	'images',	'images':	images})

				return	render(request,

																		'images/image/list.html',

																			{'section':	'images',	'images':	images})

In	this	view,	we	create	a	QuerySet	to	return	all	images	from	the
database.	Then,	we	build	a	Paginator	object	to	paginate	the	results,
retrieving	eight	images	per	page.	We	get	an	EmptyPage	exception	if	the
requested	page	is	out	of	range.	If	this	is	the	case	and	the	request	is
done	via	AJAX,	we	return	an	empty	HttpResponse	that	will	help	us	stop
the	AJAX	pagination	on	the	client	side.	We	render	the	results	to	two
different	templates:

For	AJAX	requests,	we	render	the	list_ajax.html	template.	This

template	will	only	contain	the	images	of	the	requested	page.

For	standard	requests,	we	render	the	list.html	template.	This

template	will	extend	the	base.html	template	to	display	the

whole	page	and	will	include	the	list_ajax.html	template	to

include	the	list	of	images.

Edit	the	urls.py	file	of	the	images	application	and	add	the	following
URL	pattern	to	it:

path('',	views.image_list,	name='list'),

Finally,	we	will	need	to	create	the	templates	mentioned	here.	Inside
the	images/image/	template	directory,	create	a	new	template	and	name
it	list_ajax.html.	Add	the	following	code	to	it:

{%	load	thumbnail	%}

{%	for	image	in	images	%}

		<div	class="image">

				

						{%	thumbnail	image.image	"300x300"	crop="100%"	as	im	%}

								

										

								

						{%	endthumbnail	%}

				

				<div	class="info">

						

								{{	image.title	}}

						

				</div>

		</div>

{%	endfor	%}

The	preceding	template	displays	the	list	of	images.	We	will	use	it	to
return	results	for	AJAX	requests.	Create	another	template	in	the
same	directory	and	name	it	list.html.	Add	the	following	code	to	it:

{%	extends	"base.html"	%}

{%	block	title	%}Images	bookmarked{%	endblock	%}

{%	block	content	%}

		<h1>Images	bookmarked</h1>

		<div	id="image-list">

				{%	include	"images/image/list_ajax.html"	%}

		</div>

{%	endblock	%}

The	list	template	extends	the	base.html	template.	To	avoid	repeating
code,	we	included	the	list_ajax.html	template	for	displaying	images.
The	list.html	template	will	hold	the	JavaScript	code	for	loading
additional	pages	when	scrolling	to	the	bottom	of	the	page.

Add	the	following	code	to	the	list.html	template:

{%	block	domready	%}

		var	page	=	1;

		var	empty_page	=	false;

		var	block_request	=	false;

		$(window).scroll(function()	{

				var	margin	=	$(document).height()	-	$(window).height()	-	200;

				if		($(window).scrollTop()	>	margin	&&	empty_page	==	false	&&	

				block_request	==	false)	{

					block_request	=	true;

						page	+=	1;

						$.get('?page='	+	page,	function(data)	{

							if(data	==	'')	{

										empty_page	=	true;

								}

								else	{

										block_request	=	false;

										$('#image-list').append(data);

								}

						});

				}

		});

{%	endblock	%}

The	preceding	code	provides	the	infinite	scroll	functionality.	We
include	the	JavaScript	code	in	the	domready	block	that	we	defined	in
the	base.html	template.	The	code	is	as	follows:

1.	 We	define	the	following	variables:

1.	 page:	Stores	the	current	page	number.

2.	 empty_page:	Allows	us	to	know	whether	the	user	is	on

the	last	page	and	retrieves	an	empty	page.	As	soon	as

we	get	an	empty	page,	we	will	stop	sending

additional	AJAX	requests	because	we	will	assume

that	there	are	no	more	results.

3.	 block_request:	Prevents	us	from	sending	additional

requests	while	an	AJAX	request	is	in	progress.

2.	 We	use	$(window).scroll()	to	capture	the	scroll	event	and	also	to

define

a	handler	function	for	it.

3.	 We	calculate	the	margin	variable	to	get	the	difference	between

the	total	document	height	and	the	window	height,	because

that's	the	height	of	the	remaining	content	for	the	user	to

scroll.	We	subtract	a	value	of	200	from	the	result	so	that	we

load	the	next	page	when	the	user	is	closer	than	200	pixels	to

the	bottom	of	the	page.

4.	 We	only	send	an	AJAX	request	if	no	other	AJAX	request	is

being	done	(block_request	has	to	be	false)	and	the	user	didn't

get	to	the	last	page	of	results	(empty_page	is	also	false).

5.	 We	set	block_request	to	true	to	avoid	a	situation	whereby	the

scroll	event	triggers	additional	AJAX	requests,	and	increase

the	page	counter	by	one,

in	order	to	retrieve	the	next	page.

6.	 We	perform	an	AJAX	GET	request	using	$.get()	and	receive	the

HTML	response	in	a	variable	called	data.	The	following	are

the	two	scenarios:

1.	 The	response	has	no	content:	We	got	to	the	end

of	the	results,	and	there	are	no	more	pages	to	load.

We	set	empty_page	to	true	to	prevent	additional	AJAX

requests.

2.	 The	response	contains	data:	We	append	the	data

to	the	HTML	element	with	the	image-list	ID.	The	page

content	expands	vertically	appending	results	when

the	user	approaches	the	bottom	of	the	page.

Open	http://127.0.0.1:8000/images/	in	your	browser.	You	will	see	the	list
of	images	you	have	bookmarked	so	far.	It	should	look	similar	to
this:

Scroll	to	the	bottom	of	the	page	to	load	additional	pages.	Ensure
that	you	have	bookmarked	more	than	eight	images	using	the
bookmarklet	because	that's	the	number	of	images	we	are	displaying
per	page.	Remember	that	you	can	use	Firebug	or	a	similar	tool	to
track	the	AJAX	requests	and	debug	your	JavaScript	code.

Finally,	edit	the	base.html	template	of	the	account	application	and	add
the	URL	for	the	images	item	of	the	main	menu,	as	follows:

<li	{%	if	section	==	"images"	%}class="selected"{%	endif	%}>

		Images

Now	you	can	access	the	image	list	from	the	main	menu.

Summary
In	this	chapter,	we	have	built	a	JavaScript	bookmarklet	to	share
images	from	other	websites	into	our	site.	You	have	implemented
AJAX	views	with	jQuery	and	added	AJAX	pagination.

In	the	next	chapter,	we	will	teach	you	how	to	build	a	follower
system	and	an	activity	stream.	You	will	work	with	generic	relations,
signals,	and	denormalization.	You	will	also	learn	how	to	use	Redis
with	Django.

Tracking	User	Actions
In	the	preceding	chapter,	you	implemented	AJAX	views	into	your
project	using	jQuery	and	built	a	JavaScript	bookmarklet	to	share
content	from	other	websites	on	your	platform.

In	this	chapter,	you	will	learn	how	to	build	a	follower	system	and
create	a	user	activity	stream.	You	will	discover	how	Django	signals
work	and	integrate	Redis's	fast	I/O	storage	into	your	project	to
store	item	views.

This	chapter	will	cover	the	following	points:

Creating	many-to-many	relationships	with	an	intermediary

model

Building	a	follower	system

Creating	an	activity	stream	application

Adding	generic	relations	to	models

Optimizing	QuerySets	for	related	objects

Using	signals	for	denormalizing	counts

Storing	item	views	in	Redis

Building	a	follower	system
We	will	build	a	follower	system	into	our	project.	Our	users	will	be
able	to	follow	each	other	and	track	what	other	users	share	on	the
platform.	The	relationship	between	users	is	a	many-to-many
relationship.	A	user	can	follow	multiple	users	and	they,	in	turn,	can
be	followed	by	multiple	users.

Creating	many-to-many
relationships	with	an
intermediary	model
In	previous	chapters,	you	created	many-to-many	relationships	by
adding	ManyToManyField	to	one	of	the	related	models	and	letting	Django
create	the	database	table	for	the	relationship.	This	is	suitable	for
most	of	the	cases,	but	sometimes	you	may	need	to	create	an
intermediate	model	for	the	relation.	Creating	an	intermediary
model	is	necessary	when	you	want	to	store	additional	information
for	the	relationship,	for	example,	the	date	when	the	relation	was
created,	or	a	field	that	describes	the	nature	of	the	relationship.

We	will	create	an	intermediary	model	to	build	relationships
between	users.	There	are	two	reasons	why	we	want	to	use	an
intermediate	model:

We	are	using	the	User	model	provided	by	Django,	and	we

want	to	avoid	altering	it

We	want	to	store	the	time	when	the	relation	is	created

Edit	the	models.py	file	of	your	account	application	and	add	the	following
code	to	it:

class	Contact(models.Model):

				user_from	=	models.ForeignKey('auth.User',

																																		related_name='rel_from_set',

																																		on_delete=models.CASCADE)

				user_to	=	models.ForeignKey('auth.User',

																																related_name='rel_to_set',

																																on_delete=models.CASCADE)

				created	=	models.DateTimeField(auto_now_add=True,

																																			db_index=True)

				class	Meta:

								ordering	=	('-created',)

				def	__str__(self):

								return	'{}	follows	{}'.format(self.user_from,

																																						self.user_to)

The	preceding	code	shows	the	Contact	model	we	will	use	for	user
relationships.	It	contains	the	following	fields:

user_from:	ForeignKey	for	the	user	that	creates	the	relationship

user_to:	ForeignKey	for	the	user	being	followed

created:	A	DateTimeField	field	with	auto_now_add=True	to	store	the

time	when	the	relationship	was	created

A	database	index	is	automatically	created	on	the	ForeignKey	fields.	We
use	db_index=True	to	create	a	database	index	for	the	created	field.	This
will	improve	query	performance	when	ordering	QuerySets	by	this
field.

Using	the	ORM,	we	could	create	a	relationship	for	a	user—user1

—following	another	user,	user2,	like	this:

user1	=	User.objects.get(id=1)

user2	=	User.objects.get(id=2)

Contact.objects.create(user_from=user1,	user_to=user2)

The	related	managers	rel_from_set	and	rel_to_set	will	return	a	QuerySet
for	the	Contact	model.	In	order	to	access	the	end	side	of	the
relationship	from	the	User	model,	it	would	be	desirable	that	User
contained	ManyToManyField,	as	follows:

following	=	models.ManyToManyField('self',

																																			through=Contact,

																																			related_name='followers',

																																			symmetrical=False)

In	the	preceding	example,	we	tell	Django	to	use	our	custom
intermediary	model	for	the	relationship	by	adding	through=Contact	to
the	ManyToManyField.	This	is	a	many-to-many	relationship	from	the	User
model	to	itself:	we	refer	to	'self'	in	the	ManyToManyField	field	to	create	a
relationship	to	the	same	model.

When	you	need	additional	fields	in	a	many-to-many	relationship,	create	a
custom	model	with	ForeignKey	for	each	side	of	the	relationship.	Add
ManyToManyField	in	one	of	the	related	models	and	indicate	to	Django	that	your
intermediary	model	should	be	used	by	including	it	in	the	through	parameter.

If	the	User	model	was	part	of	our	application,	we	could	add	the
previous	field	to	the	model.	However,	we	cannot	alter	the	User	class
directly	because	it	belongs	to	the	django.contrib.auth	application.	We
will	take	a	slightly	different	approach	by	adding	this	field
dynamically	to	the	User	model.	Edit	the	models.py	file	of	the	account
application	and	add	the	following	lines:

from	django.contrib.auth.models	import	User

#	Add	following	field	to	User	dynamically

User.add_to_class('following',

																		models.ManyToManyField('self',

																																									through=Contact,

																																									related_name='followers',

																																									symmetrical=False))

In	the	preceding	code,	we	use	the	add_to_class()	method	of	Django
models	to	monkey	patch	the	User	model.	Be	aware	that	using
add_to_class()	is	not	the	recommended	way	of	adding	fields	to	models.
However,	we	take	advantage	of	using	it	in	this	case	because	of	the
following	reasons:

We	simplify	the	way	we	retrieve	related	objects	using	the

Django	ORM	with	user.followers.all()	and	user.following.all().	We

use	the	intermediary	Contact	model	and	avoid	complex

queries	that	would	involve	additional	database	joins,	as	it

would	have	been,	had	we	defined	the	relationship	in	our

custom	Profile	model.

The	table	for	this	many-to-many	relationship	will	be	created

using	the	Contact	model.	Thus,	the	ManyToManyField	added

dynamically	will	not	imply	any	database	changes	for	the

Django	User	model.

We	avoid	creating	a	custom	user	model,	keeping	all	the

advantages	of	Django's	built-in	User.

Keep	in	mind	that,	in	most	cases,	it	is	preferable	to	add	fields	to	the
Profile	model	we	created	before,	instead	of	monkey-patching	the	User
model.	Django	also	allows	you	to	use	custom	user	models.	If	you
want	to	use	your	custom	user	model,	take	a	look	at	the
documentation	at	https://docs.djangoproject.com/en/2.0/topics/auth/customizing
/#specifying-a-custom-user-model.

You	can	note	that	the	relationship	includes	symmetrical=False.	When
you	define	a	ManyToManyField	to	the	model	itself,	Django	forces	the
relationship	to	be	symmetrical.	In	this	case,	we	are	setting
symmetrical=False	to	define	a	non-symmetric	relation.	This	is,	if	I	follow
you,	it	doesn't	mean	that	you	automatically	follow	me.

When	you	use	an	intermediate	model	for	many-to-many	relationships,	some
of	the	related	manager's	methods	are	disabled,	such	as	add(),
create(),	or	remove().	You	need	to	create	or	delete	instances	of	the	intermediate
model	instead.

Run	the	following	command	to	generate	the	initial	migrations	for
the	account	application:

python	manage.py	makemigrations	account

https://docs.djangoproject.com/en/2.0/topics/auth/customizing/#specifying-a-custom-user-model

You	will	obtain	the	following	output:

Migrations	for	'account':

		account/migrations/0002_contact.py

				-	Create	model	Contact

Now,	run	the	following	command	to	sync	the	application	with	the
database:

python	manage.py	migrate	account

You	should	see	an	output	that	includes	the	following	line:

Applying	account.0002_contact...	OK

The	Contact	model	is	now	synced	to	the	database,	and	we	are	able	to
create	relationships	between	users.	However,	our	site	doesn't	offer	a
way	to	browse	users	or	see	a	particular	user	profile	yet.	Let's	build
list	and	detail	views	for	the	User	model.

Creating	list	and	detail	views
for	user	profiles
Open	the	views.py	file	of	the	account	application	and	add	the	following
code	to	it:

from	django.shortcuts	import	get_object_or_404

from	django.contrib.auth.models	import	User

@login_required

def	user_list(request):

				users	=	User.objects.filter(is_active=True)

				return	render(request,

																		'account/user/list.html',

																		{'section':	'people',

																			'users':	users})

@login_required

def	user_detail(request,	username):

				user	=	get_object_or_404(User,

																													username=username,

																													is_active=True)

				return	render(request,

																		'account/user/detail.html',

																		{'section':	'people',

																			'user':	user})

These	are	simple	list	and	detail	views	for	user	objects.	The	user_list
view	gets	all	active	users.	The	Django	User	model	contains	an	is_active
flag	to	designate	whether	the	user	account	is	considered	active.	We
filter	the	query	by	is_active=True	to	return	only	active	users.	This	view
returns	all	results,	but	you	can	improve	it	by	adding	pagination	the
same	way	as	we	did	for	the	image_list	view.

The	user_detail	view	uses	the	get_object_or_404()	shortcut	to	retrieve	the
active	user	with	the	given	username.	The	view	returns	an	HTTP	404

response	if	no	active	user	with	the	given	username	is	found.

Edit	the	urls.py	file	of	the	account	application,	and	add	a	URL	pattern
for	each	view,	as	follows:

urlpatterns	=	[

				#	...

				path('users/',	views.user_list,	name='user_list'),

				path('users/<username>/',	views.user_detail,	name='user_detail'),

]

We	will	use	the	user_detail	URL	pattern	to	generate	the	canonical
URL	for	users.	You	have	already	defined	a	get_absolute_url()	method	in
a	model	to	return	the	canonical	URL	for	each	object.	Another	way
to	specify	an	URL	for	a	model	is	by	adding	the	ABSOLUTE_URL_OVERRIDES
setting	to	your	project.

Edit	the	settings.py	file	of	your	project	and	add	the	following	code	to
it:

from	django.urls	import	reverse_lazy

ABSOLUTE_URL_OVERRIDES	=	{

				'auth.user':	lambda	u:	reverse_lazy('user_detail',

																																								args=[u.username])

}

Django	adds	a	get_absolute_url()	method	dynamically	to	any	models
that	appear	in	the	ABSOLUTE_URL_OVERRIDES	setting.	This	method	returns
the	corresponding	URL	for	the	given	model	specified	in	the	setting.
We	return	the	user_detail	URL	for	the	given	user.	Now,	you	can
use	get_absolute_url()	on	a	User	instance	to	retrieve	its	corresponding
URL.

Open	the	Python	shell	with	the	python	manage.py	shell	command	and
run	the	following	code	to	test	it:

>>>	from	django.contrib.auth.models	import	User

>>>	user	=	User.objects.latest('id')

>>>	str(user.get_absolute_url())

'/account/users/ellington/'

The	returned	URL	is	as	expected.	We	will	need	to	create	templates
for	the	views	we	just	built.	Add	the	following	directory	and	files	to
the	templates/account/	directory	of	the	account	application:

/user/

				detail.html

				list.html

Edit	the	account/user/list.html	template	and	add	the	following	code	to
it:

{%	extends	"base.html"	%}

{%	load	thumbnail	%}

{%	block	title	%}People{%	endblock	%}

{%	block	content	%}

		<h1>People</h1>

		<div	id="people-list">

				{%	for	user	in	users	%}

						<div	class="user">

								

										{%	thumbnail	user.profile.photo	"180x180"	crop="100%"	

											as	im	%}

												

										{%	endthumbnail	%}

								

								<div	class="info">

										

												{{	user.get_full_name	}}

										

								</div>

						</div>

				{%	endfor	%}

		</div>

{%	endblock	%}

The	preceding	template	allows	us	to	list	all	the	active	users	in	the
site.	We	iterate	over	the	given	users	and	use	sorl-thumbnail's	{%

thumbnail	%}	template	tag	to	generate	profile	image	thumbnails.

Open	the	base.html	template	of	your	project	and	include	the	user_list
URL	in	the	href	attribute	of	the	following	menu	item:

<li	{%	if	section	==	"people"	%}class="selected"{%	endif	%}>

		People

Start	the	development	server	with	the	python	manage.py	runserver
command	and	open	http://127.0.0.1:8000/account/users/	in	your	browser.
You	should	see	a	list	of	users	like	the	following	one:

Remember	that	if	you	have	any	difficulty	generating	thumbnails,
you	can	add	THUMBNAIL_DEBUG	=	True	to	your	settings.py	file	in	order	to
obtain	debug	information	in	the	shell.

Edit	the	account/user/detail.html	template	of	the	account	application	and
add	the	following	code	to	it:

{%	extends	"base.html"	%}

{%	load	thumbnail	%}

{%	block	title	%}{{	user.get_full_name	}}{%	endblock	%}

{%	block	content	%}

		<h1>{{	user.get_full_name	}}</h1>

		<div	class="profile-info">

				{%	thumbnail	user.profile.photo	"180x180"	crop="100%"	as	im	%}

						

				{%	endthumbnail	%}

		</div>

		{%	with	total_followers=user.followers.count	%}

				

						{{	total_followers	}}

						follower{{	total_followers|pluralize	}}

				

				<a	href="#"	data-id="{{	user.id	}}"	data-action="{%	if	request.user	

				in	user.followers.all	%}un{%	endif	%}follow"	class="follow	button">

						{%	if	request.user	not	in	user.followers.all	%}

								Follow

						{%	else	%}

								Unfollow

						{%	endif	%}

				

				<div	id="image-list"	class="image-container">

						{%	include	"images/image/list_ajax.html"	with	

						images=user.images_created.all	%}

				</div>

		{%	endwith	%}

{%	endblock	%}

In	the	detail	template,	we	will	display	the	user	profile	and	use	the	{%
thumbnail	%}	template	tag	to	display	the	profile	image.	We	show	the
total	number	of	followers	and	a	link	to	follow	or	unfollow	the	user.
We	will	perform	an	AJAX	request	to	follow/unfollow	a	particular
user.	We	add	data-id	and	data-action	attributes	to	the	<a>	HTML

element,	including	the	user	ID	and	the	initial	action	to	perform
when	it's	clicked,	follow	or	unfollow,	that	depends	on	the	user
requesting	the	page	being	a	follower	of	this	other	user	or	not,	as	the
case	may	be.	We	display	the	images	bookmarked	by	the	user,
including	the	images/image/list_ajax.html	template.

Open	your	browser	again	and	click	on	a	user	that	has	bookmarked
some	images.	You	will	see	profile	details,	as	follows:

Building	an	AJAX	view	to
follow	users
We	will	create	a	simple	view	to	follow/unfollow	a	user	using	AJAX.
Edit	the	views.py	file	of	the	account	application	and	add	the	following
code	to	it:

from	django.http	import	JsonResponse

from	django.views.decorators.http	import	require_POST

from	common.decorators	import	ajax_required

from	.models	import	Contact

@ajax_required

@require_POST

@login_required

def	user_follow(request):

				user_id	=	request.POST.get('id')

				action	=	request.POST.get('action')

				if	user_id	and	action:

								try:

												user	=	User.objects.get(id=user_id)

												if	action	==	'follow':

																Contact.objects.get_or_create(

																				user_from=request.user,

																				user_to=user)

												else:

																Contact.objects.filter(user_from=request.user,

																																							user_to=user).delete()

												return	JsonResponse({'status':'ok'})

								except	User.DoesNotExist:

												return	JsonResponse({'status':'ko'})

				return	JsonResponse({'status':'ko'})

The	user_follow	view	is	quite	similar	to	the	image_like	view	we	created
before.	Since	we	are	using	a	custom	intermediary	model	for	the
users'	many-to-many	relationship,	the	default	add()	and	remove()
methods	of	the	automatic	manager	of	ManyToManyField	are	not	available.
We	use	the	intermediary	Contact	model	to	create	or	delete	user

relationships.

Edit	the	urls.py	file	of	the	account	application	and	add	the	following
URL	pattern	to	it:

path('users/follow/',	views.user_follow,	name='user_follow'),

Ensure	that	you	place	the	preceding	pattern	before	the	user_detail
URL	pattern.	Otherwise,	any	requests	to	/users/follow/	will	match	the
regular	expression	of	the	user_detail	pattern	and	that	view	will	be
executed	instead.	Remember	that,	in	every	HTTP	request,	Django
checks	the	requested	URL	against	each	pattern	in	order	of
appearance	and	stops	at	the	first	match.

Edit	the	user/detail.html	template	of	the	account	application	and	append
the	following	code	to	it:

{%	block	domready	%}

		$('a.follow').click(function(e){

				e.preventDefault();

				$.post('{%	url	"user_follow"	%}',

						{

								id:	$(this).data('id'),

								action:	$(this).data('action')

						},

						function(data){

								if	(data['status']	==	'ok')	{

										var	previous_action	=	$('a.follow').data('action');

										//	toggle	data-action

										$('a.follow').data('action',

												previous_action	==	'follow'	?	'unfollow'	:	'follow');

										//	toggle	link	text

										$('a.follow').text(

												previous_action	==	'follow'	?	'Unfollow'	:	'Follow');

										//	update	total	followers

										var	previous_followers	=	parseInt(

												$('span.count	.total').text());

										$('span.count	.total').text(previous_action	==	'follow'	?		

										previous_followers	+	1	:	previous_followers	-	1);

								}

						}

);

		});

{%	endblock	%}

The	preceding	code	is	the	JavaScript	code	to	perform	the	AJAX
request	to	follow	or	unfollow	a	particular	user	and	also	to	toggle	the
follow/unfollow	link.	We	use	jQuery	to	perform	the	AJAX	request
and	set	both	the	data-action	attribute	and	the	text	of	the	HTML	<a>
element	based	on	its	previous	value.	When	the	AJAX	action	is
performed,	we	also	update	the	total	followers	count	displayed	on
the	page.	Open	the	user	detail	page	of	an	existing	user	and	click	on
the	FOLLOW	link	to	test	the	functionality	we	just	built.	You	will	see
that	the	follower's	count	gets	increased:

Building	a	generic	activity
stream	application
Many	social	websites	display	an	activity	stream	to	their	users	so
that	they	can	track	what	other	users	do	on	the	platform.	An	activity
stream	is	a	list	of	recent	activities	performed	by	a	user	or	a	group	of
users.	For	example,	Facebook's	News	Feed	is	an	activity	stream.
Sample	actions	can	be	user	X	bookmarked	image	Y	or	user	X	is
now	following	user	Y.	We	will	build	an	activity	stream	application
so	that	every	user	can	see	recent	interactions	of	the	users	they
follow.	To	do	so,	we	will	need	a	model	to	save	the	actions	performed
by	users	on	the	website	and	a	simple	way	to	add	actions	to	the	feed.

Create	a	new	application	named	actions	inside	your	project	with	the
following	command:

python	manage.py	startapp	actions

Add	the	new	application	to	INSTALLED_APPS	in	the	settings.py	file	of	your
project	to	activate	the	application	in	your	project:

INSTALLED_APPS	=	[

				#	...

				'actions.apps.ActionsConfig',

]

Edit	the	models.py	file	of	the	actions	application	and	add	the	following
code	to	it:

from	django.db	import	models

class	Action(models.Model):

				user	=	models.ForeignKey('auth.User',

																													related_name='actions',

																													db_index=True,

																													on_delete=models.CASCADE)

				verb	=	models.CharField(max_length=255)

				created	=	models.DateTimeField(auto_now_add=True,

																																			db_index=True)

				class	Meta:

								ordering	=	('-created',)

The	preceding	code	shows	the	Action	model	that	will	be	used	to	store
user	activities.	The	fields	of	this	model	are	as	follows:

user:	The	user	that	performed	the	action;	this	is	ForeignKey	to

the	Django	User	model.

verb:	The	verb	describing	the	action	that	the	user	has

performed.

created:	The	date	and	time	when	this	action	was	created.	We

use	auto_now_add=True	to	automatically	set	this	to	the	current

datetime	when	the	object	is	saved	for	the	first	time	in	the

database.

With	this	basic	model,	we	can	only	store	actions,	such	as	user	X	did
something.	We	need	an	extra	ForeignKey	field	in	order	to	save	actions
that	involve	a	target	object,	such	as	user	X	bookmarked	image	Y	or
user	X	is	now	following	user	Y.	As	you	already	know,	a	normal
ForeignKey	can	point	to	only	one	model.	Instead,	we	will	need	a	way
for	the	action's	target	object	to	be	an	instance	of	an	existing	model.
This	is	where	the	Django	content	types	framework	comes	on	the
scene.

Using	the	contenttypes
framework
Django	includes	a	contenttypes	framework	located	at
django.contrib.contenttypes.	This	application	can	track	all	models
installed	in	your	project	and	provides	a	generic	interface	to	interact
with	your	models.

The	django.contrib.contenttypes	application	is	included	in	the	INSTALLED_APPS
setting	by	default	when	you	create	a	new	project	using	the	startproject
command.	It	is	used	by	other	contrib	packages,	such	as	the
authentication	framework	and	the	admin	application.

The	contenttypes	application	contains	a	ContentType	model.	Instances	of
this	model	represent	the	actual	models	of	your	application,	and	new
instances	of	ContentType	are	automatically	created	when	new	models
are	installed	in	your	project.	The	ContentType	model	has	the	following
fields:

app_label:	This	indicates	the	name	of	the	application	the

model	belongs	to.	This	is	automatically	taken	from	the

app_label	attribute	of	the	model	Meta	options.	For	example,	our

Image	model	belongs	to	the	images	application.

model:	The	name	of	the	model	class.

name:	This	indicates	the	human-readable	name	of	the	model.

This	is	automatically	taken	from	the	verbose_name	attribute	of

the	model	Meta	options.

Let's	take	a	look	at	how	we	can	interact	with	ContentType	objects.	Open
the	shell	using	the	python	manage.py	shell	command.	You	can	obtain	the
ContentType	object	corresponding	to	a	specific	model	by	performing	a
query	with	the	app_label	and	model	attributes,	as	follows:

>>>	from	django.contrib.contenttypes.models	import	ContentType

>>>	image_type	=	ContentType.objects.get(app_label='images',	model='image')

>>>	image_type

<ContentType:	image>

You	can	also	retrieve	the	model	class	from	a	ContentType	object	by
calling	its	model_class()	method:

>>>	image_type.model_class()

<class	'images.models.Image'>

It's	also	common	to	get	the	ContentType	object	for	a	particular	model
class,	as	follows:

>>>	from	images.models	import	Image

>>>	ContentType.objects.get_for_model(Image)

<ContentType:	image>

These	are	just	some	examples	of	using	content	types.	Django	offers
more	ways	to	work	with	them.	You	can	find	the	official
documentation	about	the	content	types	framework	at	https://docs.djan
goproject.com/en/2.0/ref/contrib/contenttypes/.

https://docs.djangoproject.com/en/2.0/ref/contrib/contenttypes/

Adding	generic	relations	to
your	models
In	generic	relations,	ContentType	objects	play	the	role	of	pointing	to	the
model	used	for	the	relationship.	You	will	need	three	fields	to	set	up
a	generic	relation	in	a	model:

A	ForeignKey	field	to	ContentType:	This	will	tell	us	the	model	for

the	relationship

A	field	to	store	the	primary	key	of	the	related	object:

This	will	usually	be	a	PositiveIntegerField	to	match	Django's

automatic	primary	key	fields

A	field	to	define	and	manage	the	generic	relation

using	the	two	previous	fields:	The	content	types

framework	offers	a	GenericForeignKey	field	for	this	purpose

Edit	the	models.py	file	of	the	actions	application	and	make	it	look	like
this:

from	django.db	import	models

from	django.contrib.contenttypes.models	import	ContentType

from	django.contrib.contenttypes.fields	import	GenericForeignKey

class	Action(models.Model):

				user	=	models.ForeignKey('auth.User',

																													related_name='actions',

																													db_index=True,

																													on_delete=models.CASCADE)

				verb	=	models.CharField(max_length=255)

				target_ct	=	models.ForeignKey(ContentType,

																																		blank=True,

																																		null=True,

																																		related_name='target_obj',

																																		on_delete=models.CASCADE)

				target_id	=	models.PositiveIntegerField(null=True,

																																												blank=True,

																																												db_index=True)

				target	=	GenericForeignKey('target_ct',	'target_id')

				created	=	models.DateTimeField(auto_now_add=True,

																																			db_index=True)

				class	Meta:

								ordering	=	('-created',)

We	have	added	the	following	fields	to	the	Action	model:

target_ct:	A	ForeignKey	field	that	points	to	the	ContentType	model

target_id:	A	PositiveIntegerField	for	storing	the	primary	key	of	the

related	object

target:	A	GenericForeignKey	field	to	the	related	object	based	on

the	combination	of	the	two	previous	fields

Django	does	not	create	any	field	in	the	database	for	GenericForeignKey
fields.	The	only	fields	that	are	mapped	to	database	fields	are	target_ct
and	target_id.	Both	fields	have	blank=True	and	null=True	attributes	so	that
a	target	object	is	not	required	when	saving	Action	objects.

You	can	make	your	applications	more	flexible	by	using	generic	relationships
instead	of	foreign	keys	when	it	makes	sense	to	have	a	generic	relation.

Run	the	following	command	to	create	initial	migrations	for	this
application:

python	manage.py	makemigrations	actions

You	should	see	the	following	output:

Migrations	for	'actions':

		actions/migrations/0001_initial.py

				-	Create	model	Action

Then,	run	the	next	command	to	sync	the	application	with	the
database:

python	manage.py	migrate

The	output	of	the	command	should	indicate	that	the	new
migrations	have	been	applied,	as	follows:

Applying	actions.0001_initial...	OK

Let's	add	the	Action	model	to	the	administration	site.	Edit	the	admin.py
file	of	the	actions	application	and	add	the	following	code	to	it:

from	django.contrib	import	admin

from	.models	import	Action

@admin.register(Action)

class	ActionAdmin(admin.ModelAdmin):

				list_display	=	('user',	'verb',	'target',	'created')

				list_filter	=	('created',)

				search_fields	=	('verb',)

You	just	registered	the	Action	model	in	the	administration	site.	Run
the	python	manage.py	runserver	command	to	initialize	the	development
server	and	open	http://127.0.0.1:8000/admin/actions/action/add/	in	your
browser.	You	should	see	the	page	for	creating	a	new	Action	object,	as
follows:

As	you	would	notice	in	the	preceding	screenshot,	only	the	target_ct
and	target_id	fields	that	are	mapped	to	actual	database	fields	are
shown.	The	GenericForeignKey	field	does	not	appear	in	the	form.	The
target_ct	field	allows	you	to	select	any	of	the	registered	models	of
your	Django	project.	You	can	restrict	the	content	types	to	choose
from	a	limited	set	of	models	using	the	limit_choices_to	attribute	in	the
target_ct	field:	the	limit_choices_to	attribute	allows	you	to	restrict	the
content	of	ForeignKey	fields	to	a	specific	set	of	values.

Create	a	new	file	inside	the	actions	application	directory	and	name	it
utils.py.	We	will	define	a	shortcut	function	that	will	allow	us	to
create	new	Action	objects	in	a	simple	way.	Edit	the	new	utils.py	file
and	add	the	following	code	to	it:

from	django.contrib.contenttypes.models	import	ContentType

from	.models	import	Action

def	create_action(user,	verb,	target=None):

				action	=	Action(user=user,	verb=verb,	target=target)

				action.save()

The	create_action()	function	allows	us	to	create	actions	that	optionally
include	a	target	object.	We	can	use	this	function	anywhere	in	our
code	as	a	shortcut	to	add	new	actions	to	the	activity	stream.

Avoiding	duplicate	actions	in
the	activity	stream
Sometimes,	your	users	might	perform	an	action	multiple	times.
They	might	click	several	times	on	the	LIKE	or	UNLIKE	buttons	or
perform	the	same	action	multiple	times	in	a	short	period	of	time.
This	will	easily	lead	to	storing	and	displaying	duplicate	actions.	To
avoid	this,	we	will	improve	the	create_action()	function	to	skip	obvious
duplicated	actions.

Edit	the	utils.py	file	of	the	actions	application,	as	follows:

import	datetime

from	django.utils	import	timezone

from	django.contrib.contenttypes.models	import	ContentType

from	.models	import	Action

def	create_action(user,	verb,	target=None):

				#	check	for	any	similar	action	made	in	the	last	minute

				now	=	timezone.now()

				last_minute	=	now	-	datetime.timedelta(seconds=60)

				similar_actions	=	Action.objects.filter(user_id=user.id,

																																							verb=	verb,

																																							created__gte=last_minute)

				if	target:

								target_ct	=	ContentType.objects.get_for_model(target)

								similar_actions	=	similar_actions.filter(

																																													target_ct=target_ct,

																																													target_id=target.id)

				if	not	similar_actions:

								#	no	existing	actions	found

								action	=	Action(user=user,	verb=verb,	target=target)

								action.save()

								return	True

				return	False

We	have	changed	the	create_action()	function	to	avoid	saving

duplicate	actions	and	return	Boolean	to	tell	whether	the	action	was
saved	or	not.	This	is	how	we	avoid	duplicates:

First,	we	get	the	current	time	using	the	timezone.now()	method

provided	by	Django.	This	method	does	the	same	as

datetime.datetime.now()	but	returns	a	timezone-aware	object.	Django

provides	a	setting	called	USE_TZ	to	enable	or	disable	time	zone

support.	The	default	settings.py	file	created	using	the

startproject	command	includes	USE_TZ=True.

We	use	the	last_minute	variable	to	store	the	datetime	from	one

minute	ago	and	retrieve	any	identical	actions	performed	by

the	user	since	then.

We	create	an	Action	object	if	no	identical	action	already	exists

in	the	last	minute.	We	return	True	if	an	Action	object	was

created,	otherwise	False.

Adding	user	actions	to	the
activity	stream
It's	time	to	add	some	actions	to	our	views	to	build	the	activity
stream	for	our	users.	We	will	store	an	action	for	each	of	the
following	interactions:

A	user	bookmarks	an	image

A	user	likes	an	image

A	user	creates	an	account

A	user	starts	following	another	user

Edit	the	views.py	file	of	the	images	application	and	add	the	following
import:

from	actions.utils	import	create_action

In	the	image_create	view,	add	create_action()	after	saving	the	image,	like
this:

new_item.save()

create_action(request.user,	'bookmarked	image',	new_item)

In	the	image_like	view,	add	create_action()	after	adding	the	user	to	the
users_like	relationship,	as	follows:

image.users_like.add(request.user)

create_action(request.user,	'likes',	image)

Now,	edit	the	views.py	file	of	the	account	application	and	add	the
following	import:

from	actions.utils	import	create_action

In	the	register	view,	add	create_action()	after	creating	the	Profile	object,
as	follows:

Profile.objects.create(user=new_user)

create_action(new_user,	'has	created	an	account')

In	the	user_follow	view,	add	create_action():

Contact.objects.get_or_create(user_from=request.user,

																														user_to=user)

create_action(request.user,	'is	following',	user)

As	you	can	see	in	the	preceding	code,	thanks	to	our	Action	model	and
our	helper	function,	it's	very	easy	to	save	new	actions	to	the	activity
stream.

Displaying	the	activity	stream
Finally,	we	will	need	a	way	to	display	the	activity	stream	for	each
user.	We	will	include	the	activity	stream	in	the	user's	dashboard.
Edit	the	views.py	file	of	the	account	application.	Import	the	Action	model
and	modify	the	dashboard	view,	as	follows:

from	actions.models	import	Action

@login_required

def	dashboard(request):

				#	Display	all	actions	by	default

				actions	=	Action.objects.exclude(user=request.user)

				following_ids	=	request.user.following.values_list('id',

																																																							flat=True)

				if	following_ids:

								#	If	user	is	following	others,	retrieve	only	their	actions

								actions	=	actions.filter(user_id__in=following_ids)

				actions	=	actions[:10]

				return	render(request,

																		'account/dashboard.html',

																		{'section':	'dashboard',

																			'actions':	actions})

In	the	preceding	view,	we	retrieve	all	actions	from	the	database,
excluding	the	ones	performed	by	the	current	user.	By	default,	we
will	retrieve	the	latest	actions	performed	by	all	users	on	the
platform.	If	the	user	is	following	other	users,	we	restrict	the	query
to	retrieve	only	the	actions	performed	by	the	users	they	follow.
Finally,	we	limit	the	result	to	the	first	10	actions	returned.	We	don't
use	order_by()	in	the	QuerySet	because	we	rely	on	the	default	ordering
we	provided	in	the	Meta	options	of	the	Action	model.	Recent	actions
will	come	first	since	we	have	set	ordering	=	('-created',)	in	the	Action
model.

Optimizing	QuerySets	that
involve	related	objects
Every	time	you	retrieve	an	Action	object,	you	will	usually	access	its
related	User	object	and	the	user's	related	Profile	object.	The	Django
ORM	offers	a	simple	way	to	retrieve	related	objects	at	the	same	time
thereby	avoiding	additional	queries	to	the	database.

Using	select_related()
Django	offers	a	QuerySet	method	called	select_related()	that	allows
you	to	retrieve	related	objects	for	one-to-many	relationships.	This
translates	to	a	single,	more	complex	QuerySet,	but	you	avoid
additional	queries	when	accessing	the	related	objects.	The
select_related	method	is	for	ForeignKey	and	OneToOne	fields.	It	works	by
performing	an	SQL	JOIN	and	including	the	fields	of	the	related	object
in	the	SELECT	statement.

To	take	advantage	of	select_related(),	edit	the	following	line	of	the
preceding	code:

actions	=	actions[:10]

Also,	add	select_related	to	the	fields	that	you	will	use,	like	this:

actions	=	actions.select_related('user',	'user__profile')[:10]

We	use	user__profile	to	join	the	Profile	table	in	a	single	SQL	query.	If
you	call	select_related()	without	passing	any	arguments	to	it,	it	will
retrieve	objects	from	all	ForeignKey	relationships.	Always	limit
select_related()	to	the	relationships	that	will	be	accessed	afterward.

Using	select_related()	carefully	can	vastly	improve	execution	time.

Using	prefetch_related()
select_related()	will	help	you	boost	performance	for	retrieving	related
objects	in	one-to-many	relationships.	However,	select_related()
cannot	work	for	many-to-many	or	many-to-one	relationships
(ManyToMany	or	reverse	ForeignKey	fields).	Django	offers	a	different
QuerySet	method	called	prefetch_related	that	works	for	many-to-many
and	many-to-one	relations	in	addition	to	the	relations	supported	by
select_related().	The	prefetch_related()	method	performs	a	separate
lookup	for	each	relationship	and	joins	the	results	using	Python.
This	method	also	supports	the	prefetching	of	GenericRelation	and
GenericForeignKey.

Edit	the	views.py	file	of	the	application	account	and	complete	your
query	by	adding	prefetch_related()	to	it	for	the	target	GenericForeignKey
field,	as	follows:

actions	=	actions.select_related('user',	'user__profile')\

																	.prefetch_related('target')[:10]

This	query	is	now	optimized	for	retrieving	the	user	actions,
including	related	objects.

Creating	templates	for	actions
We	will	now	create	the	template	to	display	a	particular	Action	object.
Create	a	new	directory	inside	the	actions	application	directory	and
name	it	templates.	Add	the	following	file	structure	to	it:

actions/

				action/

								detail.html

Edit	the	actions/action/detail.html	template	file	and	add	the	following
lines	to	it:

{%	load	thumbnail	%}

{%	with	user=action.user	profile=action.user.profile	%}

<div	class="action">

		<div	class="images">

				{%	if	profile.photo	%}

						{%	thumbnail	user.profile.photo	"80x80"	crop="100%"	as	im	%}

								

										<img	src="{{	im.url	}}"	alt="{{	user.get_full_name	}}"	

											class="item-img">

								

						{%	endthumbnail	%}

				{%	endif	%}

				{%	if	action.target	%}

						{%	with	target=action.target	%}

								{%	if	target.image	%}

										{%	thumbnail	target.image	"80x80"	crop="100%"	as	im	%}

												

														

												

										{%	endthumbnail	%}

								{%	endif	%}

						{%	endwith	%}

				{%	endif	%}

		</div>

		<div	class="info">

				<p>

						{{	action.created|timesince	}}	ago

						

						

								{{	user.first_name	}}

						

						{{	action.verb	}}

						{%	if	action.target	%}

								{%	with	target=action.target	%}

										{{	target	}}

								{%	endwith	%}

						{%	endif	%}

				</p>

		</div>

</div>

{%	endwith	%}

This	is	the	template	used	to	display	an	Action	object.	First,	we	use	the
{%	with	%}	template	tag	to	retrieve	the	user	performing	the	action	and
the	related	Profile	object.	Then,	we	display	the	image	of	the	target
object	if	the	Action	object	has	a	related	target	object.	Finally,	we
display	the	link	to	the	user	who	performed	the	action,	the	verb,	and
the	target	object,	if	any.

Now,	edit	the	account/dashboard.html	template	of	the	account	application
and	append	the	following	code	to	the	bottom	of	the	content	block:

<h2>What's	happening</h2>

<div	id="action-list">

		{%	for	action	in	actions	%}

				{%	include	"actions/action/detail.html"	%}

		{%	endfor	%}

</div>

Open	http://127.0.0.1:8000/account/	in	your	browser.	Log	in	with	an
existing	user	and	perform	several	actions	so	that	they	get	stored	in
the	database.	Then,	log	in	using	another	user,	follow	the	previous
user,	and	take	a	look	at	the	generated	action	stream	on	the
dashboard	page.	It	should	look	like	the	following:

We	just	created	a	complete	activity	stream	for	our	users,	and	we	can
easily	add	new	user	actions	to	it.	You	can	also	add	infinite	scroll
functionality	to	the	activity	stream	by	implementing	the	same	AJAX
paginator	you	used	for	the	image_list	view.

Using	signals	for
denormalizing	counts
There	are	some	cases	when	you	would	like	to	denormalize	your
data.	Denormalization	is	making	data	redundant	in	a	way	that	it
optimizes	read	performance.	You	have	to	be	careful	about
denormalization	and	only	start	using	it	when	you	really	need	it.	The
biggest	issue	you	will	find	with	denormalization	is	that	it's	difficult
to	keep	your	denormalized	data	updated.

We	will	take	a	look	at	an	example	of	how	to	improve	our	queries	by
denormalizing	counts.	The	drawback	is	that	we	have	to	keep	the
redundant	data	updated.	We	will	denormalize	data	from	our	Image
model	and	use	Django	signals	to	keep	the	data	updated.

Working	with	signals
Django	comes	with	a	signal	dispatcher	that	allows	receiver	functions
to	get	notified	when	certain	actions	occur.	Signals	are	very	useful
when	you	need	your	code	to	do	something	every	time	something
else	happens.	You	can	also	create	your	own	signals	so	that	others
can	get	notified	when	an	event	happens.

Django	provides	several	signals	for	models	located	at
django.db.models.signals.	Some	of	these	signals	are	as	follows:

pre_save	and	post_save	are	sent	before	or	after	calling	the	save()

method	of	a	model

pre_delete	and	post_delete	are	sent	before	or	after	calling	the

delete()	method	of	a	model	or	QuerySet

m2m_changed	is	sent	when	a	ManyToManyField	on	a	model	is	changed

These	are	just	a	subset	of	the	signals	provided	by	Django.	You	can
find	the	list	of	all	built-in	signals	at	https://docs.djangoproject.com/en/2.0/re
f/signals/.

Let's	say	you	want	to	retrieve	images	by	popularity.	You	can	use	the
Django	aggregation	functions	to	retrieve	images	ordered	by
the	number	of	users	who	like	them.	Remember	you	used	Django
aggregation	functions	in	Chapter	3,	Extending	Your	Blog	Application.
The	following	code	will	retrieve	images	according	to	their	number
of	likes:

from	django.db.models	import	Count

from	images.models	import	Image

https://docs.djangoproject.com/en/2.0/ref/signals/

images_by_popularity	=	Image.objects.annotate(

				total_likes=Count('users_like')).order_by('-total_likes')

However,	ordering	images	by	counting	their	total	likes	is	more
expensive	in	terms	of	performance	than	ordering	them	by	a	field,
which	stores	total	counts.	You	can	add	a	field	to	the	Image	model	to
denormalize	the	total	number	of	likes	to	boost	performance	in
queries	that	involve	this	field.	Now,	the	issue	is	how	to	keep	this
field	updated?

Edit	the	models.py	file	of	the	images	application	and	add	the	following
total_likes	field	to	the	Image	model:

class	Image(models.Model):

				#	...

				total_likes	=	models.PositiveIntegerField(db_index=True,

																																														default=0)

The	total_likes	field	will	allow	us	to	store	the	total	count	of	users	that
like	each	image.	Denormalizing	counts	is	useful	when	you	want	to
filter	or	order	QuerySets	by	them.

There	are	several	ways	to	improve	performance	that	you	have	to	take	into
account	before	denormalizing	fields.	Consider	database	indexes,	query
optimization,	and	caching,	before	starting	to	denormalize	your	data.

Run	the	following	command	to	create	the	migrations	for	adding	the
new	field	to	the	database	table:

python	manage.py	makemigrations	images

You	should	see	the	following	output:

Migrations	for	'images':

		images/migrations/0002_image_total_likes.py

				-	Add	field	total_likes	to	image

Then,	run	the	following	command	to	apply	the	migration:

python	manage.py	migrate	images

The	output	should	include	the	following	line:

Applying	images.0002_image_total_likes...	OK			

We	will	attach	a	receiver	function	to	the	m2m_changed	signal.	Create	a
new	file	inside	the	images	application	directory	and	name	it	signals.py.
Add	the	following	code	to	it:

from	django.db.models.signals	import	m2m_changed

from	django.dispatch	import	receiver

from	.models	import	Image

@receiver(m2m_changed,	sender=Image.users_like.through)

def	users_like_changed(sender,	instance,	**kwargs):

				instance.total_likes	=	instance.users_like.count()

				instance.save()

First,	we	register	the	users_like_changed	function	as	a	receiver	function
using	the	receiver()	decorator,	and	we	attach	it	to	the	m2m_changed	signal.
We	connect	the	function	to	Image.users_like.through	so	that	the	function
is	only	called	if	the	m2m_changed	signal	has	been	launched	by	this
sender.	There	is	an	alternate	method	for	registering	a	receiver
function,	which	consists	of	using	the	connect()	method	of	the	Signal
object.

Django	signals	are	synchronous	and	blocking.	Don't	confuse	signals	with
asynchronous	tasks.	However,	you	can	combine	both	to	launch
asynchronous	tasks	when	your	code	gets	notified	by	a	signal.

You	have	to	connect	your	receiver	function	to	a	signal	so	that	it	gets
called	every	time	the	signal	is	sent.	The	recommended	method	for
registering	your	signals	is	by	importing	them	in	the	ready()	method
of	your	application	configuration	class.	Django	provides	an
application	registry	that	allows	you	to	configure	and	introspect	your
applications.

Application	configuration
classes
Django	allows	you	to	specify	configuration	classes	for	your
applications.	When	you	create	an	application	using	the	startapp
command,	Django	adds	an	apps.py	file	to	the	app	directory,	including
a	basic	app	configuration	that	inherits	from	the	AppConfig	class.

The	application	configuration	class	allows	you	to	store	metadata
and	configuration	for	the	application	and	provides	introspection	for
the	app.	You	can	find	more	information	about	application
configurations	at	https://docs.djangoproject.com/en/2.0/ref/applications/.

In	order	to	register	your	signal	receiver	functions,	when	you	use	the
receiver()	decorator,	you	just	need	to	import	the	signals	module	of
your	application	inside	the	ready()	method	of	the	application
configuration	class.	This	method	is	called	as	soon	as	the	application
registry	is	fully	populated.	Any	other	initializations	for	your
application	should	also	be	included	in	this	method.

Edit	the	apps.py	file	of	the	images	application	and	make	it	look	like	this:

from	django.apps	import	AppConfig

class	ImagesConfig(AppConfig):

				name	=	'images'

				def	ready(self):

								#	import	signal	handlers

								import	images.signals

We	import	the	signals	for	this	application	in	the	ready()	method	so
that	they	are	imported	when	the	images	application	is	loaded.

https://docs.djangoproject.com/en/2.0/ref/applications/

Run	the	development	server	with	the	following	command:

python	manage.py	runserver

Open	your	browser	to	view	an	image	detail	page	and	click	on	the
LIKE	button.	Go	back	to	the	administration	site,	navigate	to	the	edit
image	URL,	such	as	http://127.0.0.1:8000/admin/images/image/1/change/,	and
take	a	look	at	the	total_likes	attribute.	You	should	see	that	the
total_likes	attribute	is	updated	with	the	total	number	of	users	that
like	the	image,	as	follows:

Now,	you	can	use	the	total_likes	attribute	to	order	images	by
popularity	or	display	the	value	anywhere,	avoiding	complex	queries
to	calculate	it.	Consider	the	following	query	to	get	images	ordered
according	to	their	like	count:

from	django.db.models	import	Count

images_by_popularity	=	Image.objects.annotate(

				likes=Count('users_like')).order_by('-likes')

The	preceding	query	can	now	be	written	as	follows:

images_by_popularity	=	Image.objects.order_by('-total_likes')

This	results	in	a	less	expensive	SQL	query.	This	is	just	an	example
of	how	to	use	Django	signals.

Use	signals	with	caution	since	they	make	it	difficult	to	know	the	control	flow.
In	many	cases,	you	can	avoid	using	signals	if	you	know	which	receivers	need
to	be	notified.

You	will	need	to	set	initial	counts	to	match	the	current	status	of	the
database.	Open	the	shell	with	the	python	manage.py	shell	command	and
run	the	following	code:

from	images.models	import	Image

for	image	in	Image.objects.all():

				image.total_likes	=	image.users_like.count()

				image.save()

The	likes	count	for	each	image	is	now	up	to	date.

Using	Redis	for	storing	item
views
Redis	is	an	advanced	key/value	database	that	allows	you	to	save
different	types	of	data	and	is	extremely	fast	in	I/O	operations.	Redis
stores	everything	in	memory,	but	the	data	can	be	persisted	by
dumping	the	dataset	to	disk	every	once	in	a	while	or	by	adding	each
command	to	a	log.	Redis	is	very	versatile	compared	to	other
key/value	stores:	it	provides	a	set	of	powerful	commands	and
supports	diverse	data	structures,	such	as	strings,	hashes,	lists,	sets,
ordered	sets,	and	even	bitmaps	or	HyperLogLogs.

Although	SQL	is	best	suited	to	schema-defined	persistent	data
storage,	Redis	offers	numerous	advantages	when	dealing	with
rapidly	changing	data,	volatile	storage,	or	when	a	quick	cache	is
needed.	Let's	take	a	look	at	how	Redis	can	be	used	to	build	a	new
functionality	into	our	project.

Installing	Redis
Download	the	latest	Redis	version	from	https://redis.io/download.	Unzip
the	tar.gz	file,	enter	the	redis	directory,	and	compile	Redis	using	the
make	command,	as	follows:

cd	redis-4.0.9

make

After	installing	it,	use	the	following	shell	command	to	initialize	the
Redis	server:

src/redis-server

You	should	see	an	output	that	ends	with	the	following	lines:

#	Server	initialized

*	Ready	to	accept	connections

By	default,	Redis	runs	on	port	6379.	You	can	specify	a	custom	port
using	the	--port	flag,	for	example,	redis-server	--port	6655.

Keep	the	Redis	server	running	and	open	another	shell.	Start	the
Redis	client	with	the	following	command:

src/redis-cli

You	will	see	the	Redis	client	shell	prompt	like	this:

127.0.0.1:6379>

https://redis.io/download

The	Redis	client	allows	you	to	execute	Redis	commands	directly
from	the	shell.	Let's	try	some	commands.	Enter	the	SET	command	in
the	Redis	shell	to	store	a	value	in	a	key:

127.0.0.1:6379>	SET	name	"Peter"

OK

The	preceding	command	creates	a	name	key	with	the	string	value
"Peter"	in	the	Redis	database.	The	OK	output	indicates	that	the	key	has
been	saved	successfully.	Then,	retrieve	the	value	using	the	GET
command,	as	follows:

127.0.0.1:6379>	GET	name

"Peter"

You	can	also	check	whether	a	key	exists	using	the	EXISTS	command.
This	command	returns	1	if	the	given	key	exists,	0	otherwise:

127.0.0.1:6379>	EXISTS	name

(integer)	1

You	can	set	the	time	for	a	key	to	expire	using	the	EXPIRE	command,
which	allows	you	to	set	time	to	live	in	seconds.	Another	option	is
using	the	EXPIREAT	command	that	expects	a	Unix	timestamp.	Key
expiration	is	useful	to	use	Redis	as	a	cache	or	to	store	volatile	data:

127.0.0.1:6379>	GET	name

"Peter"

127.0.0.1:6379>	EXPIRE	name	2

(integer)	1

Wait	for	two	seconds	and	try	to	get	the	same	key	again:

127.0.0.1:6379>	GET	name

(nil)

The	(nil)	response	is	a	null	response	and	means	that	no	key	has
been	found.	You	can	also	delete	any	key	using	the	DEL	command,	as
follows:

127.0.0.1:6379>	SET	total	1

OK

127.0.0.1:6379>	DEL	total

(integer)	1

127.0.0.1:6379>	GET	total

(nil)

These	are	just	basic	commands	for	key	operations.	Redis	includes	a
large	set	of	commands	for	other	data	types,	such	as	strings,	hashes,
sets,	and	ordered	sets.	You	can	take	a	look	at	all	Redis	commands	at
https://redis.io/commands	and	all	Redis	data	types	at	https://redis.io/topics/d
ata-types.

https://redis.io/commands
https://redis.io/topics/data-types

Using	Redis	with	Python
We	will	need	Python	bindings	for	Redis.	Install	redis-py	via	pip	using
the	following	command:

pip	install	redis==2.10.6

You	can	find	the	redis-py	docs	at	https://redis-py.readthedocs.io/.

The	redis-py	package	offers	two	classes	for	interacting	with	Redis:
StrictRedis	and	Redis.	Both	offer	the	same	functionality.	The	StrictRedis
class	attempts	to	adhere	to	the	official	Redis	command	syntax.	The
Redis	class	extends	StrictRedis,	overriding	some	methods	to	provide
backward	compatibility.	We	will	use	StrictRedis	since	it	follows	the
Redis	command	syntax.	Open	the	Python	shell	and	execute	the
following	code:

>>>	import	redis

>>>	r	=	redis.StrictRedis(host='localhost',	port=6379,	db=0)

The	preceding	code	creates	a	connection	with	the	Redis	database.	In
Redis,	databases	are	identified	by	an	integer	index	instead	of	a
database	name.	By	default,	a	client	is	connected	to	the	database	0.
The	number	of	available	Redis	databases	is	set	to	16,	but	you	can
change	this	in	the	redis.conf	configuration	file.

Now,	set	a	key	using	the	Python	shell:

>>>	r.set('foo',	'bar')

True

The	command	returns	True,	indicating	that	the	key	has	been

https://redis-py.readthedocs.io/

successfully	created.	Now,	you	can	retrieve	the	key	using	the	get()
command:

>>>	r.get('foo')

b'bar'

As	you	can	note	from	the	preceding	code,	the	methods	of	StrictRedis
follow	the	Redis	command	syntax.

Let's	integrate	Redis	into	our	project.	Edit	the	settings.py	file	of	the
bookmarks	project	and	add	the	following	settings	to	it:

REDIS_HOST	=	'localhost'

REDIS_PORT	=	6379

REDIS_DB	=	0

These	are	the	settings	for	the	Redis	server	and	the	database	that	we
will	use	for	our	project.

Storing	item	views	in	Redis
Let's	find	a	way	to	store	the	total	number	of	times	an	image	has
been	viewed.	If	we	implement	this	using	the	Django	ORM,	it	will
involve	an	SQL	UPDATE	query	every	time	an	image	is	displayed.	If	we
use	Redis	instead,	we	just	need	to	increment	a	counter	stored	in
memory,	resulting	in	a	much	better	performance	and	less	overhead.

Edit	the	views.py	file	of	the	images	application	and	add	the	following
code	to	it	after	the	existing	import	statements:

import	redis

from	django.conf	import	settings

#	connect	to	redis

r	=	redis.StrictRedis(host=settings.REDIS_HOST,

																						port=settings.REDIS_PORT,

																						db=settings.REDIS_DB)

With	the	preceding	code,	we	establish	the	Redis	connection	in	order
to	use	it	in	our	views.	Edit	the	image_detail	view	and	make	it	look	as
follows:

def	image_detail(request,	id,	slug):

				image	=	get_object_or_404(Image,	id=id,	slug=slug)

				#	increment	total	image	views	by	1

				total_views	=	r.incr('image:{}:views'.format(image.id))

				return	render(request,

																		'images/image/detail.html',

																		{'section':	'images',

																			'image':	image,

																			'total_views':	total_views})

In	this	view,	we	use	the	incr	command	that	increments	the	value	of	a
given	key	by	1.	If	the	key	doesn't	exist,	the	incr	command	creates	it

previously.	The	incr()	method	returns	the	final	value	of	the	key	after
performing	the	operation.	We	store	the	value	in	the	total_views
variable	and	pass	it	in	the	template	context.	We	build	the	Redis	key
using	a	notation,	such	as	object-type:id:field	(for	example,	image:33:id).

The	convention	for	naming	Redis	keys	is	to	use	a	colon	sign	as	a	separator
for	creating	namespaced	keys.	By	doing	so,	the	key	names	are	especially
verbose	and	related	keys	share	part	of	the	same	schema	in	their	names.

Edit	the	images/image/detail.html	template	of	the	images	application	and
add	the	following	code	to	it,	after	the	existing	
element:

		{{	total_views	}}	view{{	total_views|pluralize	}}

Now,	open	an	image	detail	page	in	your	browser	and	reload	it
several	times.	You	will	see	that	each	time	the	view	is	processed,	the
total	views	displayed	is	incremented	by	1.	Take	a	look	at	the
following	example:

Great!	You	have	successfully	integrated	Redis	into	your	project	to
store	item	counts.

Storing	a	ranking	in	Redis
Let's	build	something	more	complex	with	Redis.	We	will	create	a
ranking	of	the	most	viewed	images	in	our	platform.	For	building
this	ranking,	we	will	use	Redis	sorted	sets.	A	sorted	set	is	a	non-
repeating	collection	of	strings	in	which	every	member	is	associated
with	a	score.	Items	are	sorted	by	their	score.

Edit	the	views.py	file	of	the	images	application	and	make	the	image_detail
view	look	as	follows:

def	image_detail(request,	id,	slug):

				image	=	get_object_or_404(Image,	id=id,	slug=slug)

				#	increment	total	image	views	by	1

				total_views	=	r.incr('image:{}:views'.format(image.id))

				#	increment	image	ranking	by	1

				r.zincrby('image_ranking',	image.id,	1)

				return	render(request,

																		'images/image/detail.html',

																		{'section':	'images',

																			'image':	image,

																			'total_views':	total_views})

We	use	the	zincrby()	command	to	store	image	views	in	a	sorted	set
with	the	image:ranking	key.	We	will	store	the	image	id	and	a	related
score	of	1	that	will	be	added	to	the	total	score	of	this	element	in	the
sorted	set.	This	will	allow	us	to	keep	track	of	all	image	views
globally	and	have	a	sorted	set	ordered	by	the	total	number	of	views.

Now,	create	a	new	view	to	display	the	ranking	of	the	most	viewed
images.	Add	the	following	code	to	the	views.py	file	of	the	images
application:

@login_required

def	image_ranking(request):

				#	get	image	ranking	dictionary

				image_ranking	=	r.zrange('image_ranking',	0,	-1,

																													desc=True)[:10]

				image_ranking_ids	=	[int(id)	for	id	in	image_ranking]

				#	get	most	viewed	images

				most_viewed	=	list(Image.objects.filter(

																											id__in=image_ranking_ids))

				most_viewed.sort(key=lambda	x:	image_ranking_ids.index(x.id))

				return	render(request,

																		'images/image/ranking.html',

																		{'section':	'images',

																			'most_viewed':	most_viewed})

The	image_ranking	view	works	like	this:

1.	 We	use	the	zrange()	command	to	obtain	the	elements	in	the

sorted	set.	This	command	expects	a	custom	range	according

to	the	lowest	and	highest	score.	Using	0	as	the	lowest	and	-1

as	the	highest	score,	we	are	telling	Redis	to	return	all

elements	in	the	sorted	set.	We	also	specify	desc=True	to

retrieve	the	elements	ordered	by	descending	score.	Finally,

we	slice	the	results	using	[:10]	to	get	the	first	10	elements

with	the	highest	score.

2.	 We	build	a	list	of	returned	image	IDs	and	store	it	in	the

image_ranking_ids	variable	as	a	list	of	integers.	We	retrieve	the

Image	objects	for	those	IDs	and	force	the	query	to	be	executed

using	the	list()	function.	It	is	important	to	force	the

QuerySet	execution	because	we	will	now	use	the	sort()	list

method	on	it	(at	this	point,	we	need	a	list	of	objects	instead

of	a	QuerySet).

3.	 We	sort	the	Image	objects	by	their	index	of	appearance	in	the

image	ranking.	Now,	we	can	use	the	most_viewed	list	in	our

template	to	display	the	10	most	viewed	images.

Create	a	new	ranking.html	template	inside	the	images/image/	template
directory	of	the	images	application	and	add	the	following	code	to	it:

{%	extends	"base.html"	%}

{%	block	title	%}Images	ranking{%	endblock	%}

{%	block	content	%}

		<h1>Images	ranking</h1>

		

				{%	for	image	in	most_viewed	%}

						

								

										{{	image.title	}}

								

						

				{%	endfor	%}

		

{%	endblock	%}

The	template	is	pretty	straightforward.	We	iterate	over	the	Image
objects	contained	in	the	most_viewed	list	and	display	their	names,
including	a	link	to	the	image	detail	page.

Finally,	you	will	need	to	create	a	URL	pattern	for	the	new	view.	Edit
the	urls.py	file	of	the	images	application	and	add	the	following	pattern
to	it:

path('ranking/',	views.image_ranking,	name='create'),

Run	the	development	server,	access	your	site	in	your	web	browser,
and	load	the	image	detail	multiple	times	for	different	images.	Then,
access	http://127.0.0.1:8000/images/ranking/	from	your	browser.	You
should	be	able	to	see	an	images	ranking,	as	follows:

Great!	You	just	created	an	ranking	with	Redis.

Next	steps	with	Redis
Redis	is	not	a	replacement	for	your	SQL	database,	but	a	fast	in-
memory	storage	that	is	more	suitable	for	certain	tasks.	Add	it	to
your	stack	and	use	it	when	you	really	feel	it's	needed.	The	following
are	some	scenarios	in	which	Redis	suits	pretty	well:

Counting:	As	you	have	seen,	it	is	very	easy	to	manage

counters	with	Redis.	You	can	use	incr()	and	incrby()	for

counting	stuff.

Storing	latest	items:	You	can	add	items	to	the	start/end

of	a	list	using	lpush()	and	rpush().	Remove	and	return	the

first/last	element	using	lpop()	/	rpop().	You	can	trim	the	list

length	using	ltrim()	to	maintain	its	length.

Queues:	In	addition	to	push	and	pop	commands,	Redis	offers

blocking	queue	commands.

Caching:	Using	expire()	and	expireat()	allows	you	to	use	Redis

as	a	cache.	You	can	also	find	third-party	Redis	cache

backends	for	Django.

Pub/sub:	Redis	provides	commands	for

subscribing/unsubscribing	and	sending	messages	to

channels.

Rankings	and	leaderboards:	Redis	sorted	sets	with

scores	make	it	very	easy	to	create	leaderboards.

Real-time	tracking:	Redis's	fast	I/O	makes	it	perfect	for

real-time	scenarios.

Summary
In	this	chapter,	you	have	built	a	follower	system	and	a	user	activity
stream.	You	learned	how	Django	signals	work	and	integrated	Redis
into	your	project.

In	the	next	chapter,	you	will	learn	how	to	build	an	online	shop.	You
will	create	a	product	catalog	and	build	a	shopping	cart	using
sessions.	You	will	also	learn	how	to	launch	asynchronous	tasks
using	Celery.

Building	an	Online	Shop
In	the	previous	chapter,	you	created	a	follower	system	and	built	a
user	activity	stream.	You	also	learned	how	Django	signals	work	and
integrated	Redis	into	your	project	to	count	image	views.	In	this
chapter,	you	will	learn	how	to	build	a	basic	online	shop.	You	will
create	a	catalog	of	products	and	implement	a	shopping	cart	using
Django	sessions.	You	will	also	learn	how	to	create	custom	context
processors	and	launch	asynchronous	tasks	using	Celery.

In	this	chapter,	you	will	learn	to:

Create	a	product	catalog

Build	a	shopping	cart	using	Django	sessions

Manage	customer	orders

Send	asynchronous	notifications	to	customers	using	Celery

Creating	an	online	shop	project
We	are	going	to	start	with	a	new	Django	project	to	build	an	online
shop.	Our	users	will	be	able	to	browse	through	a	product	catalog
and	add	products	to	a	shopping	cart.	Finally,	they	will	be	able	to
check	out	the	cart	and	place	an	order.	This	chapter	will	cover	the
following	functionalities	of	an	online	shop:

Creating	the	product	catalog	models,	adding	them	to	the

administration	site,	and	building	the	basic	views	to	display

the	catalog

Building	a	shopping	cart	system	using	Django	sessions	to

allow	users	to	keep	selected	products	while	they	browse	the

site

Creating	the	form	and	functionality	to	place	orders	on	the

site

Sending	an	asynchronous	email	confirmation	to	users	when

they	place	an	order

Open	a	shell,	create	a	virtual	environment	for	the	new	project,	and
activate	it	with	the	following	commands:

mkdir	env

virtualenv	env/myshop

source	env/myshop/bin/activate

Install	Django	in	your	virtual	environment	with	the	following
command:

pip	install	Django==2.0.5

Start	a	new	project	called	myshop	with	an	application	called	shop	by
opening	a	shell	and	running	the	following	commands:

django-admin	startproject	myshop

cd	myshop/

django-admin	startapp	shop

Edit	the	settings.py	file	of	your	project	and	add	the	shop	application	to
the	INSTALLED_APPS	setting	as	follows:

INSTALLED_APPS	=	[

				#	...

				'shop.apps.ShopConfig',

]

Your	application	is	now	active	for	this	project.	Let's	define	the
models	for	the	product	catalog.

Creating	product	catalog
models
The	catalog	of	our	shop	will	consist	of	products	that	are	organized
into	different	categories.	Each	product	will	have	a	name,	optional
description,	optional	image,	price,	and	availability.	Edit	the	models.py
file	of	the	shop	application	that	you	just	created	and	add	the
following	code:

from	django.db	import	models

class	Category(models.Model):

				name	=	models.CharField(max_length=200,

																												db_index=True)

				slug	=	models.SlugField(max_length=200,

																												unique=True)

				class	Meta:

								ordering	=	('name',)

								verbose_name	=	'category'

								verbose_name_plural	=	'categories'

				def	__str__(self):

								return	self.name

class	Product(models.Model):

				category	=	models.ForeignKey(Category,

																																	related_name='products',

																																	on_delete=models.CASCADE)

				name	=	models.CharField(max_length=200,	db_index=True)

				slug	=	models.SlugField(max_length=200,	db_index=True)

				image	=	models.ImageField(upload_to='products/%Y/%m/%d',

																														blank=True)

				description	=	models.TextField(blank=True)

				price	=	models.DecimalField(max_digits=10,	decimal_places=2)

				available	=	models.BooleanField(default=True)

				created	=	models.DateTimeField(auto_now_add=True)

				updated	=	models.DateTimeField(auto_now=True)

				class	Meta:

								ordering	=	('name',)

								index_together	=	(('id',	'slug'),)

				def	__str__(self):

								return	self.name

These	are	the	Category	and	Product	models.	The	Category	model	consists
of	a	name	field	and	a	slug	unique	field	(unique	implies	the	creation	of	an
index).	The	Product	model	fields	are	as	follows:

category:	ForeignKey	to	the	Category	model.	This	is	a	many-to-one

relationship:	a	product	belongs	to	one	category	and	a

category	contains	multiple	products.

name:	The	name	of	the	product.

slug:	The	slug	for	this	product	to	build	beautiful	URLs.

image:	An	optional	product	image.

description:	An	optional	description	of	the	product.

price:	This	field	uses	Python's	decimal.Decimal	type	to	store	a

fixed-precision	decimal	number.	The	maximum	number	of

digits	(including	the	decimal	places)	is	set	using	the	max_digits

attribute	and	decimal	places	with	the	decimal_places	attribute.

available:	A	boolean	value	that	indicates	whether	the	product

is	available	or	not.	It	will	be	used	to	enable/disable	the

product	in	the	catalog.

created:	This	field	stores	when	the	object	was	created.

updated:	This	field	stores	when	the	object	was	last	updated.

For	the	price	field,	we	use	DecimalField	instead	of	FloatField	to	avoid

rounding	issues.

Always	use	DecimalField	to	store	monetary	amounts.	FloatField	uses
Python's	float	type	internally,	whereas	DecimalField	uses	Python's	Decimal	type.
By	using	the	Decimal	type,	you	will	avoid	float	rounding	issues.

In	the	Meta	class	of	the	Product	model,	we	use	the	index_together	meta
option	to	specify	an	index	for	the	id	and	slug	fields	together.	We
define	this	index	because	we	plan	to	query	products	by	both	id	and
slug.	Both	fields	are	indexed	together	to	improve	performances	for
queries	that	utilize	the	two	fields.

Since	we	are	going	to	deal	with	images	in	our	models,	open	the	shell
and	install	Pillow	with	the	following	command:

pip	install	Pillow==5.1.0

Now,	run	the	next	command	to	create	initial	migrations	for	your
project:

python	manage.py	makemigrations

You	will	see	the	following	output:

Migrations	for	'shop':

		shop/migrations/0001_initial.py

				-	Create	model	Category

				-	Create	model	Product

				-	Alter	index_together	for	product	(1	constraint(s))

Run	the	next	command	to	sync	the	database:

python	manage.py	migrate

You	will	see	output	that	includes	the	following	line:

Applying	shop.0001_initial...	OK

The	database	is	now	synced	with	your	models.

Registering	catalog	models	on
the	admin	site
Let's	add	our	models	to	the	administration	site	so	that	we	can	easily
manage	categories	and	products.	Edit	the	admin.py	file	of	the	shop
application	and	add	the	following	code	to	it:

from	django.contrib	import	admin

from	.models	import	Category,	Product

@admin.register(Category)

class	CategoryAdmin(admin.ModelAdmin):

				list_display	=	['name',	'slug']

				prepopulated_fields	=	{'slug':	('name',)}

@admin.register(Product)

class	ProductAdmin(admin.ModelAdmin):

				list_display	=	['name',	'slug',	'price',

																				'available',	'created',	'updated']

				list_filter	=	['available',	'created',	'updated']

				list_editable	=	['price',	'available']

				prepopulated_fields	=	{'slug':	('name',)}

Remember	that	we	use	the	prepopulated_fields	attribute	to	specify	fields
where	the	value	is	automatically	set	using	the	value	of	other	fields.
As	you	have	seen	before,	this	is	convenient	for	generating	slugs.	We
use	the	list_editable	attribute	in	the	ProductAdmin	class	to	set	the	fields
that	can	be	edited	from	the	list	display	page	of	the	administration
site.	This	will	allow	you	to	edit	multiple	rows	at	once.	Any	field	in
list_editable	must	also	be	listed	in	the	list_display	attribute	since	only
the	fields	displayed	can	be	edited.

Now,	create	a	superuser	for	your	site	using	the	following	command:

python	manage.py	createsuperuser

Start	the	development	server	with	the	command	python	manage.py
runserver.	Open	http://127.0.0.1:8000/admin/shop/product/add/	in	your	browser
and	log	in	with	the	user	that	you	just	created.	Add	a	new	category
and	product	using	the	administration	interface.	The	product	change
list	page	of	the	administration	page	will	then	look	like	this:

Building	catalog	views
In	order	to	display	the	product	catalog,	we	need	to	create	a	view	to
list	all	the	products	or	filter	products	by	a	given	category.	Edit	the
views.py	file	of	the	shop	application	and	add	the	following	code	to	it:

from	django.shortcuts	import	render,	get_object_or_404

from	.models	import	Category,	Product

def	product_list(request,	category_slug=None):

				category	=	None

				categories	=	Category.objects.all()

				products	=	Product.objects.filter(available=True)

				if	category_slug:

								category	=	get_object_or_404(Category,	slug=category_slug)

								products	=	products.filter(category=category)

				return	render(request,

																		'shop/product/list.html',

																		{'category':	category,

																			'categories':	categories,

																			'products':	products})

We	will	filter	the	QuerySet	with	available=True	to	retrieve	only
available	products.	We	use	an	optional	category_slug	parameter	to
optionally	filter	products	by	a	given	category.

We	also	need	a	view	to	retrieve	and	display	a	single	product.	Add
the	following	view	to	the	views.py	file:

def	product_detail(request,	id,	slug):

				product	=	get_object_or_404(Product,

																																id=id,

																																slug=slug,

																																available=True)

				return	render(request,

																		'shop/product/detail.html',

																		{'product':	product})

The	product_detail	view	expects	the	id	and	slug	parameters	in	order	to
retrieve	the	Product	instance.	We	can	get	this	instance	just	through
the	ID	since	it's	a	unique	attribute.	However,	we	include	the	slug	in
the	URL	to	build	SEO-friendly	URLs	for	products.

After	building	the	product	list	and	detail	views,	we	have	to	define
URL	patterns	for	them.	Create	a	new	file	inside	the	shop	application
directory	and	name	it	urls.py.	Add	the	following	code	to	it:

from	django.urls	import	path

from	.	import	views

app_name	=	'shop'

urlpatterns	=	[

				path('',	views.product_list,	name='product_list'),

				path('<slug:category_slug>/',	views.product_list,	

									name='product_list_by_category'),

				path('<int:id>/<slug:slug>/',	views.product_detail,

									name='product_detail'),

]

These	are	the	URL	patterns	for	our	product	catalog.	We	have
defined	two	different	URL	patterns	for	the	product_list	view:	a	pattern
named	product_list,	which	calls	the	product_list	view	without	any
parameters;	and	a	pattern	named	product_list_by_category,	which
provides	a	category_slug	parameter	to	the	view	for	filtering	products
according	to	a	given	category.	We	added	a	pattern	for	the
product_detail	view,	which	passes	the	id	and	slug	parameters	to	the
view	in	order	to	retrieve	a	specific	product.

Edit	the	urls.py	file	of	the	myshop	project	to	make	it	look	like	this:

from	django.contrib	import	admin

from	django.urls	import	path,	include

urlpatterns	=	[

				path('admin/',	admin.site.urls),

				path('',	include('shop.urls',	namespace='shop')),

]

In	the	main	URL	patterns	of	the	project,	we	will	include	URLs	for
the	shop	application	under	a	custom	namespace	named	shop.

Now,	edit	the	models.py	file	of	the	shop	application,	import	the	reverse()
function,	and	add	a	get_absolute_url()	method	to	the	Category	and	Product
models	as	follows:

from	django.urls	import	reverse

#	...

class	Category(models.Model):

				#	...

				def	get_absolute_url(self):

								return	reverse('shop:product_list_by_category',

																							args=[self.slug])

class	Product(models.Model):

				#	...

				def	get_absolute_url(self):

								return	reverse('shop:product_detail',

																							args=[self.id,	self.slug])

As	you	already	know,	get_absolute_url()	is	the	convention	to	retrieve
the	URL	for	a	given	object.	Here,	we	will	use	the	URLs	patterns	that
we	just	defined	in	the	urls.py	file.

Creating	catalog	templates
Now,	we	need	to	create	templates	for	the	product	list	and	detail
views.	Create	the	following	directory	and	file	structure	inside	the
shop	application	directory:

templates/

				shop/

								base.html

								product/

												list.html

												detail.html

We	need	to	define	a	base	template,	and	then	extend	it	in	the
product	list	and	detail	templates.	Edit	the	shop/base.html	template	and
add	the	following	code	to	it:

{%	load	static	%}

<!DOCTYPE	html>

<html>

<head>

		<meta	charset="utf-8"	/>

		<title>{%	block	title	%}My	shop{%	endblock	%}</title>

		<link	href="{%	static	"css/base.css"	%}"	rel="stylesheet">

</head>

<body>

		<div	id="header">

				My	shop

		</div>

		<div	id="subheader">

				<div	class="cart">

						Your	cart	is	empty.

				</div>

		</div>

		<div	id="content">

				{%	block	content	%}

				{%	endblock	%}

		</div>

</body>

</html>

This	is	the	base	template	that	we	will	use	for	our	shop.	In	order	to
include	the	CSS	styles	and	images	that	are	used	by	the	templates,
you	will	need	to	copy	the	static	files	that	accompany	this	chapter,
located	in	the	static/	directory	of	the	shop	application.	Copy	them	to
the	same	location	in	your	project.

Edit	the	shop/product/list.html	template	and	add	the	following	code	to
it:

{%	extends	"shop/base.html"	%}

{%	load	static	%}

{%	block	title	%}

		{%	if	category	%}{{	category.name	}}{%	else	%}Products{%	endif	%}

{%	endblock	%}

{%	block	content	%}

		<div	id="sidebar">

				<h3>Categories</h3>

				

						<li	{%	if	not	category	%}class="selected"{%	endif	%}>

								All

						

						{%	for	c	in	categories	%}

								<li	{%	if	category.slug	==	c.slug	%}class="selected"

								{%	endif	%}>

										{{	c.name	}}

								

						{%	endfor	%}

				

		</div>

		<div	id="main"	class="product-list">

				<h1>{%	if	category	%}{{	category.name	}}{%	else	%}Products

				{%	endif	%}</h1>

				{%	for	product	in	products	%}

						<div	class="item">

								

										<img	src="{%	if	product.image	%}{{	product.image.url	}}{%	

										else	%}{%	static	"img/no_image.png"	%}{%	endif	%}">

								

								{{	product.name	}}

								

								${{	product.price	}}

						</div>

				{%	endfor	%}

		</div>

{%	endblock	%}

This	is	the	product	list	template.	It	extends	the	shop/base.html	template
and	uses	the	categories	context	variable	to	display	all	the	categories	in
a	sidebar	and	products	to	display	the	products	of	the	current	page.
The	same	template	is	used	for	both:	listing	all	available	products
and	listing	products	filtered	by	a	category.	Since	the	image	field	of	the
Product	model	can	be	blank,	we	need	to	provide	a	default	image	for
the	products	that	don't	have	an	image.	The	image	is	located	in	our
static	files	directory	with	the	relative	path	img/no_image.png.

Since	we	are	using	ImageField	to	store	product	images,	we	need	the
development	server	to	serve	uploaded	image	files.

Edit	the	settings.py	file	of	myshop	and	add	the	following	settings:

MEDIA_URL	=	'/media/'

MEDIA_ROOT	=	os.path.join(BASE_DIR,	'media/')

MEDIA_URL	is	the	base	URL	that	serves	media	files	uploaded	by	users.
MEDIA_ROOT	is	the	local	path	where	these	files	reside,	which	we	build	by
dynamically	prepending	the	BASE_DIR	variable.

For	Django	to	serve	the	uploaded	media	files	using	the	development
server,	edit	the	main	urls.py	file	of	myshop	and	add	the	following	code
to	it:

from	django.conf	import	settings

from	django.conf.urls.static	import	static

urlpatterns	=	[

				#	...

]

if	settings.DEBUG:

				urlpatterns	+=	static(settings.MEDIA_URL,

																										document_root=settings.MEDIA_ROOT)

Remember	that	we	only	serve	static	files	this	way	during
development.	In	a	production	environment,	you	should	never	serve
static	files	with	Django.

Add	a	couple	of	products	to	your	shop	using	the	administration	site
and	open	http://127.0.0.1:8000/	in	your	browser.	You	will	see	the
product	list	page,	which	looks	like	this:

If	you	create	a	product	using	the	administration	site	and	don't
upload	any	image	for	it,	the	default	no_image.png	image	will	be
displayed	instead:

Let's	edit	the	product	detail	template.	Edit	the	shop/product/detail.html
template	and	add	the	following	code	to	it:

{%	extends	"shop/base.html"	%}

{%	load	static	%}

{%	block	title	%}

		{{	product.name	}}

{%	endblock	%}

{%	block	content	%}

		<div	class="product-detail">

				<img	src="{%	if	product.image	%}{{	product.image.url	}}{%	else	%}

				{%	static	"img/no_image.png"	%}{%	endif	%}">

				<h1>{{	product.name	}}</h1>

				<h2>{{	

				product.category	}}</h2>

				<p	class="price">${{	product.price	}}</p>

				{{	product.description|linebreaks	}}

		</div>

{%	endblock	%}

We	call	the	get_absolute_url()	method	on	the	related	category	object	to
display	the	available	products	that	belong	to	the	same	category.
Now,	open	http://127.0.0.1:8000/	in	your	browser	and	click	on	any
product	to	see	the	product	detail	page.	It	will	look	as	follows:

You	have	now	created	a	basic	product	catalog.

Building	a	shopping	cart
After	building	the	product	catalog,	the	next	step	is	to	create	a
shopping	cart	so	that	users	can	pick	the	products	that	they	want	to
purchase.	A	shopping	cart	allows	users	to	select	products	and	set
the	amounts	they	want	to	order,	and	then	store	this	information
temporarily,	while	they	browse	the	site	until	they	eventually	place
an	order.	The	cart	has	to	be	persisted	in	the	session	so	that	the	cart
items	are	maintained	during	the	user's	visit.

We	will	use	Django's	session	framework	to	persist	the	cart.	The	cart
will	be	kept	in	the	session	until	it	finishes	or	the	user	checks	out	of
the	cart.	We	will	also	need	to	build	additional	Django	models	for	the
cart	and	its	items.

Using	Django	sessions
Django	provides	a	session	framework	that	supports	anonymous	and
user	sessions.	The	session	framework	allows	you	to	store	arbitrary
data	for	each	visitor.	Session	data	is	stored	on	the	server	side,	and
cookies	contain	the	session	ID	unless	you	use	the	cookie-based
session	engine.	The	session	middleware	manages	the	sending	and
receiving	of	cookies.	The	default	session	engine	stores	session	data
in	the	database,	but	you	can	choose	between	different	session
engines.

To	use	sessions,	you	have	to	make	sure	that	the	MIDDLEWARE	setting	of
your	project	contains	'django.contrib.sessions.middleware.SessionMiddleware'.
This	middleware	manages	sessions.	It's	added	by	default	to	the
MIDDLEWARE	setting	when	you	create	a	new	project	using	the	startproject
command.

The	session	middleware	makes	the	current	session	available	in	the
request	object.	You	can	access	the	current	session	using	request.session,
treating	it	like	a	Python	dictionary	to	store	and	retrieve	session
data.	The	session	dictionary	accepts	any	Python	object	by	default
that	can	be	serialized	to	JSON.	You	can	set	a	variable	in	the	session
like	this:

request.session['foo']	=	'bar'

Retrieve	a	session	key	as	follows:

request.session.get('foo')

Delete	a	key	you	previously	stored	in	the	session	as	follows:

del	request.session['foo']

You	can	just	treat	request.session	like	a	standard	Python	dictionary.

When	users	log	in	to	the	site,	their	anonymous	session	is	lost	and	a	new
session	is	created	for	the	authenticated	users.	If	you	store	items	in	an
anonymous	session	that	you	need	to	keep	after	the	user	logs	in,	you	will	have
to	copy	the	old	session	data	into	the	new	session.

Session	settings
There	are	several	settings	you	can	use	to	configure	sessions	for	your
project.	The	most	important	is	SESSION_ENGINE.	This	setting	allows	you
to	set	the	place	where	sessions	are	stored.	By	default,	Django	stores
sessions	in	the	database	using	the	Session	model	of	the
django.contrib.sessions	application.

Django	offers	the	following	options	for	storing	session	data:

Database	sessions:	Session	data	is	stored	in	the	database.

This	is	the	default	session	engine.

File-based	sessions:	Session	data	is	stored	in	the

filesystem.

Cached	sessions:	Session	data	is	stored	in	a	cache

backend.	You	can	specify	cache	backends	using	the	CACHES

setting.	Storing	session	data	in	a	cache	system	provides

the	best	performance.

Cached	database	sessions:	Session	data	is	stored	in	a

write-through	cache	and	database.	Reads-only	use	the

database	if	the	data	is	not	already	in	the	cache.

Cookie-based	sessions:	Session	data	is	stored	in	the

cookies	that	are	sent	to	the	browser.

For	better	performance,	use	a	cache-based	session	engine.	Django	supports
Memcached	out	of	the	box	and	you	can	find	third-party	cache	backends	for
Redis	and	other	cache	systems.

You	can	customize	sessions	with	specific	settings.	Here	are	some	of
the	important	session-related	settings:

SESSION_COOKIE_AGE:	The	duration	of	session	cookies	in	seconds.

The	default	value	is	1209600	(two	weeks).

SESSION_COOKIE_DOMAIN:	The	domain	used	for	session	cookies.	Set

this	to	mydomain.com	to	enable	cross-domain	cookies	or	use	None

for	a	standard	domain	cookie.

SESSION_COOKIE_SECURE:	A	boolean	indicating	that	the	cookie

should	only	be	sent	if	the	connection	is	an	HTTPS

connection.

SESSION_EXPIRE_AT_BROWSER_CLOSE:	A	boolean	indicating	that	the

session	has	to	expire	when	the	browser	is	closed.

SESSION_SAVE_EVERY_REQUEST:	A	boolean	that,	if	True,	will	save	the

session	to	the	database	on	every	request.	The	session

expiration	is	also	updated	each	time	it's	saved.

You	can	see	all	the	session	settings	and	their	default	values	at
https://docs.djangoproject.com/en/2.0/ref/settings/#sessions.

https://docs.djangoproject.com/en/2.0/ref/settings/#sessions

Session	expiration
You	can	choose	to	use	browser-length	sessions	or	persistent
sessions	using	the	SESSION_EXPIRE_AT_BROWSER_CLOSE	setting.	This	is	set	to
False	by	default,	forcing	the	session	duration	to	the	value	stored	in
the	SESSION_COOKIE_AGE	setting.	If	you	set	SESSION_EXPIRE_AT_BROWSER_CLOSE	to
True,	the	session	will	expire	when	the	user	closes	the	browser,	and
the	SESSION_COOKIE_AGE	setting	will	not	have	any	effect.

You	can	use	the	set_expiry()	method	of	request.session	to	overwrite	the
duration	of	the	current	session.

Storing	shopping	carts	in
sessions
We	need	to	create	a	simple	structure	that	can	be	serialized	to	JSON
for	storing	cart	items	in	a	session.	The	cart	has	to	include	the
following	data	for	each	item	contained	in	it:

The	ID	of	a	Product	instance

Quantity	selected	for	the	product

Unit	price	for	the	product

Since	product	prices	may	vary,	we	take	the	approach	of	storing	the
product's	price	along	with	the	product	itself	when	it's	added	to	the
cart.	By	doing	so,	we	use	the	current	price	of	the	product	when
users	add	it	to	their	cart,	no	matter	if	the	product's	price	is	changed
afterwards.

Now,	you	have	to	build	functionality	to	create	carts	and	associate
them	with	sessions.	The	shopping	cart	has	to	work	as	follows:

When	a	cart	is	needed,	we	check	if	a	custom	session	key	is

set.	If	no	cart	is	set	in	the	session,	we	create	a	new	cart	and

save	it	in	the	cart	session	key.

For	successive	requests,	we	perform	the	same	check	and	get

the	cart	items	from	the	cart	session	key.	We	retrieve	the	cart

items	from	the	session	and	their	related	Product	objects	from

the	database.

Edit	the	settings.py	file	of	your	project	and	add	the	following	setting
to	it:

CART_SESSION_ID	=	'cart'

This	is	the	key	that	we	are	going	to	use	to	store	the	cart	in	the	user
session.	Since	Django	sessions	are	managed	per-visitor,	we	can	use
the	same	cart	session	key	for	all	sessions.

Let's	create	an	application	for	managing	shopping	carts.	Open	the
Terminal	and	create	a	new	application,	running	the	following
command	from	the	project	directory:

python	manage.py	startapp	cart

Then,	edit	the	settings.py	file	of	your	project	and	add	the	new
application	to	the	INSTALLED_APPS	setting	as	follows:

INSTALLED_APPS	=	[

				#	...

				'shop.apps.ShopConfig',

				'cart.apps.CartConfig',

]

Create	a	new	file	inside	the	cart	application	directory	and	name	it
cart.py.	Add	the	following	code	to	it:

from	decimal	import	Decimal

from	django.conf	import	settings

from	shop.models	import	Product

class	Cart(object):

				def	__init__(self,	request):

								"""

								Initialize	the	cart.

								"""

								self.session	=	request.session

								cart	=	self.session.get(settings.CART_SESSION_ID)

								if	not	cart:

												#	save	an	empty	cart	in	the	session

												cart	=	self.session[settings.CART_SESSION_ID]	=	{}

								self.cart	=	cart

This	is	the	Cart	class	that	will	allow	us	to	manage	the	shopping	cart.
We	require	the	cart	to	be	initialized	with	a	request	object.	We	store
the	current	session	using	self.session	=	request.session	to	make	it
accessible	to	the	other	methods	of	the	Cart	class.	First,	we	try	to	get
the	cart	from	the	current	session	using
self.session.get(settings.CART_SESSION_ID).	If	no	cart	is	present	in	the
session,	we	create	an	empty	cart	by	setting	an	empty	dictionary	in
the	session.	We	expect	our	cart	dictionary	to	use	product	IDs	as
keys	and	a	dictionary	with	quantity	and	price	as	the	value	for	each
key.	By	doing	so,	we	can	guarantee	that	a	product	is	not	added	more
than	once	in	the	cart;	this	way	we	also	simplify	the	way	to	retrieve
cart	items.

Let's	create	a	method	to	add	products	to	the	cart	or	update	their
quantity.	Add	the	following	add()	and	save()	methods	to	the	Cart	class:

class	Cart(object):

				#	...

				def	add(self,	product,	quantity=1,	update_quantity=False):

								"""

								Add	a	product	to	the	cart	or	update	its	quantity.

								"""

								product_id	=	str(product.id)

								if	product_id	not	in	self.cart:

												self.cart[product_id]	=	{'quantity':	0,

																																						'price':	str(product.price)}

								if	update_quantity:

												self.cart[product_id]['quantity']	=	quantity

								else:

												self.cart[product_id]['quantity']	+=	quantity

								self.save()

				def	save(self):

								#	mark	the	session	as	"modified"	to	make	sure	it	gets	saved

								self.session.modified	=	True

The	add()	method	takes	the	following	parameters	as	input:

product:	The	product	instance	to	add	or	update	in	the	cart.

quantity:	An	optional	integer	with	the	product	quantity.	This

defaults	to	1.

update_quantity:	This	is	a	boolean	that	indicates	whether	the

quantity	needs	to	be	updated	with	the	given	quantity	(True),

or	whether	the	new	quantity	has	to	be	added	to	the	existing

quantity	(False).

We	use	the	product	ID	as	a	key	in	the	cart's	content	dictionary.	We
convert	the	product	ID	into	a	string	because	Django	uses	JSON	to
serialize	session	data,	and	JSON	only	allows	string	key	names.	The
product	ID	is	the	key	and	the	value	that	we	persist	is	a	dictionary
with	quantity	and	price	figures	for	the	product.	The	product's	price
is	converted	from	decimal	into	a	string	in	order	to	serialize	it.
Finally,	we	call	the	save()	method	to	save	the	cart	in	the	session.

The	save()	method	marks	the	session	as	modified	using	session.modified
=	True.	This	tells	Django	that	the	session	has	changed	and	needs	to
be	saved.

We	also	need	a	method	for	removing	products	from	the	cart.	Add
the	following	method	to	the	Cart	class:

class	Cart(object):

				#	...

				def	remove(self,	product):

								"""

								Remove	a	product	from	the	cart.

								"""

								product_id	=	str(product.id)

								if	product_id	in	self.cart:

												del	self.cart[product_id]

												self.save()

The	remove()	method	removes	a	given	product	from	the	cart
dictionary	and	calls	the	save()	method	to	update	the	cart	in	the
session.

We	will	have	to	iterate	through	the	items	contained	in	the	cart	and
access	the	related	Product	instances.	To	do	so,	you	can	define	an
__iter__()	method	in	your	class.	Add	the	following	method	to	the	Cart
class:

class	Cart(object):

				#	...

				def	__iter__(self):

								"""

								Iterate	over	the	items	in	the	cart	and	get	the	products	

								from	the	database.

								"""

								product_ids	=	self.cart.keys()

								#	get	the	product	objects	and	add	them	to	the	cart

								products	=	Product.objects.filter(id__in=product_ids)

								cart	=	self.cart.copy()

								for	product	in	products:

												cart[str(product.id)]['product']	=	product

								for	item	in	cart.values():

												item['price']	=	Decimal(item['price'])

												item['total_price']	=	item['price']	*	item['quantity']

												yield	item

In	the	__iter__()	method,	we	retrieve	the	Product	instances	that	are
present	in	the	cart	to	include	them	in	the	cart	items.	We	copy	the
current	cart	in	the	cart	variable	and	add	the	Product	instances	to	it.
Finally,	we	iterate	over	the	cart	items,	converting	the	item's	price
back	into	decimal,	and	add	a	total_price	attribute	to	each	item.	Now,
we	can	easily	iterate	over	the	items	in	the	cart.

We	also	need	a	way	to	return	the	number	of	total	items	in	the	cart.
When	the	len()	function	is	executed	on	an	object,	Python	calls	its
__len__()	method	to	retrieve	its	length.	We	are	going	to	define	a
custom	__len__()	method	to	return	the	total	number	of	items	stored
in	the	cart.	Add	the	following	__len__()	method	to	the

Cart	class:

class	Cart(object):

				#	...

				def	__len__(self):

								"""

								Count	all	items	in	the	cart.

								"""

								return	sum(item['quantity']	for	item	in	self.cart.values())

We	return	the	sum	of	the	quantities	of	all	the	cart	items.

Add	the	following	method	to	calculate	the	total	cost	of	the	items	in
the	cart:

class	Cart(object):

				#	...

				def	get_total_price(self):

								return	sum(Decimal(item['price'])	*	item['quantity']	for	item	in	

self.cart.values())

And	finally,	add	a	method	to	clear	the	cart	session:

class	Cart(object):

				#	...

				def	clear(self):

								#	remove	cart	from	session

								del	self.session[settings.CART_SESSION_ID]

								self.save()

Our	Cart	class	is	now	ready	to	manage	shopping	carts.

Creating	shopping	cart	views
Now	that	we	have	a	Cart	class	to	manage	the	cart,	we	need	to	create
the	views	to	add,	update,	or	remove	items	from	it.	We	need	to	create
the	following	views:

A	view	to	add	or	update	items	in	a	cart,	which	can	handle

current	and	new	quantities

A	view	to	remove	items	from	the	cart

A	view	to	display	cart	items	and	totals

Adding	items	to	the	cart
In	order	to	add	items	to	the	cart,	we	need	a	form	that	allows	the
user	to	select	a	quantity.	Create	a	forms.py	file	inside	the	cart
application	directory	and	add	the	following	code	to	it:

from	django	import	forms

PRODUCT_QUANTITY_CHOICES	=	[(i,	str(i))	for	i	in	range(1,	21)]

class	CartAddProductForm(forms.Form):

				quantity	=	forms.TypedChoiceField(

																																choices=PRODUCT_QUANTITY_CHOICES,

																																coerce=int)

				update	=	forms.BooleanField(required=False,

																																initial=False,

																																widget=forms.HiddenInput)

We	will	use	this	form	to	add	products	to	the	cart.	Our
CartAddProductForm	class	contains	the	following	two	fields:

quantity:	This	allows	the	user	to	select	a	quantity	between	1-

20.	We	use	a	TypedChoiceField	field	with	coerce=int	to	convert	the

input	into	an	integer.

update:	This	allows	you	to	indicate	whether	the	quantity	has	to

be	added	to	any	existing	quantity	in	the	cart	for	this	product

(False),	or	whether	the	existing	quantity	has	to	be	updated

with	the	given	quantity	(True).	We	use	a	HiddenInput	widget	for

this	field	since	we	don't	want	to	display	it	to	the	user.

Let's	create	a	view	for	adding	items	to	the	cart.	Edit	the	views.py	file
of	the	cart	application	and	add	the	following	code	to	it:

from	django.shortcuts	import	render,	redirect,	get_object_or_404

from	django.views.decorators.http	import	require_POST

from	shop.models	import	Product

from	.cart	import	Cart

from	.forms	import	CartAddProductForm

@require_POST

def	cart_add(request,	product_id):

				cart	=	Cart(request)

				product	=	get_object_or_404(Product,	id=product_id)

				form	=	CartAddProductForm(request.POST)

				if	form.is_valid():

								cd	=	form.cleaned_data

								cart.add(product=product,

																	quantity=cd['quantity'],

																	update_quantity=cd['update'])

				return	redirect('cart:cart_detail')

This	is	the	view	for	adding	products	to	the	cart	or	updating
quantities	for	existing	products.	We	use	the	require_POST	decorator	to
allow	only	POST	requests,	since	this	view	is	going	to	change	data.	The
view	receives	the	product	ID	as	a	parameter.	We	retrieve	the	Product
instance	with	the	given	ID	and	validate	CartAddProductForm.	If	the	form
is	valid,	we	either	add	or	update	the	product	in	the	cart.	The	view
redirects	to	the	cart_detail	URL	that	will	display	the	content	of	the
cart.	We	are	going	to	create	the	cart_detail	view	shortly.

We	also	need	a	view	to	remove	items	from	the	cart.	Add	the
following	code	to	the	views.py	file	of	the	cart	application:

def	cart_remove(request,	product_id):

				cart	=	Cart(request)

				product	=	get_object_or_404(Product,	id=product_id)

				cart.remove(product)

				return	redirect('cart:cart_detail')

The	cart_remove	view	receives	the	product	ID	as	a	parameter.	We
retrieve	the	Product	instance	with	the	given	ID	and	remove	the
product	from	the	cart.	Then,	we	redirect	the	user	to	the	cart_detail
URL.

Finally,	we	need	a	view	to	display	the	cart	and	its	items.	Add	the
following	view	to	the	views.py	file	of	the	cart	application:

def	cart_detail(request):

				cart	=	Cart(request)

				return	render(request,	'cart/detail.html',	{'cart':	cart})

The	cart_detail	view	gets	the	current	cart	to	display	it.

We	have	created	views	to	add	items	to	the	cart,	update	quantities,
remove	items	from	the	cart,	and	display	the	cart	content.	Let's	add
URL	patterns	for	these	views.	Create	a	new	file	inside	the	cart
application	directory	and	name	it	urls.py.	Add	the	following	URLs	to
it:

from	django.urls	import	path

from	.	import	views

app_name	=	'cart'

urlpatterns	=	[

				path('',	views.cart_detail,	name='cart_detail'),

				path('add/<int:product_id>/',

									views.cart_add,

									name='cart_add'),

				path('remove/<int:product_id>/',

									views.cart_remove,

									name='cart_remove'),

]

Edit	the	main	urls.py	file	of	the	myshop	project	and	add	the	following
URL	pattern	to	include	the	cart	URLs:

urlpatterns	=	[

				path('admin/',	admin.site.urls),

				path('cart/',	include('cart.urls',	namespace='cart')),

				path('',	include('shop.urls',	namespace='shop')),

]

Make	sure	that	you	include	this	URL	pattern	before	the	shop.urls

pattern,	since	it's	more	restrictive	than	the	latter.

Building	a	template	to	display
the	cart
The	cart_add	and	cart_remove	views	don't	render	any	templates,	but	we
need	to	create	a	template	for	the	cart_detail	view	to	display	cart	items
and	totals.

Create	the	following	file	structure	inside	the	cart	application
directory:

templates/

				cart/

								detail.html

Edit	the	cart/detail.html	template	and	add	the	following	code	to	it:

{%	extends	"shop/base.html"	%}

{%	load	static	%}

{%	block	title	%}

		Your	shopping	cart

{%	endblock	%}

{%	block	content	%}

		<h1>Your	shopping	cart</h1>

		<table	class="cart">

				<thead>

						<tr>

								<th>Image</th>

								<th>Product</th>

								<th>Quantity</th>

								<th>Remove</th>

								<th>Unit	price</th>

								<th>Price</th>

						</tr>

				</thead>

				<tbody>

						{%	for	item	in	cart	%}

								{%	with	product=item.product	%}

										<tr>

												<td>

														

																<img	src="{%	if	product.image	%}{{	product.image.url	}}

																{%	else	%}{%	static	"img/no_image.png"	%}{%	endif	%}">

														

												</td>

												<td>{{	product.name	}}</td>

												<td>{{	item.quantity	}}</td>

												<td><a	href="{%	url	"cart:cart_remove"	product.id	

												%}">Remove</td>

												<td	class="num">${{	item.price	}}</td>

												<td	class="num">${{	item.total_price	}}</td>

										</tr>

								{%	endwith	%}

						{%	endfor	%}

						<tr	class="total">

								<td>Total</td>

								<td	colspan="4"></td>

								<td	class="num">${{	cart.get_total_price	}}</td>

						</tr>

				</tbody>

		</table>

		<p	class="text-right">

				<a	href="{%	url	"shop:product_list"	%}"	class="button	

				light">Continue	shopping

				Checkout

		</p>

{%	endblock	%}

This	is	the	template	that	is	used	to	display	the	cart	content.	It
contains	a	table	with	the	items	stored	in	the	current	cart.	We	allow
users	to	change	the	quantity	of	the	selected	products	using	a	form
that	is	posted	to	the	cart_add	view.	We	also	allow	users	to	remove
items	from	the	cart	by	providing	a	Remove	link	for	each	of	them.

Adding	products	to	the	cart
Now,	we	need	to	add	an	Add	to	cart	button	to	the	product	detail
page.	Edit	the	views.py	file	of	the	shop	application,	and	add
CartAddProductForm	to	the	product_detail	view	as	follows:

from	cart.forms	import	CartAddProductForm

def	product_detail(request,	id,	slug):

				product	=	get_object_or_404(Product,	id=id,

																																									slug=slug,

																																									available=True)

				cart_product_form	=	CartAddProductForm()

				return	render(request,

																		'shop/product/detail.html',

																		{'product':	product,

																			'cart_product_form':	cart_product_form})

Edit	the	shop/product/detail.html	template	of	the	shop	application,	and
add	the	following	form	to	the	product's	price	as	follows:

<p	class="price">${{	product.price	}}</p>

<form	action="{%	url	"cart:cart_add"	product.id	%}"	method="post">

		{{	cart_product_form	}}

		{%	csrf_token	%}

		<input	type="submit"	value="Add	to	cart">

</form>

{{	product.description|linebreaks	}}

Make	sure	the	development	server	is	running	with	the	command
python	manage.py	runserver.	Now,	open	http://127.0.0.1:8000/	in	your	browser
and	navigate	to	a	product's	detail	page.	It	now	contains	a	form	to
choose	a	quantity	before	adding	the	product	to	the	cart.	The	page
will	look	like	this:

Choose	a	quantity	and	click	on	the	Add	to	cart	button.	The	form	is
submitted	to	the	cart_add	view	via	POST.	The	view	adds	the	product	to
the	cart	in	the	session,	including	its	current	price	and	the	selected
quantity.	Then,	it	redirects	the	user	to	the	cart	detail	page,	which
will	look	like	the	following	screenshot:

Updating	product	quantities	in
the	cart
When	users	see	the	cart,	they	might	want	to	change	product
quantities	before	placing	an	order.	We	are	going	to	allow	users	to
change	quantities	from	the	cart	detail	page.

Edit	the	views.py	file	of	the	cart	application	and	change	the	cart_detail
view	to	this:

def	cart_detail(request):

				cart	=	Cart(request)

				for	item	in	cart:

								item['update_quantity_form']	=	CartAddProductForm(

																										initial={'quantity':	item['quantity'],

																										'update':	True})

				return	render(request,	'cart/detail.html',	{'cart':	cart})

We	create	an	instance	of	CartAddProductForm	for	each	item	in	the	cart	to
allow	changing	product	quantities.	We	initialize	the	form	with	the
current	item	quantity	and	set	the	update	field	to	True	so	that	when	we
submit	the	form	to	the	cart_add	view,	the	current	quantity	is	replaced
with	the	new	one.

Now,	edit	the	cart/detail.html	template	of	the	cart	application	and	find
the	following	line:

<td>{{	item.quantity	}}</td>

Replace	the	previous	line	with	the	following	code:

<td>

		<form	action="{%	url	"cart:cart_add"	product.id	%}"	method="post">

				{{	item.update_quantity_form.quantity	}}

				{{	item.update_quantity_form.update	}}

				<input	type="submit"	value="Update">

				{%	csrf_token	%}

		</form>

</td>

Open	http://127.0.0.1:8000/cart/	in	your	browser.	You	will	see	a	form	to
edit	the	quantity	for	each	cart	item,	shown	as	follows:

Change	the	quantity	of	an	item	and	click	on	the	Update	button	to
test	the	new	functionality.	You	can	also	remove	an	item	from	the
cart	by	clicking	the	Remove	link.

Creating	a	context	processor
for	the	current	cart
You	might	have	noticed	that	the	message	Your	cart	is	empty	is
displayed	in	the	header	of	the	site,	even	when	the	cart	contains
items.	We	should	display	the	total	number	of	items	in	the	cart	and
the	total	cost	instead.	Since	this	has	to	be	displayed	in	all	pages,	we
will	build	a	context	processor	to	include	the	current	cart	in	the
request	context,	regardless	of	the	view	that	processes	the	request.

Context	processors
A	context	processor	is	a	Python	function	that	takes	the	request	object
as	an	argument	and	returns	a	dictionary	that	gets	added	to	the
request	context.	They	come	in	handy	when	you	need	to	make
something	available	globally	to	all	templates.

By	default,	when	you	create	a	new	project	using	the	startproject
command,	your	project	contains	the	following	template	context
processors,	in	the	context_processors	option	inside	the	TEMPLATES	setting:

django.template.context_processors.debug:	This	sets	the	boolean	debug

and	sql_queries	variables	in	the	context	representing	the	list	of

SQL	queries	executed	in	the	request.

django.template.context_processors.request:	This	sets	the	request

variable	in	the	context.

django.contrib.auth.context_processors.auth:	This	sets	the	user

variable	in	the	request.

django.contrib.messages.context_processors.messages:	This	sets	a	messages

variable	in	the	context	containing	all	messages	that	have

been	generated	using	the	messages	framework.

Django	also	enables	django.template.context_processors.csrf	to	avoid	cross-
site	request	forgery	attacks.	This	context	processor	is	not	present	in
the	settings,	but	it	is	always	enabled	and	cannot	be	turned	off	for
security	reasons.

You	can	see	the	list	of	all	built-in	context	processors	at	https://docs.dja

https://docs.djangoproject.com/en/2.0/ref/templates/api/#built-in-template-context-processors

ngoproject.com/en/2.0/ref/templates/api/#built-in-template-context-processors.

Setting	the	cart	into	the
request	context
Let's	create	a	context	processor	to	set	the	current	cart	into	the
request	context.	We	will	be	able	to	access	the	cart	in	any	template.

Create	a	new	file	inside	the	cart	application	directory	and	name	it
context_processors.py.	Context	processors	can	reside	anywhere	in	your
code,	but	creating	them	here	will	keep	your	code	well	organized.
Add	the	following	code	to	the	file:

from	.cart	import	Cart

def	cart(request):

				return	{'cart':	Cart(request)}

A	context	processor	is	a	function	that	receives	the	request	object	as	a
parameter	and	returns	a	dictionary	of	objects	that	will	be	available
to	all	the	templates	rendered	using	RequestContext.	In	our	context
processor,	we	instantiate	the	cart	using	the	request	object	and	make	it
available	for	the	templates	as	a	variable	named	cart.

Edit	the	settings.py	file	of	your	project	and	add
cart.context_processors.cart	to	the	context_processors	option	inside	the
TEMPLATES	setting	as	follows:

TEMPLATES	=	[

				{

								'BACKEND':	'django.template.backends.django.DjangoTemplates',

								'DIRS':	[],

								'APP_DIRS':	True,

								'OPTIONS':	{

												'context_processors':	[

																#	...

																'cart.context_processors.cart',

],

								},

				},

]

The	cart	context	processor	will	be	executed	every	time	a	template	is
rendered	using	Django's	RequestContext.	The	cart	variable	will	be	set	in
the	context	of	your	templates.

Context	processors	are	executed	in	all	the	requests	that	use	RequestContext.	You
might	want	to	create	a	custom	template	tag	instead	of	a	context	processor	if
your	functionality	is	not	needed	in	all	templates,	especially	if	it	involves
database	queries.

Now,	edit	the	shop/base.html	template	of	the	shop	application	and	find
the	following	lines:

<div	class="cart">

		Your	cart	is	empty.

</div>

Replace	the	previous	lines	with	the	following	code:

<div	class="cart">

		{%	with	total_items=cart|length	%}

				{%	if	cart|length	>	0	%}

						Your	cart:	

						

								{{	total_items	}}	item{{	total_items|pluralize	}},

								${{	cart.get_total_price	}}

						

				{%	else	%}

						Your	cart	is	empty.

				{%	endif	%}

		{%	endwith	%}

</div>

Reload	your	server	using	the	command	python	manage.py	runserver.	Open
http://127.0.0.1:8000/	in	your	browser	and	add	some	products	to	the
cart.
In	the	header	of	the	website,	you	can	see	the	total	number	of	items

in	the	cart	and	the	total	cost,	as	follows:

Registering	customer	orders
When	a	shopping	cart	is	checked	out,	you	need	to	save	an	order	into
the	database.	Orders	will	contain	information	about	customers	and
the	products	they	are	buying.

Create	a	new	application	for	managing	customer	orders	using	the
following	command:

python	manage.py	startapp	orders

Edit	the	settings.py	file	of	your	project	and	add	the	new	application	to
the	INSTALLED_APPS	setting	as	follows:

INSTALLED_APPS	=	[

				#	...

				'orders.apps.OrdersConfig',

]

You	have	activated	the	orders	application.

Creating	order	models
You	will	need	a	model	to	store	the	order	details,	and	a	second	model
to	store	items	bought,	including	their	price	and	quantity.	Edit	the
models.py	file	of	the	orders	application	and	add	the	following	code	to	it:

from	django.db	import	models

from	shop.models	import	Product

class	Order(models.Model):

				first_name	=	models.CharField(max_length=50)

				last_name	=	models.CharField(max_length=50)

				email	=	models.EmailField()

				address	=	models.CharField(max_length=250)

				postal_code	=	models.CharField(max_length=20)

				city	=	models.CharField(max_length=100)

				created	=	models.DateTimeField(auto_now_add=True)

				updated	=	models.DateTimeField(auto_now=True)

				paid	=	models.BooleanField(default=False)

				class	Meta:

								ordering	=	('-created',)

				def	__str__(self):

								return	'Order	{}'.format(self.id)

				def	get_total_cost(self):

								return	sum(item.get_cost()	for	item	in	self.items.all())

class	OrderItem(models.Model):

				order	=	models.ForeignKey(Order,

																														related_name='items',

																														on_delete=models.CASCADE)

				product	=	models.ForeignKey(Product,

																																related_name='order_items',

																																on_delete=models.CASCADE)

				price	=	models.DecimalField(max_digits=10,	decimal_places=2)

				quantity	=	models.PositiveIntegerField(default=1)

				def	__str__(self):

								return	'{}'.format(self.id)

				def	get_cost(self):

								return	self.price	*	self.quantity

The	Order	model	contains	several	fields	to	store	customer
information	and	a	paid	boolean	field,	which	defaults	to	False.	Later
on,	we	are	going	to	use	this	field	to	differentiate	between	paid	and
unpaid	orders.	We	also	define	a	get_total_cost()	method	to	obtain	the
total	cost	of	the	items	bought	in	this	order.

The	OrderItem	model	allows	us	to	store	the	product,	quantity,	and
price	paid	for	each	item.	We	include	get_cost()	to	return	the	cost	of
the	item.

Run	the	next	command	to	create	initial	migrations	for	the	orders
application:

python	manage.py	makemigrations

You	will	see	the	following	output:

Migrations	for	'orders':

		orders/migrations/0001_initial.py

				-	Create	model	Order

				-	Create	model	OrderItem

Run	the	following	command	to	apply	the	new	migration:

python	manage.py	migrate

Your	order	models	are	now	synced	to	the	database.

Including	order	models	in	the
administration	site
Let's	add	the	order	models	to	the	administration	site.	Edit	the
admin.py	file	of	the	orders	application	to	make	it	look	like	this:

from	django.contrib	import	admin

from	.models	import	Order,	OrderItem

class	OrderItemInline(admin.TabularInline):

				model	=	OrderItem

				raw_id_fields	=	['product']

@admin.register(Order)

class	OrderAdmin(admin.ModelAdmin):

				list_display	=	['id',	'first_name',	'last_name',	'email',

																				'address',	'postal_code',	'city',	'paid',

																				'created',	'updated']

				list_filter	=	['paid',	'created',	'updated']

				inlines	=	[OrderItemInline]

We	use	a	ModelInline	class	for	the	OrderItem	model	to	include	it	as	an
inline	in	the	OrderAdmin	class.	An	inline	allows	you	to	include	a	model
on	the	same	edit	page	its	related	model.

Run	the	development	server	with	the	command	python	manage.py
runserver,	and	then	open	http://127.0.0.1:8000/admin/orders/order/add/	in	your
browser.	You	will	see	the	following	page:

Creating	customer	orders
We	will	use	the	order	models	we	created	to	persist	the	items
contained	in	the	shopping	cart	when	the	user	finally	places	an
order.	A	new	order	will	be	created	following	these	steps:

1.	 Present	users	an	order	form	to	fill	in	their	data

2.	 Create	a	new	Order	instance	with	the	data	entered,	and	create

an	associated	OrderItem	instance	for	each	item	in	the	cart

3.	 Clear	all	the	cart	content	and	redirect	users	to	a	success	page

First,	we	need	a	form	to	enter	the	order	details.	Create	a	new	file
inside	the	orders	application	directory	and	name	it	forms.py.	Add	the
following	code	to	it:

from	django	import	forms

from	.models	import	Order

class	OrderCreateForm(forms.ModelForm):

				class	Meta:

								model	=	Order

								fields	=	['first_name',	'last_name',	'email',	'address',

																		'postal_code',	'city']

This	is	the	form	that	we	are	going	to	use	for	creating	new	Order
objects.	Now,	we	need	a	view	to	handle	the	form	and	create	a	new
order.	Edit	the	views.py	file	of	the	orders	application	and	add	the
following	code	to	it:

from	django.shortcuts	import	render

from	.models	import	OrderItem

from	.forms	import	OrderCreateForm

from	cart.cart	import	Cart

def	order_create(request):

				cart	=	Cart(request)

				if	request.method	==	'POST':

								form	=	OrderCreateForm(request.POST)

								if	form.is_valid():

												order	=	form.save()

												for	item	in	cart:

																OrderItem.objects.create(order=order,

																																									product=item['product'],

																																									price=item['price'],

																																									quantity=item['quantity'])

												#	clear	the	cart

												cart.clear()

												return	render(request,

																										'orders/order/created.html',

																										{'order':	order})

				else:

								form	=	OrderCreateForm()

				return	render(request,

																		'orders/order/create.html',

																		{'cart':	cart,	'form':	form})

In	the	order_create	view,	we	will	obtain	the	current	cart	from	the
session	with	cart	=	Cart(request).	Depending	on	the	request	method,
we	will	perform	the	following	tasks:

GET	request:	Instantiates	the	OrderCreateForm	form	and

renders	the	orders/order/create.html	template.

POST	request:	Validates	the	data	sent	in	the	request.	If	the

data	is	valid,	we	create	a	new	order	in	the	database

using	order	=	form.save().	We	iterate	over	the	cart	items	and

create	an	OrderItem	for	each	of	them.	Finally,	we	clear	the	cart

content	and	render	the	template	orders/order/created.html.

Create	a	new	file	inside	the	orders	application	directory	and	name	it
urls.py.	Add	the	following	code	to	it:

from	django.urls	import	path

from	.	import	views

app_name	=	'orders'

urlpatterns	=	[

				path('create/',	views.order_create,	name='order_create'),

]

This	is	the	URL	pattern	for	the	order_create	view.	Edit	the	urls.py	file	of
myshop	and	include	the	following	pattern.	Remember	to	place	it
before	the	shop.urls	pattern:

path('orders/',	include('orders.urls',	namespace='orders')),

Edit	the	cart/detail.html	template	of	the	cart	application	and	edit	this
line:

Checkout

Add	the	order_create	URL	as	follows:

		Checkout

Users	can	now	navigate	from	the	cart	detail	page	to	the	order	form.
We	still	need	to	define	templates	for	placing	orders.	Create	the
following	file	structure	inside	the	orders	application	directory:

templates/

				orders/

								order/

												create.html

												created.html

Edit	the	orders/order/create.html	template	and	include	the	following
code:

{%	extends	"shop/base.html"	%}

{%	block	title	%}

		Checkout

{%	endblock	%}

{%	block	content	%}

		<h1>Checkout</h1>

		<div	class="order-info">

				<h3>Your	order</h3>

				

						{%	for	item	in	cart	%}

								

										{{	item.quantity	}}x	{{	item.product.name	}}

										${{	item.total_price	}}

								

						{%	endfor	%}

				

				<p>Total:	${{	cart.get_total_price	}}</p>

		</div>

		<form	action="."	method="post"	class="order-form">

				{{	form.as_p	}}

				<p><input	type="submit"	value="Place	order"></p>

				{%	csrf_token	%}

		</form>

{%	endblock	%}

This	template	displays	the	cart	items,	including	totals,	and	the	form
to	place	an	order.

Edit	the	orders/order/created.html	template	and	add	the	following	code:

{%	extends	"shop/base.html"	%}

{%	block	title	%}

		Thank	you

{%	endblock	%}

{%	block	content	%}

		<h1>Thank	you</h1>

		<p>Your	order	has	been	successfully	completed.	Your	order	number	is		

		{{	order.id	}}.</p>

{%	endblock	%}

This	is	the	template	that	we	render	when	the	order	is	successfully
created.

Start	the	web	development	server	to	track	new	files.	Open
http://127.0.0.1:8000/	in	your	browser,	add	a	couple	of	products	to	the
cart,	and	continue	to	the	checkout	page.	You	will	see	a	page	like	the
one	following:

Fill	in	the	form	with	the	valid	data	and	click	on	the	Place	order
button.	The	order	will	be	created	and	you	will	see	a	success	page
like	this:

Now,	go	to	the	administration	site.	

Launching	asynchronous	tasks
with	Celery
Everything	you	execute	in	a	view	affects	response	times.	In	many
situations,	you	might	want	to	return	a	response	to	the	user	as
quickly	as	possible	and	let	the	server	execute	some	process
asynchronously.	This	is	especially	relevant	for	time-consuming
processes	or	processes	subject	to	failure,	which	might	need	a	retry
policy.	For	example,	a	video	sharing	platform	allows	users	to	upload
videos	but	requires	a	long	time	to	transcode	uploaded	videos.	The
site	might	return	a	response	to	users	to	inform	them	that	the
transcoding	will	start	soon,	and	start	transcoding	the	video
asynchronously.	Another	example	is	sending	emails	to	users.	If	your
site	sends	email	notifications	from	a	view,	the	SMTP	connection
might	fail	or	slow	down	the	response.	Launching	asynchronous
tasks	is	essential	to	avoid	blocking	the	code	execution.

Celery	is	a	distributed	task	queue	that	can	process	vast	amounts	of
messages.	It	does	real-time	processing	but	also	supports	task
scheduling.	Using	Celery,	not	only	can	you	create	asynchronous
tasks	easily	and	let	them	be	executed	by	workers	as	soon	as
possible,	but	you	can	also	schedule	them	to	run	at	a	specific	time.

You	can	find	the	Celery	documentation	at	http://docs.celeryproject.org/e
n/latest/index.html.

http://docs.celeryproject.org/en/latest/index.html

Installing	Celery
Let's	install	Celery	and	integrate	it	into	our	project.	Install	Celery
via	pip	using	the	following	command:

pip	install	celery==4.1.0

Celery	requires	a	message	broker	in	order	to	handle	requests	from
an	external	source.	The	broker	takes	care	of	sending	messages	to
Celery	workers,	which	process	tasks	as	they	receive	them.	Let's
install	a	message	broker.

Installing	RabbitMQ
There	are	several	options	to	choose	as	a	message	broker	for	Celery,
including	key/value	stores	such	as	Redis,	or	an	actual	message
system	such	as	RabbitMQ.	We	will	configure	Celery	with	RabbitMQ,
since	it's	the	recommended	message	worker	for	Celery.

If	you	are	using	Linux,	you	can	install	RabbitMQ	from	the	shell
using	the	following	command:

apt-get	install	rabbitmq

If	you	need	to	install	RabbitMQ	on	macOS	X	or	Windows,	you	can
find	standalone	versions	at	https://www.rabbitmq.com/download.html.

After	installing	it,	launch	RabbitMQ	using	the	following	command
from	the	shell:

rabbitmq-server

You	will	see	output	that	ends	with	the	following	line:

Starting	broker...	completed	with	10	plugins.

RabbitMQ	is	running	and	ready	to	receive	messages.

https://www.rabbitmq.com/download.html

Adding	Celery	to	your	project
You	have	to	provide	a	configuration	for	the	Celery	instance.	Create	a
new	file	next	to	the	settings.py	file	of	myshop	and	name	it	celery.py.	This
file	will	contain	the	Celery	configuration	for	your	project.	Add	the
following	code	to	it:

import	os

from	celery	import	Celery

#	set	the	default	Django	settings	module	for	the	'celery'	program.

os.environ.setdefault('DJANGO_SETTINGS_MODULE',	'myshop.settings')

app	=	Celery('myshop')

app.config_from_object('django.conf:settings',	namespace='CELERY')

app.autodiscover_tasks()

In	this	code,	we	do	the	following:

1.	 We	set	the	DJANGO_SETTINGS_MODULE	variable	for	the	Celery

command-line	program.

2.	 We	create	an	instance	of	the	application	with	app	=

Celery('myshop').

3.	 We	load	any	custom	configuration	from	our	project	settings

using	the	config_from_object()	method.	The	namespace	attribute

specifies	the	prefix	that	Celery-related	settings	will	have	in

our	settings.py	file.	By	setting	the	CELERY	namespace,	all	Celery

settings	need	to	include	the	CELERY_	prefix	in	their	name	(for

example,	CELERY_BROKER_URL).

4.	 Finally,	we	tell	Celery	to	auto-discover	asynchronous	tasks

for	our	applications.	Celery	will	look	for	a	tasks.py	file	in	each

application	directory	of	apps	added	to	INSTALLED_APPS	in	order

to	load	asynchronous	tasks	defined	in	it.

You	need	to	import	the	celery	module	in	the	__init__.py	file	of	your
project	to	make	sure	it	is	loaded	when	Django	starts.	Edit	the
myshop/__init__.py	file	and	add	the	following	code	to	it:

#	import	celery

from	.celery	import	app	as	celery_app

Now,	you	can	start	programming	asynchronous	tasks	for	your
applications.

The	CELERY_ALWAYS_EAGER	setting	allows	you	to	execute	tasks	locally	in	a
synchronous	way	instead	of	sending	them	to	the	queue.	This	is	useful	for
running	unit	tests	or	executing	the	application	in	your	local	environment
without	running	Celery.

Adding	asynchronous	tasks	to
your	application
We	are	going	to	create	an	asynchronous	task	to	send	an	email
notification	to	our	users	when	they	place	an	order.	The	convention
is	to	include	asynchronous	tasks	for	your	application	in	a	tasks
module	within	your	application	directory.

Create	a	new	file	inside	the	orders	application	and	name	it	tasks.py.
This	is	the	place	where	Celery	will	look	for	asynchronous	tasks.	Add
the	following	code	to	it:

from	celery	import	task

from	django.core.mail	import	send_mail

from	.models	import	Order

@task

def	order_created(order_id):

				"""

				Task	to	send	an	e-mail	notification	when	an	order	is	

				successfully	created.

				"""

				order	=	Order.objects.get(id=order_id)

				subject	=	'Order	nr.	{}'.format(order.id)

				message	=	'Dear	{},\n\nYou	have	successfully	placed	an	order.\

															Your	order	id	is	{}.'.format(order.first_name,

																																												order.id)

				mail_sent	=	send_mail(subject,

																										message,

																										'admin@myshop.com',

																										[order.email])

				return	mail_sent

We	define	the	order_created	task	by	using	the	task	decorator.	As	you
can	see,	a	Celery	task	is	just	a	Python	function	decorated	with	task.
Our	task	function	receives	an	order_id	parameter.	It's	always

recommended	to	pass	only	IDs	to	task	functions	and	lookup	objects
when	the	task	is	executed.	We	use	the	send_mail()	function	provided
by	Django	to	send	an	email	notification	to	the	user	that	placed	the
order.

You	learned	how	to	configure	Django	to	use	your	SMTP	server	in	Cha
pter	2,	Enhancing	Your	Blog	with	Advanced	Features.	If	you	don't
want	to	set	up	email	settings,	you	can	tell	Django	to	write	emails	to
the	console	by	adding	the	following	setting	to	the	settings.py	file:

EMAIL_BACKEND	=	'django.core.mail.backends.console.EmailBackend'

Use	asynchronous	tasks	not	only	for	time-consuming	processes,	but	also	for
other	processes	that	are	subject	to	failure,	which	do	not	take	so	much	time	to
be	executed,	but	which	are	subject	to	connection	failures	or	require	a	retry
policy.

Now	we	have	to	add	the	task	to	our	order_create	view.	Edit	the	views.py
file	of	the	orders	application,	import	the	task,	and	call	the	order_created
asynchronous	task	after	clearing	the	cart	as	follows:

from	.tasks	import	order_created

def	order_create(request):

				#	...

				if	request.method	==	'POST':

								#	...

								if	form.is_valid():

												#	...

												cart.clear()

												#	launch	asynchronous	task

												order_created.delay(order.id)

								#	...

We	call	the	delay()	method	of	the	task	to	execute	it	asynchronously.
The	task	will	be	added	to	the	queue	and	will	be	executed	by	a
worker	as	soon	as	possible.

Open	another	shell	and	start	the	Celery	worker	from	your	project
directory,	using	the	following	command:

celery	-A	myshop	worker	-l	info

The	Celery	worker	is	now	running	and	ready	to	process	tasks.	Make
sure	the	Django	development	server	is	also	running.	Open
http://127.0.0.1:8000/	in	your	browser,	add	some	products	to	your
shopping	cart,	and	complete	an	order.	In	the	shell,	you	started	the
Celery	worker	and	you	will	see	an	output	similar	to	this	one:

[2017-12-17	17:43:11,462:	INFO/MainProcess]	Received	task:	

orders.tasks.order_created[e990ddae-2e30-4e36-b0e4-78bbd4f2738e]	

[2017-12-17	17:43:11,685:	INFO/ForkPoolWorker-4]	Task	

orders.tasks.order_created[e990ddae-2e30-4e36-b0e4-78bbd4f2738e]	succeeded	in	

0.22019841300789267s:	1

The	task	has	been	executed	and	you	will	receive	an	email
notification	for	your	order.

Monitoring	Celery
You	might	want	to	monitor	the	asynchronous	tasks	that	are
executed.	Flower	is	a	web-based	tool	for	monitoring	Celery.	You	can
install	Flower	using	this	command:

pip	install	flower==0.9.2

Once	installed,	you	can	launch	Flower	by	running	the	following
command	from	your	project	directory:

celery	-A	myshop	flower

Open	http://localhost:5555/dashboard	in	your	browser.	You	will	be	able	to
see	the	active	Celery	workers	and	asynchronous	task	statistics:

You	can	find	documentation	for	Flower	at	https://flower.readthedocs.io/.

https://flower.readthedocs.io/

Summary
In	this	chapter,	you	created	a	basic	shop	application.	You	created	a
product	catalog	and	built	a	shopping	cart	using	sessions.	You
implemented	a	custom	context	processor	to	make	the	cart	available
to	your	templates	and	created	a	form	for	placing	orders.	You	also
learned	how	to	launch	asynchronous	tasks	with	Celery.

In	the	next	chapter,	you	will	learn	how	to	integrate	a	payment
gateway	into	your	shop,	add	custom	actions	to	the	administration
site,	export	data	in	CSV	format,	and	generate	PDF	files	dynamically.

Managing	Payments	and
Orders
In	the	previous	chapter,	you	created	a	basic	online	shop	with	a
product	catalog	and	a	shopping	cart.	You	also	learned	how	to
launch	asynchronous	tasks	with	Celery.	In	this	chapter,	you	will
learn	how	to	integrate	a	payment	gateway	into	your	site	to	let	users
pay	by	credit	card.	You	will	also	extend	the	administration	site	to
export	orders	to	CSV	format	and	you	will	generate	PDF	invoices.

In	this	chapter,	you	will	learn	to:

Integrate	a	payment	gateway	into	your	project

Export	orders	to	CSV	files

Create	custom	views	for	the	administration	site

Generate	PDF	invoices	dynamically

Integrating	a	payment	gateway
A	payment	gateway	allows	you	to	process	payments	online.	Using	a
payment	gateway,	you	can	manage	customer's	orders	and	delegate
payment	processing	to	a	reliable,	secure	third	party.	You	won't	have
to	worry	about	processing	credit	cards	in	your	own	system.

There	are	several	payment	gateway	providers	to	choose	from.	We
are	going	to	integrate	Braintree,	which	is	used	by	popular	online
services	such	as	Uber	or	Airbnb.	Braintree	provides	an	API	that
allows	you	to	process	online	payments	with	multiple	payment
methods	such	as	a	credit	card,	PayPal,	Android	Pay,	and	Apple	Pay.
You	can	learn	more	about	Braintree	at	https://www.braintreepayments.com/.

Braintree	provides	different	integration	options.	The	simplest	is	the
Drop-in	integration,	which	contains	a	pre-formatted	payment	form.
However,	in	order	to	customize	the	behavior	and	experience	of	our
checkout,	we	are	are	going	to	use	the	advanced	Hosted
Fields	integration.	You	can	learn	more	about	the	Hosted	Fields
integration	at	https://developers.braintreepayments.com/guides/hosted-fields/over
view/javascript/v3.

Certain	payment	fields	on	the	checkout	page,	such	as	the	credit	card
number,	CVV	number,	or	expiration	date,	must	be	hosted	securely.
The	Hosted	Fields	integration	hosts	the	checkout	fields	on	the
payment	gateway's	domain	and	renders	an	iframe	to	present	the
fields	to	the	users.	This	provides	you	with	the	ability	to	customize
the	look	and	feel	of	the	payment	form,	while	ensuring	that	you	are
compliant	with	Payment	Card	Industry	(PCI)	requirements.
Since	you	can	customize	the	look	and	feel	of	the	form	fields,	users
won't	notice	the	iframe.

https://www.braintreepayments.com/
https://developers.braintreepayments.com/guides/hosted-fields/overview/javascript/v3

Creating	a	Braintree	sandbox
account
You	need	a	Braintree	account	to	integrate	the	payment	gateway	into
your	site.	Let's	create	a	sandbox	account	to	test	the	Braintree	API.
Open	https://www.braintreepayments.com/sandbox	in	your	browser.	You	will
see	a	form	like	the	following	one:

Fill	in	the	details	to	create	a	new	sandbox	account.	You	will	receive

https://www.braintreepayments.com/sandbox

an	email	from	Braintree	with	a	link	to	complete	your	account	setup.
Follow	the	link	and	complete	your	account	setup.	Once	you	are
done,	login	at	https://sandbox.braintreegateway.com/login.	Your	merchant	ID
and	private/public	keys	will	be	displayed	like	this:

You	will	need	this	information	to	authenticate	requests	to	the
Braintree	API.	Always	keep	the	private	key	secret.

https://sandbox.braintreegateway.com/login

Installing	the	Braintree	Python
module
Braintree	provides	a	Python	module	that	simplifies	dealing	with	its
API.	The	source	code	is	located	at	https://github.com/braintree/braintree_py
thon.	We	are	going	to	integrate	the	payment	gateway	into	our	project
using	the	braintree	module.

Install	the	braintree	module	from	the	shell	using	the	following
command:

pip	install	braintree==3.45.0

Add	the	following	settings	to	the	settings.py	file	of	your	project:

#	Braintree	settings

BRAINTREE_MERCHANT_ID	=	'XXX'		#	Merchant	ID

BRAINTREE_PUBLIC_KEY	=	'XXX'			#	Public	Key

BRAINTREE_PRIVATE_KEY	=	'XXX'		#	Private	key

from	braintree	import	Configuration,	Environment

Configuration.configure(

				Environment.Sandbox,

				BRAINTREE_MERCHANT_ID,

				BRAINTREE_PUBLIC_KEY,

				BRAINTREE_PRIVATE_KEY

)

Replace	BRAINTREE_MERCHANT_ID,	BRAINTREE_PUBLIC_KEY,	and	BRAINTREE_PRIVATE_KEY
values	with	the	ones	of	your	account.

Note	that	we	use	Environment.Sandbox	for	integrating	the	sandbox.	Once	you	go
live	and	create	a	real	account,	you	will	need	to	change	this	to
Environment.Production.	Braintree	will	provide	you	with	a	new	merchant	ID	and

https://github.com/braintree/braintree_python

private/public	keys	for	the	production	environment.

Let's	integrate	the	payment	gateway	into	the	checkout	process.

Integrating	the	payment
gateway
The	checkout	process	will	work	as	follows:

1.	 Add	items	to	the	shopping	cart

2.	 Check	out	the	shopping	cart

3.	 Enter	credit	card	details	and	pay

We	are	going	to	create	a	new	application	to	manage
payments.	Create	a	new	application	in	your	project	using	the
following	command:

python	manage.py	startapp	payment

Edit	the	settings.py	file	of	your	project	and	add	the	new	application	to
the	INSTALLED_APPS	setting	as	follows:

INSTALLED_APPS	=	[

				#	...

				'payment.apps.PaymentConfig',

]

The	payment	application	is	now	active.

After	clients	place	an	order,	we	need	to	redirect	them	to	the
payment	process.	Edit	the	views.py	file	of	the	orders	application	and
include	the	following	imports:

from	django.urls	import	reverse

from	django.shortcuts	import	render,	redirect

In	the	same	file,	replace	the	following	lines	of	the	order_create	view:

#	launch	asynchronous	task	

order_created.delay(order.id)	

return	render(request,

														'orders/order/created.html',

														locals())	

Replace	them	with	the	following:

#	launch	asynchronous	task

order_created.delay(order.id)

#	set	the	order	in	the	session

request.session['order_id']	=	order.id

#	redirect	for	payment

return	redirect(reverse('payment:process'))

With	this	code,	after	successfully	creating	an	order,	we	set	the	order
ID	in	the	current	session	using	the	order_id	session	key.	Then,	we
redirect	the	user	to	the	payment:process	URL,	which	we	are	going	to
implement	later.

Remember	that	you	need	to	run	Celery	in	order	for	the	order_created
task	to	be	queued	and	executed.

Every	time	an	order	is	created	in	Braintree,	a	unique	transaction
identifier	is	generated.	We	will	add	a	new	field	to	the	Order	model	of
the	orders	application	to	store	the	transaction	ID.	This	will	allow	us
to	link	each	order	with	its	related	Braintree	transaction.

Edit	the	models.py	file	of	the	orders	application	and	add	the	following
field	to	the	Order	model:

class	Order(models.Model):

				#	...

				braintree_id	=	models.CharField(max_length=150,	blank=True)

Let's	sync	this	field	with	the	database.	Use	the	following	command
to	generate	migrations:

python	manage.py	makemigrations

You	will	see	the	following	output:

Migrations	for	'orders':

		orders/migrations/0002_order_braintree_id.py

				-	Add	field	braintree_id	to	order

Apply	the	migration	to	the	database	with	the	following	command:

python	manage.py	migrate

You	will	see	output	that	ends	with	the	following	line:

Applying	orders.0002_order_braintree_id...	OK

The	model	changes	are	now	synced	with	the	database.	Now	you	are
able	to	store	the	Braintree	transaction	ID	for	each	order.	Let's
integrate	the	payment	gateway.

Integrating	Braintree	using
Hosted	Fields
The	Hosted	Fields	integration	allows	you	to	create	your	own
payment	form	using	custom	styles	and	layout.	An	iframe	is	added
dynamically	to	the	page	using	the	Braintree	JavaScript	SDK.	The
iframe	includes	the	Hosted	Fields	payment	form.	When	the
customer	submits	the	form,	Hosted	Fields	collects	the	card	details
securely	and	attempts	to	tokenize	them.	If	tokenization	succeeds,
you	can	send	the	generated	token	nonce	to	your	view	to	make	a
transaction	using	the	Python	braintree	module.

We	will	create	a	view	for	processing	payments.	The	whole	checkout
process	will	work	as	follows:

1.	 In	the	view,	a	client	token	is	generated	using	the	braintree

Python	module.	This	token	is	used	in	the	next	step	to

instantiate	the	Braintree	JavaScript	client;	it's	not	the

payment	token	nonce.

2.	 The	view	renders	the	checkout	template.	The	template	loads

the	Braintree	JavaScript	SDK	using	the	client	token	and

generates	the	iframe	with	the	hosted	payment	form	fields.

3.	 Users	enter	their	credit	card	details	and	submit	the	form.	A

payment	token	nonce	is	generated	with	the	Braintree

JavaScript	client.	We	send	the	token	to	our	view	with	a	POST

request.

4.	 The	payment	view	receives	the	token	nonce	and	we	use	it	to

generate	a	transaction	using	the	braintree	Python	module.

Let's	start	with	the	payment	checkout	view.	Edit	the	views.py	file	of
the	payment	application	and	add	the	following	code	to	it:

import	braintree

from	django.shortcuts	import	render,	redirect,	get_object_or_404	

from	orders.models	import	Order	

def	payment_process(request):	

				order_id	=	request.session.get('order_id')

				order	=	get_object_or_404(Order,	id=order_id)

				if	request.method	==	'POST':

								#	retrieve	nonce

								nonce	=	request.POST.get('payment_method_nonce',	None)

								#	create	and	submit	transaction

								result	=	braintree.Transaction.sale({

												'amount':	'{:.2f}'.format(order.get_total_cost()),

												'payment_method_nonce':	nonce,

												'options':	{

																'submit_for_settlement':	True

												}

								})

								if	result.is_success:

												#	mark	the	order	as	paid

												order.paid	=	True

												#	store	the	unique	transaction	id

												order.braintree_id	=	result.transaction.id

												order.save()

												return	redirect('payment:done')

								else:

												return	redirect('payment:canceled')

				else:

								#	generate	token	

								client_token	=	braintree.ClientToken.generate()

								return	render(request,	

																						'payment/process.html',	

																						{'order':	order,

																							'client_token':	client_token})

The	payment_process	view	manages	the	checkout	process.	In	this	view,
take	the	following	actions:

1.	 We	get	the	current	order	from	the	order_id	session	key,	which

was	set	previously	in	the	order_create	view.

2.	 We	retrieve	the	Order	object	for	the	given	ID	or	return	a	404	Not

Found	error	if	not	found.

3.	 When	the	view	is	loaded	with	a	POST	request,	we	retrieve	the

payment_method_nonce	to	generate	a	new

transaction	using	braintree.Transaction.sale().	We	pass	the

following	parameters	to	it:

1.	 amount:	The	total	amount	to	charge	the	customer.

2.	 payment_method_nonce:	The	token	nonce	generated	by

Braintree	for	the	payment.	It	will	be	generated	in	the

template	using	the	Braintree	JavaScript	SDK.

3.	 options:	We	send	the	submit_for_settlement	option

with	True	so	that	the	transaction	is	automatically

submitted	for	settlement.

4.	 If	the	transaction	is	successfully	processed,	we	mark	the

order	as	paid	by	setting	its	paid	attribute	to	True	and	we	store

the	unique	transaction	ID	returned	by	the	gateway	in	the

braintree_id	attribute.	We	redirect	the	user	to	the	payment:done

URL	if	the	payment	was	successful	otherwise	to

payment:canceled.

5.	 If	the	view	was	loaded	with	a	GET	request,	we	generate	a	client

token	that	we	will	use	in	the	template	to	instantiate	the

Braintree	JavaScript	client.

Let's	create	basic	views	to	redirect	users	when	the	payment	has
been	successful,	or	when	it	has	been	canceled	for	any	reason.	Add
the	following	code	to	the	views.py	file	of	the	payment	application:

def	payment_done(request):

				return	render(request,	'payment/done.html')

def	payment_canceled(request):

				return	render(request,	'payment/canceled.html')

Create	a	new	file	inside	the	payment	application	directory	and	name	it
urls.py.	Add	the	following	code	to	it:

from	django.urls	import	path

from	.	import	views

app_name	=	'payment'

urlpatterns	=	[

				path('process/',	views.payment_process,	name='process'),

				path('done/',	views.payment_done,	name='done'),

				path('canceled/',	views.payment_canceled,	name='canceled'),

]

These	are	the	URLs	for	the	payment	workflow.	We	have	included
the	following	URL	patterns:

process:	The	view	that	processes	the	payment

done:	The	view	to	redirect	the	user	if	the	payment	is

successful

canceled:	The	view	to	redirect	the	user	if	the	payment	is	not

successful

Edit	the	main	urls.py	file	of	the	myshop	project	and	include	the	URL
patterns	for	the	payment	application	as	follows:

urlpatterns	=	[

				#	...

				path('payment/',	include('payment.urls',	namespace='payment')),

				path('',	include('shop.urls',	namespace='shop')),

]

Remember	to	place	it	before	the	shop.urls	pattern	to	avoid	an
undesired	pattern	match.

Create	the	following	file	structure	inside	the	payment	application
directory:

templates/

				payment/

								process.html

								done.html

								canceled.html

Edit	the	payment/process.html	template	and	add	the	following	code	to	it:

{%	extends	"shop/base.html"	%}

{%	block	title	%}Pay	by	credit	card{%	endblock	%}

{%	block	content	%}

		<h1>Pay	by	credit	card</h1>

		<form	action="."	id="payment"	method="post">

				<label	for="card-number">Card	Number</label>

				<div	id="card-number"	class="field"></div>

				<label	for="cvv">CVV</label>

				<div	id="cvv"	class="field"></div>

				<label	for="expiration-date">Expiration	Date</label>

				<div	id="expiration-date"	class="field"></div>

				<input	type="hidden"	id="nonce"	name="payment_method_nonce"	value="">

				{%	csrf_token	%}

				<input	type="submit"	value="Pay">

		</form>

		<!--	Load	the	required	client	component.	-->

		<script	src="https://js.braintreegateway.com/web/3.29.0/js/client.min.js">

</script>

		<!--	Load	Hosted	Fields	component.	-->

		<script	src="https://js.braintreegateway.com/web/3.29.0/js/hosted-

		fields.min.js"></script>

		<script>

				var	form	=	document.querySelector('#payment');

				var	submit	=	document.querySelector('input[type="submit"]');

				braintree.client.create({

						authorization:	'{{	client_token	}}'

				},	function	(clientErr,	clientInstance)	{

						if	(clientErr)	{

								console.error(clientErr);

								return;

						}

						braintree.hostedFields.create({

								client:	clientInstance,

								styles:	{

										'input':	{'font-size':	'13px'},

										'input.invalid':	{'color':	'red'},

										'input.valid':	{'color':	'green'}

								},

								fields:	{

										number:	{selector:	'#card-number'},

										cvv:	{selector:	'#cvv'},

										expirationDate:	{selector:	'#expiration-date'}

								}

						},	function	(hostedFieldsErr,	hostedFieldsInstance)	{

								if	(hostedFieldsErr)	{

										console.error(hostedFieldsErr);

										return;

								}

								submit.removeAttribute('disabled');

								form.addEventListener('submit',	function	(event)	{

										event.preventDefault();

										hostedFieldsInstance.tokenize(function	(tokenizeErr,	payload)	{

												if	(tokenizeErr)	{

														console.error(tokenizeErr);

														return;

												}

												//	set	nonce	to	send	to	the	server

												document.getElementById('nonce').value	=	payload.nonce;

												//	submit	form

												document.getElementById('payment').submit();

										});

								},	false);

						});

				});

		</script>

{%	endblock	%}

This	is	the	template	that	displays	the	payment	form	and	processes

the	payment.	We	define	<div>	containers	instead	of	<input>	elements
for	the	credit	card	input	fields:	the	credit	card	number,	CVV
number,	and	expiration	date.	This	is	how	we	specify	the	fields	that
the	Braintree	JavaScript	client	will	render	in	the	iframe.	We	also
include	an	<input>	element	named	payment_method_nonce	that	we	will	use
to	send	the	token	nonce	to	our	view	once	generated	by	the	Braintree
JavaScript	client.	

In	our	template,	we	load	the	Braintree	JavaScript	SDK	client.min.js
and	the	Hosted	Fields	component	hosted-fields.min.js.	Then,	we
execute	the	following	JavaScript	code:

1.	 We	instantiate	the	Braintree	JavaScript	client	with

the	braintree.client.create()	method,	using	the	client_token

generated	by	the	payment_process	view.

2.	 We	instantiate	the	Hosted	Fields	component	with

the	braintree.hostedFields.create()	method.

3.	 We	specify	custom	CSS	styles	for	the	input	fields.

4.	 We	specify	the	id	selectors	for	the	fields:	card-

number,	cvv,	and	expiration-date.

5.	 We	add	an	event	listener	for	the	submit	action	of	the	form.

When	the	form	is	submitted,	the	fields	are	tokenized	using

the	Braintree	SDK	and	the	token	nonce	is	set	in

the	payment_method_nonce	field.	Then,	the	form	is	submitted	so

that	our	view	receives	the	nonce	to	process	the	payment.

Edit	the	payment/done.html	template	and	add	the	following	code	to	it:

{%	extends	"shop/base.html"	%}

{%	block	content	%}

		<h1>Your	payment	was	successful</h1>

		<p>Your	payment	has	been	processed	successfully.</p>

{%	endblock	%}

This	is	the	template	for	the	page	that	the	user	is	redirected	to
following	a	successful	payment.

Edit	the	payment/canceled.html	template	and	add	the	following	code	to	it:

{%	extends	"shop/base.html"	%}

{%	block	content	%}

		<h1>Your	payment	has	not	been	processed</h1>

		<p>There	was	a	problem	processing	your	payment.</p>

{%	endblock	%}

This	is	the	template	for	the	page	that	the	user	is	redirected	to	when
the	transaction	is	not	successful.	Let's	try	the	payment	process.

Testing	payments
Open	a	shell	and	run	RabbitMQ	with	the	following	command:

rabbitmq-server

Open	another	shell	and	start	the	Celery	worker	from	your	project
directory	with	the	following	command:

celery	-A	myshop	worker	-l	info

Open	one	more	shell	and	start	the	development	server	with	this
command:

python	manage.py	runserver

Open	http://127.0.0.1:8000/	in	your	browser,	add	some	products	to	the
shopping	cart,	and	fill	in	the	checkout	form.	When	you	click	the
PLACE	ORDER	button,	the	order	will	be	persisted	to	the	database,
the	order	ID	will	be	saved	in	the	current	session,	and	you	will	be
redirected	to	the	payment	process	page.

The	payment	process	page	retrieves	the	order	from	the	session	and
renders	the	Hosted	Fields	form	in	an	iframe,	as	follows:

You	can	take	a	look	at	the	HTML	source	code	to	see	the	generated
HTML.

Braintree	provides	a	list	of	successful	and	unsuccessful	credit	cards
so	that	you	can	test	all	possible	scenarios.	You	can	find	a	list	of
credit	cards	for	testing	at	https://developers.braintreepayments.com/guides/cred
it-cards/testing-go-live/python.	We	are	going	to	use	the	VISA	test	card
4111	1111	1111	1111,	which	returns	a	successful	purchase.	We	are	going
to	use	CVV	123	and	any	future	expiration	date,	such	as	12/24.	Enter
the	credit	card	details	as	follows:

https://developers.braintreepayments.com/guides/credit-cards/testing-go-live/python

Click	on	the	Pay	button.	You	will	see	the	following	page:

The	transaction	has	been	successfully	processed.	Now	you	can	log
in	to	your	account	at	https://sandbox.braintreegateway.com/login.	Under
Transactions,	you	will	be	able	to	see	the	transaction	like	this:

https://sandbox.braintreegateway.com/login

Now,	open	http://127.0.0.1:8000/admin/orders/order/	in	your	browser.	The
order	should	now	be	marked	as	paid	and	contain	the	related
Braintree	transaction	ID:

Congratulations!	You	have	implemented	a	payment	gateway	to
process	credit	cards.

Going	live
Once	you	have	tested	your	environment,	you	can	create	a	real
Braintree	account	at	https://www.braintreepayments.com.	Once	you	are
ready	for	moving	into	production,	remember	to	change	your	live
environment	credentials	in	the	settings.py	file	of	your	project	and
use	braintree.Environment.Production	to	set	up	your	environment.	All	steps
to	go	live	are	summarized	at	https://developers.braintreepayments.com/start/g
o-live/python	.

https://www.braintreepayments.com
https://developers.braintreepayments.com/start/go-live/python

Exporting	orders	to	CSV	files
Sometimes,	you	might	want	to	export	the	information	contained	in
a	model	to	a	file	so	that	you	can	import	it	in	any	other	system.	One
of	the	most	widely	used	formats	to	export/import	data	is	Comma-
Separated	Values	(CSV).	A	CSV	file	is	a	plain	text	file	consisting
of	a	number	of	records.	There	is	usually	one	record	per	line,	and
some	delimiter	character,	usually	a	literal	comma,	separates	the
record	fields.	We	are	going	to	customize	the	administration	site	to
be	able	to	export	orders	to	CSV	files.

Adding	custom	actions	to	the
administration	site
Django	offers	you	a	wide	range	of	options	to	customize	the
administration	site.	We	are	going	to	modify	the	object	list	view	to
include	a	custom	admin	action.

An	admin	action	works	as	follows:	a	user	selects	objects	from	the
admin's	object	list	page	with	checkboxes,	then	selects	an	action	to
perform	on	all	of	the	selected	items,	and	executes	the	action.	The
following	screenshot	shows	where	actions	are	located	in	the
administration	site:

Create	custom	admin	actions	to	allow	staff	users	to	apply	actions	to	multiple
elements	at	once.

You	can	create	a	custom	action	by	writing	a	regular	function	that
receives	the	following	parameters:

The	current	ModelAdmin	being	displayed

The	current	request	object	as	an	HttpRequest	instance

A	QuerySet	for	the	objects	selected	by	the	user

This	function	will	be	executed	when	the	action	is	triggered	from	the
administration	site.

We	are	going	to	create	a	custom	admin	action	to	download	a	list	of
orders	as	a	CSV	file.	Edit	the	admin.py	file	of	the	orders	application	and
add	the	following	code	before	the	OrderAdmin	class:

import	csv

import	datetime

from	django.http	import	HttpResponse

def	export_to_csv(modeladmin,	request,	queryset):

				opts	=	modeladmin.model._meta

				response	=	HttpResponse(content_type='text/csv')

				response['Content-Disposition']	=	'attachment;'\

								'filename={}.csv'.format(opts.verbose_name)

				writer	=	csv.writer(response)

	

				fields	=	[field	for	field	in	opts.get_fields()	if	not	field.many_to_many\	

				and	not	field.one_to_many]

				#	Write	a	first	row	with	header	information

				writer.writerow([field.verbose_name	for	field	in	fields])

				#	Write	data	rows

				for	obj	in	queryset:

								data_row	=	[]

								for	field	in	fields:

												value	=	getattr(obj,	field.name)

												if	isinstance(value,	datetime.datetime):

																value	=	value.strftime('%d/%m/%Y')

												data_row.append(value)

								writer.writerow(data_row)

				return	response

export_to_csv.short_description	=	'Export	to	CSV'

In	this	code,	we	perform	the	following	tasks:

1.	 We	create	an	instance	of	HttpResponse,	including	a	custom

text/csv	content	type,	to	tell	the	browser	that	the	response	has

to	be	treated	as	a	CSV	file.	We	also	add	a	Content-Disposition

header	to	indicate	that	the	HTTP	response	contains	an

attached	file.

2.	 We	create	a	CSV	writer	object	that	will	write	on	the	response

object.

3.	 We	get	the	model	fields	dynamically	using	the	get_fields()

method	of	the	model	_meta	options.	We	exclude	many-to-

many	and	one-to-many	relationships.

4.	 We	write	a	header	row	including	the	field	names.

5.	 We	iterate	over	the	given	QuerySet	and	write	a	row	for	each

object	returned	by	the	QuerySet.	We	take	care	of	formatting

datetime	objects	because	the	output	value	for	CSV	has	to	be	a

string.

6.	 We	customize	the	display	name	for	the	action	in	the

template	by	setting	a	short_description	attribute	to	the	function.

We	have	created	a	generic	admin	action	that	can	be	added	to	any
ModelAdmin	class.

Finally,	add	the	new	export_to_csv	admin	action	to	the	OrderAdmin	class
as	follows:

class	OrderAdmin(admin.ModelAdmin):

				#	...

				actions	=	[export_to_csv]

Open	http://127.0.0.1:8000/admin/orders/order/	in	your	browser.	The
resulting	admin	action	should	look	like	this:

Select	some	orders	and	choose	the	Export	to	CSV	action	from	the
select	box,	then	click	the	Go	button.	Your	browser	will	download	the
generated	CSV	file	named	order.csv.	Open	the	downloaded	file	using
a	text	editor.	You	should	see	content	with	the	following	format,
including	a	header	row	and	a	row	for	each	Order	object	you	selected:

ID,first	name,last	name,email,address,postal	

code,city,created,updated,paid,braintree	id	

3,Antonio,Melé,antonio.mele@gmail.com,Bank	Street,WS	

J11,London,25/02/2018,25/02/2018,True,2bwkx5b6	

...	

As	you	can	see,	creating	admin	actions	is	pretty	straightforward.
You	can	learn	more	about	generating	CSV	files	with	Django	at	https:/
/docs.djangoproject.com/en/2.0/howto/outputting-csv/.

https://docs.djangoproject.com/en/2.0/howto/outputting-csv/

Extending	the	admin	site	with
custom	views
Sometimes,	you	may	want	to	customize	the	administration	site
beyond	what	is	possible	through	configuring	ModelAdmin,	creating
admin	actions,	and	overriding	admin	templates.	If	this	is	the	case,
you	need	to	create	a	custom	admin	view.	With	a	custom	view,	you
can	build	any	functionality	you	need.	You	just	have	to	make	sure
that	only	staff	users	can	access	your	view	and	that	you	maintain	the
admin	look	and	feel	by	making	your	template	extend	an	admin
template.

Let's	create	a	custom	view	to	display	information	about	an	order.
Edit	the	views.py	file	of	the	orders	application	and	add	the	following
code	to	it:

from	django.contrib.admin.views.decorators	import	staff_member_required

from	django.shortcuts	import	get_object_or_404

from	.models	import	Order

@staff_member_required

def	admin_order_detail(request,	order_id):

				order	=	get_object_or_404(Order,	id=order_id)

				return	render(request,

																		'admin/orders/order/detail.html',

																		{'order':	order})

The	staff_member_required	decorator	checks	that	both	the	is_active	and
is_staff	fields	of	the	user	requesting	the	page	are	set	to	True.	In	this
view,	we	get	the	Order	object	with	the	given	ID	and	render	a	template
to	display	the	order.

Now,	edit	the	urls.py	file	of	the	orders	application	and	add	the
following	URL	pattern	to	it:

path('admin/order/<int:order_id>/',	views.admin_order_detail,	

name='admin_order_detail'),

Create	the	following	file	structure	inside	the	templates/	directory	of
the	orders	application:

admin/	

				orders/	

								order/	

												detail.html	

Edit	the	detail.html	template	and	add	the	following	content	to	it:

{%	extends	"admin/base_site.html"	%}

{%	load	static	%}

{%	block	extrastyle	%}

		<link	rel="stylesheet"	type="text/css"	href="{%	static	"css/admin.css"	%}"	

/>

{%	endblock	%}

{%	block	title	%}

		Order	{{	order.id	}}	{{	block.super	}}

{%	endblock	%}

{%	block	breadcrumbs	%}

		<div	class="breadcrumbs">

				Home	›

				Orders

				›

				Order	{{	

order.id	}}

				›	Detail

		</div>

{%	endblock	%}

{%	block	content	%}

<h1>Order	{{	order.id	}}</h1>

<ul	class="object-tools">

		

				Print	order

		

<table>

		<tr>

				<th>Created</th>

				<td>{{	order.created	}}</td>

		</tr>

		<tr>

				<th>Customer</th>

				<td>{{	order.first_name	}}	{{	order.last_name	}}</td>

		</tr>

		<tr>

				<th>E-mail</th>

				<td>{{	order.email	}}</td>

		</tr>

		<tr>

				<th>Address</th>

				<td>{{	order.address	}},	{{	order.postal_code	}}	{{	order.city	}}</td>

		</tr>

		<tr>

				<th>Total	amount</th>

				<td>${{	order.get_total_cost	}}</td>

		</tr>

		<tr>

				<th>Status</th>

				<td>{%	if	order.paid	%}Paid{%	else	%}Pending	payment{%	endif	%}</td>

		</tr>

</table>

<div	class="module">

		<div	class="tabular	inline-related	last-related">

				<table>

						<h2>Items	bought</h2>

						<thead>

								<tr>

										<th>Product</th>

										<th>Price</th>

										<th>Quantity</th>

										<th>Total</th>

								</tr>

						</thead>

						<tbody>

								{%	for	item	in	order.items.all	%}

										<tr	class="row{%	cycle	"1"	"2"	%}">

												<td>{{	item.product.name	}}</td>

												<td	class="num">${{	item.price	}}</td>

												<td	class="num">{{	item.quantity	}}</td>

												<td	class="num">${{	item.get_cost	}}</td>

										</tr>

								{%	endfor	%}

								<tr	class="total">

										<td	colspan="3">Total</td>

										<td	class="num">${{	order.get_total_cost	}}</td>

								</tr>

						</tbody>

				</table>

		</div>

</div>

{%	endblock	%}

This	is	the	template	to	display	an	order	detail	on	the	administration
site.	This	template	extends	the	admin/base_site.html	template	of
Django's	administration	site,	which	contains	the	main	HTML
structure	and	CSS	styles	of	the	admin.	We	load	the	custom	static	file
css/admin.css.

In	order	to	use	static	files,	you	need	to	get	them	from	the	code	that
came	with	this	chapter.	Copy	the	static	files	located	in	the	static/
directory	of	orders	application	and	add	them	to	the	same	location	in
your	project.

We	use	the	blocks	defined	in	the	parent	template	to	include	our	own
content.	We	display	information	about	the	order	and	the	items
bought.

When	you	want	to	extend	an	admin	template,	you	need	to	know	its
structure	and	identify	existing	blocks.	You	can	find	all	admin
templates	at	https://github.com/django/django/tree/2.0/django/contrib/admin/temp
lates/admin.

You	can	also	override	an	admin	template	if	you	need	to.	To	override
an	admin	template,	copy	it	into	your	templates	directory	keeping	the
same	relative	path	and	filename.	Django's	administration	site	will
use	your	custom	template	instead	of	the	default	one.

Finally,	let's	add	a	link	to	each	Order	object	in	the	list	display	page	of
the	administration	site.	Edit	the	admin.py	file	of	the	orders	application
and	add	the	following	code	to	it,	above	the	OrderAdmin	class:

from	django.urls	import	reverse

from	django.utils.safestring	import	mark_safe

https://github.com/django/django/tree/2.0/django/contrib/admin/templates/admin

def	order_detail(obj):

				return	mark_safe('View'.format(

								reverse('orders:admin_order_detail',	args=[obj.id])))	

This	is	a	function	that	takes	an	Order	object	as	an	argument	and
returns	an	HTML	link	for	the	admin_order_detail	URL.	Django	escapes
HTML	output	by	default.	We	have	to	use	the	mark_safe	function	to
avoid	auto-escaping.

Use	the	mark_safe	function	to	avoid	HTML-escaping.	When	you	use	mark_safe,
make	sure	to	escape	input	that	has	come	from	the	user	to	avoid	cross-site
scripting.

Then,	edit	the	OrderAdmin	class	to	display	the	link:

class	OrderAdmin(admin.ModelAdmin):	

				list_display	=	['id',	

																				'first_name',	

																				#	...	

																				'updated',	

																				order_detail]	

Open	http://127.0.0.1:8000/admin/orders/order/	in	your	browser.	Each	row
now	includes	a	View	link	as	follows:

Click	on	the	View	link	for	any	order	to	load	the	custom	order	detail
page.	You	should	see	a	page	like	the	following	one:

Generating	PDF	invoices
dynamically
Now	that	we	have	a	complete	checkout	and	payment	system,	we	can
generate	a	PDF	invoice	for	each	order.	There	are	several	Python
libraries	to	generate	PDF	files.	One	popular	library	to	generate
PDFs	with	Python	code	is	Reportlab.	You	can	find	information
about	how	to	output	PDF	files	with	Reportlab	at	https://docs.djangoproje
ct.com/en/2.0/howto/outputting-pdf/.

In	most	cases,	you	will	have	to	add	custom	styles	and	formatting	to
your	PDF	files.	You	will	find	it	more	convenient	to	render	an	HTML
template	and	convert	it	into	a	PDF	file,	keeping	Python	away	from
the	presentation	layer.	We	are	going	to	follow	this	approach	and	use
a	module	to	generate	PDF	files	with	Django.	We	will	use
WeasyPrint,	which	is	a	Python	library	that	can	generate	PDF	files
from	HTML	templates.

https://docs.djangoproject.com/en/2.0/howto/outputting-pdf/

Installing	WeasyPrint
First,	install	WeasyPrint's	dependencies	for	your	OS,	which	you	will
find	at	http://weasyprint.org/docs/install/#platforms.	Then,	install
WeasyPrint	via	pip	using	the	following	command:

pip	install	WeasyPrint==0.42.3

http://weasyprint.org/docs/install/#platforms

Creating	a	PDF	template
We	need	an	HTML	document	as	input	for	WeasyPrint.	We	are
going	to	create	an	HTML	template,	render	it	using	Django,	and	pass
it	to	WeasyPrint	to	generate	the	PDF	file.

Create	a	new	template	file	inside	the	templates/orders/order/	directory	of
the	orders	application	and	name	it	pdf.html.	Add	the	following	code	to
it:

<html>	

<body>	

		<h1>My	Shop</h1>	

		<p>	

				Invoice	no.	{{	order.id	}}</br>	

					

						{{	order.created|date:"M	d,	Y"	}}	

					

		</p>	

	

		<h3>Bill	to</h3>	

		<p>	

				{{	order.first_name	}}	{{	order.last_name	}}
	

				{{	order.email	}}
	

				{{	order.address	}}
	

				{{	order.postal_code	}},	{{	order.city	}}	

		</p>	

	

		<h3>Items	bought</h3>	

		<table>	

				<thead>	

						<tr>	

								<th>Product</th>	

								<th>Price</th>	

								<th>Quantity</th>	

								<th>Cost</th>	

						</tr>	

				</thead>	

				<tbody>	

						{%	for	item	in	order.items.all	%}	

								<tr	class="row{%	cycle	"1"	"2"	%}">	

										<td>{{	item.product.name	}}</td>	

										<td	class="num">${{	item.price	}}</td>	

										<td	class="num">{{	item.quantity	}}</td>	

										<td	class="num">${{	item.get_cost	}}</td>	

								</tr>	

						{%	endfor	%}	

						<tr	class="total">	

								<td	colspan="3">Total</td>	

								<td	class="num">${{	order.get_total_cost	}}</td>	

						</tr>	

				</tbody>	

		</table>	

					

			

				{%	if	order.paid	%}Paid{%	else	%}Pending	payment{%	endif	%}	

			

</body>	

</html>	

This	is	the	template	for	the	PDF	invoice.	In	this	template,	we
display	all	order	details	and	an	HTML	<table>	element	including	the
products.	We	also	include	a	message	to	display	if	the	order	has	been
paid	or	the	payment	is	still	pending.

Rendering	PDF	files
We	are	going	to	create	a	view	to	generate	PDF	invoices	for	existing
orders	using	the	administration	site.	Edit	the	views.py	file	inside	the
orders	application	directory	and	add	the	following	code	to	it:

from	django.conf	import	settings

from	django.http	import	HttpResponse

from	django.template.loader	import	render_to_string

import	weasyprint

@staff_member_required

def	admin_order_pdf(request,	order_id):

				order	=	get_object_or_404(Order,	id=order_id)

				html	=	render_to_string('orders/order/pdf.html',

																												{'order':	order})

				response	=	HttpResponse(content_type='application/pdf')

				response['Content-Disposition']	=	'filename=\

								"order_{}.pdf"'.format(order.id)

				weasyprint.HTML(string=html).write_pdf(response,

								stylesheets=[weasyprint.CSS(

												settings.STATIC_ROOT	+	'css/pdf.css')])

				return	response

This	is	the	view	to	generate	a	PDF	invoice	for	an	order.	We	use	the
staff_member_required	decorator	to	make	sure	only	staff	users	can	access
this	view.	We	get	the	Order	object	with	the	given	ID	and	we	use	the
render_to_string()	function	provided	by	Django	to	render
orders/order/pdf.html.	The	rendered	HTML	is	saved	in	the	html	variable.
Then,	we	generate	a	new	HttpResponse	object	specifying	the
application/pdf	content	type	and	including	the	Content-Disposition	header
to	specify	the	filename.	We	use	WeasyPrint	to	generate	a	PDF	file
from	the	rendered	HTML	code	and	write	the	file	to	the	HttpResponse
object.	We	use	the	static	file	css/pdf.css	to	add	CSS	styles	to	the
generated	PDF	file.	We	load	it	from	the	local	path	by	using	the
STATIC_ROOT	setting.	Finally,	we	return	the	generated	response.

If	you	are	missing	the	CSS	styles,	remember	to	copy	the	static	files
located	in	the	static/	directory	of	the	shop	application	to	the	same
location	of	your	project.

Since	we	need	to	use	the	STATIC_ROOT	setting,	we	have	to	add	it	to	our
project.	This	is	the	project's	path	for	static	files	to	reside.	Edit	the
settings.py	file	of	the	myshop	project	and	add	the	following	setting:

STATIC_ROOT	=	os.path.join(BASE_DIR,	'static/')

Then,	run	the	following	command:

python	manage.py	collectstatic

You	should	see	output	that	ends	likes	this:

120	static	files	copied	to	'code/myshop/static'.

The	collectstatic	command	copies	all	static	files	from	your
applications	into	the	directory	defined	in	the	STATIC_ROOT	setting.	This
allows	each	application	to	provide	its	own	static	files	using	a	static/
directory	containing	them.	You	can	also	provide	additional	static
files	sources	in	the	STATICFILES_DIRS	setting.	All	of	the	directories
specified	in	the	STATICFILES_DIRS	list	will	also	be	copied	to	the	STATIC_ROOT
directory	when	collectstatic	is	executed.	Whenever	you
execute	collectstatic	again,	you	will	be	asked	if	you	want	to	override
the	existing	static	files.

Edit	the	urls.py	file	inside	the	orders	application	directory	and	add	the
following	URL	pattern	to	it:

urlpatterns	=	[

				#	...

				path('admin/order/<int:order_id>/pdf/',

									views.admin_order_pdf,

									name='admin_order_pdf'),

]

Now,	we	can	edit	the	admin	list	display	page	for	the	Order	model	to
add	a	link	to	the	PDF	file	for	each	result.	Edit	the	admin.py	file	inside
the	orders	application	and	add	the	following	code	above	the	OrderAdmin
class:

def	order_pdf(obj):

				return	mark_safe('PDF'.format(

								reverse('orders:admin_order_pdf',	args=[obj.id])))

order_pdf.short_description	=	'Invoice'

If	you	specify	a	short_description	attribute	for	your	callable,	Django	will
use	it	for	the	name	of	the	column.

Add	order_pdf	to	the	list_display	attribute	of	the	OrderAdmin	class	as
follows:

class	OrderAdmin(admin.ModelAdmin):

				list_display	=	['id',

																				#	...

																				order_detail,

																				order_pdf]

Open	http://127.0.0.1:8000/admin/orders/order/	in	your	browser.	Each	row
should	now	include	a	PDF	link	like	this:

Click	on	the	PDF	link	for	any	order.	You	should	see	a	generated
PDF	file	like	the	following	one	for	orders	that	have	not	been	paid
yet:

For	paid	orders,	you	will	see	the	following	PDF	file:

Sending	PDF	files	by	email
When	a	payment	is	successful,	we	will	send	an	automatic	email	to
our	customers	including	the	generated	PDF	invoice.	Edit
the	views.py	file	of	the	payment	application	and	add	the	following
imports	to	it:

from	django.template.loader	import	render_to_string

from	django.core.mail	import	EmailMessage

from	django.conf	import	settings

import	weasyprint

from	io	import	BytesIO

Then,	in	the	payment_process	view,	add	the	following	code	after	the
order.save()	line	with	the	same	indentation	level	as	follows:

def	payment_process(request):

				#	...

				if	request.method	==	'POST':

								#	...

								if	result.is_success:

												#	...

												order.save()

												#	create	invoice	e-mail

												subject	=	'My	Shop	-	Invoice	no.	{}'.format(order.id)

												message	=	'Please,	find	attached	the	invoice	for	your	recent\				

												purchase.'

												email	=	EmailMessage(subject,

																																	message,

																																	'admin@myshop.com',

																																	[order.email])

												#	generate	PDF

												html	=	render_to_string('orders/order/pdf.html',	{'order':	

order})

												out	=	BytesIO()

												stylesheets=[weasyprint.CSS(settings.STATIC_ROOT	+	

'css/pdf.css')]

												weasyprint.HTML(string=html).write_pdf(out,

																																																			stylesheets=stylesheets)

												#	attach	PDF	file

												email.attach('order_{}.pdf'.format(order.id),

																									out.getvalue(),

																									'application/pdf')

												#	send	e-mail

												email.send()

												return	redirect('payment:done')

								else:

												return	redirect('payment:canceled')

				else:

								#	...

We	use	the	EmailMessage	class	provided	by	Django	to	create	an	email
object.	Then,	we	render	the	template	into	the	html	variable.	We
generate	the	PDF	file	from	the	rendered	template	and	we	output	it
to	a	BytesIO	instance,	which	is	an	in-memory	bytes	buffer.	Then,	we
attach	the	generated	PDF	file	to	the	EmailMessage	object	using
the	attach()	method,	including	the	contents	of	the	out	buffer,	and
finally	we	send	the	email.

Remember	to	set	up	your	SMTP	settings	in	the	settings.py	file	of	the
project	to	send	emails.	You	can	refer	to	Chapter	2,	Enhancing	Your
Blog	with	Advanced	Features	to	see	a	working	example	for	an
SMTP	configuration.

Now,	you	can	complete	a	new	payment	process	in	order	to	receive
the	PDF	invoice	into	your	email.

Summary
In	this	chapter,	you	integrated	a	payment	gateway	into	your	project.
You	customized	the	Django	administration	site	and	learned	how	to
generate	CSV	and	PDF	files	dynamically.

The	next	chapter	will	give	you	an	insight	into	the
internationalization	and	localization	of	Django	projects.	You	will
also	create	a	coupon	system	and	build	a	product	recommendation
engine.

Extending	Your	Shop
In	the	previous	chapter,	you	learned	how	to	integrate	a	payment
gateway	into	your	shop.	You	also	learned	how	to	generate	CSV	and
PDF	files.	In	this	chapter,	you	will	add	a	coupon	system	to	your
shop.	You	will	learn	how	internationalization	and	localization	work,
and	you	will	build	a	recommendation	engine.

This	chapter	will	cover	the	following	points:

Creating	a	coupon	system	to	apply	discounts

Adding	internationalization	to	your	project

Using	Rosetta	to	manage	translations

Translating	models	using	django-parler

Building	a	product	recommendation	engine

Creating	a	coupon	system
Many	online	shops	give	out	coupons	to	customers	that	can	be
redeemed	for	discounts	on	their	purchases.	An	online	coupon
usually	consists	of	a	code	that	is	given	to	users,	valid	for	a	specific
time	frame.	The	code	can	be	redeemed	one	or	multiple	times.

We	are	going	to	create	a	coupon	system	for	our	shop.	Our	coupons
will	be	valid	for	clients	that	enter	the	coupon	in	a	specific	time
frame.	The	coupons	will	not	have	any	limitations	in	terms	of	the
number	of	times	they	can	be	redeemed,	and	they	will	be	applied	to
the	total	value	of	the	shopping	cart.	For	this	functionality,	we	will
need	to	create	a	model	to	store	the	coupon	code,	a	valid	time	frame,
and	the	discount	to	apply.

Create	a	new	application	inside	the	myshop	project	using	the	following
command:

python	manage.py	startapp	coupons

Edit	the	settings.py	file	of	myshop	and	add	the	application	to	the
INSTALLED_APPS	setting	as	follows:

INSTALLED_APPS	=	[

				#	...

				'coupons.apps.CouponsConfig',

]

The	new	application	is	now	active	in	our	Django	project.

Building	the	coupon	models
Let's	start	by	creating	the	Coupon	model.	Edit	the	models.py	file	of	the
coupons	application	and	add	the	following	code	to	it:

from	django.db	import	models

from	django.core.validators	import	MinValueValidator,	\

																																			MaxValueValidator

class	Coupon(models.Model):

				code	=	models.CharField(max_length=50,

																												unique=True)

				valid_from	=	models.DateTimeField()

				valid_to	=	models.DateTimeField()

				discount	=	models.IntegerField(

																			validators=[MinValueValidator(0),

																															MaxValueValidator(100)])

				active	=	models.BooleanField()

				def	__str__(self):

								return	self.code

This	is	the	model	that	we	are	going	to	use	to	store	coupons.	The
Coupon	model	contains	the	following	fields:

code:	The	code	that	users	have	to	enter	in	order	to	apply	the

coupon	to	their	purchase.

valid_from:	The	datetime	value	that	indicates	when	the	coupon

becomes	valid.

valid_to:	The	datetime	value	that	indicates	when	the	coupon

becomes	invalid.

discount:	The	discount	rate	to	apply	(this	is	a	percentage,	so	it

takes	values	from	0	to	100).	We	use	validators	for	this	field	to

limit	the	minimum	and	maximum	accepted	values.

active:	A	Boolean	that	indicates	whether	the	coupon	is	active.

Run	the	following	command	to	generate	the	initial	migration	for	the
coupons	application:

python	manage.py	makemigrations

The	output	should	include	the	following	lines:

Migrations	for	'coupons':	

		coupons/migrations/0001_initial.py:

				-	Create	model	Coupon

Then,	we	execute	the	next	command	to	apply	migrations:

python	manage.py	migrate

You	should	see	an	output	that	includes	the	following	line:

Applying	coupons.0001_initial...	OK

The	migrations	are	now	applied	in	the	database.	Let's	add	the	Coupon
model	to	the	administration	site.	Edit	the	admin.py	file	of	the	coupons
application	and	add	the	following	code	to	it:

from	django.contrib	import	admin

from	.models	import	Coupon

class	CouponAdmin(admin.ModelAdmin):

				list_display	=	['code',	'valid_from',	'valid_to',

																				'discount',	'active']

				list_filter	=	['active',	'valid_from',	'valid_to']

				search_fields	=	['code']

admin.site.register(Coupon,	CouponAdmin)

The	Coupon	model	is	now	registered	in	the	administration	site.	Ensure
that	your	local	server	is	running	with	the	command	python	manage.py
runserver.	Open	http://127.0.0.1:8000/admin/coupons/coupon/add/	in	your
browser.	You	should	see	the	following	form:

Fill	in	the	form	to	create	a	new	coupon	that	is	valid	for	the	current
date	and	make	sure	that	you	check	the	Active	checkbox	and	click
the	SAVE	button.

Applying	a	coupon	to	the
shopping	cart
We	can	store	new	coupons	and	make	queries	to	retrieve	existing
coupons.	Now	we	need	a	way	for	customers	to	apply	coupons	to
their	purchases.	The	functionality	to	apply	a	coupon	would	be	as
follows:

1.	 The	user	adds	products	to	the	shopping	cart.

2.	 The	user	can	enter	a	coupon	code	in	a	form	displayed	in	the

shopping	cart	detail	page.

3.	 When	a	user	enters	a	coupon	code	and	submits	the	form,	we

look	for	an	existing	coupon	with	the	given	code	that	is

currently	valid.	We	have	to	check	that	the	coupon	code

matches	the	one	entered	by	the	user	that	the	active	attribute

is	True,	and	that	the	current	datetime	is	between	the	valid_from

and	valid_to	values.

4.	 If	a	coupon	is	found,	we	save	it	in	the	user's	session	and

display	the	cart,	including	the	discount	applied	to	it	and	the

updated	total	amount.

5.	 When	the	user	places	an	order,	we	save	the	coupon	to	the

given	order.

Create	a	new	file	inside	the	coupons	application	directory	and	name	it
forms.py.	Add	the	following	code	to	it:

from	django	import	forms

class	CouponApplyForm(forms.Form):

				code	=	forms.CharField()

This	is	the	form	that	we	are	going	to	use	for	the	user	to	enter	a
coupon	code.	Edit	the	views.py	file	inside	the	coupons	application	and
add	the	following	code	to	it:

from	django.shortcuts	import	render,	redirect

from	django.utils	import	timezone

from	django.views.decorators.http	import	require_POST

from	.models	import	Coupon

from	.forms	import	CouponApplyForm

@require_POST

def	coupon_apply(request):

				now	=	timezone.now()

				form	=	CouponApplyForm(request.POST)

				if	form.is_valid():

								code	=	form.cleaned_data['code']

								try:

												coupon	=	Coupon.objects.get(code__iexact=code,

																																								valid_from__lte=now,

																																								valid_to__gte=now,

																																								active=True)

												request.session['coupon_id']	=	coupon.id

								except	Coupon.DoesNotExist:

												request.session['coupon_id']	=	None

				return	redirect('cart:cart_detail')

The	coupon_apply	view	validates	the	coupon	and	stores	it	in	the	user's
session.	We	apply	the	require_POST	decorator	to	this	view	to	restrict	it
to	POST	requests.	In	the	view,	we	perform	the	following	tasks:

1.	 We	instantiate	the	CouponApplyForm	form	using	the	posted	data

and	we	check	that	the	form	is	valid.

2.	 If	the	form	is	valid,	we	get	the	code	entered	by	the	user	from

the	form's	cleaned_data	dictionary.	We	try	to	retrieve	the	Coupon

object	with	the	given	code.	We	use	the	iexact	field	lookup	to

perform	a	case-insensitive	exact	match.	The	coupon	has	to

be	currently	active	(active=True)	and	valid	for	the	current

datetime.	We	use	Django's	timezone.now()	function	to	get	the

current	time	zone-aware	datetime	and	we	compare	it	with

the	valid_from	and	valid_to	fields	performing	lte	(less	than	or

equal	to)	and	gte	(greater	than	or	equal	to)	field	lookups,

respectively.

3.	 We	store	the	coupon	ID	in	the	user's	session.

4.	 We	redirect	the	user	to	the	cart_detail	URL	to	display	the	cart

with	the	coupon	applied.

We	need	a	URL	pattern	for	the	coupon_apply	view.	Create	a	new	file
inside	the	coupons	application	directory	and	name	it	urls.py.	Add	the
following	code	to	it:

from	django.urls	import	path

from	.	import	views

app_name	=	'coupons'

urlpatterns	=	[

				path('apply/',	views.coupon_apply,	name='apply'),

]

Then,	edit	the	main	urls.py	of	the	myshop	project	and	include	the	coupons
URL	patterns	as	follows:

urlpatterns	=	[

				#	...

				path('coupons/',	include('coupons.urls',	namespace='coupons')),

				path('',	include('shop.urls',	namespace='shop')),

]

Remember	to	place	this	pattern	before	the	shop.urls	pattern.

Now,	edit	the	cart.py	file	of	the	cart	application.	Include	the	following
import:

from	coupons.models	import	Coupon

Add	the	following	code	to	the	end	of	the	__init__()	method	of	the	Cart
class	to	initialize	the	coupon	from	the	current	session:

class	Cart(object):

				def	__init__(self,	request):

								#	...

								#	store	current	applied	coupon

								self.coupon_id	=	self.session.get('coupon_id')

In	this	code,	we	try	to	get	the	coupon_id	session	key	from	the	current
session	and	store	its	value	in	the	Cart	object.	Add	the	following
methods	to	the	Cart	object:

class	Cart(object):

				#	...

				@property

				def	coupon(self):

								if	self.coupon_id:

												return	Coupon.objects.get(id=self.coupon_id)

								return	None

				def	get_discount(self):

								if	self.coupon:

												return	(self.coupon.discount	/	Decimal('100'))	\

																*	self.get_total_price()

								return	Decimal('0')

				def	get_total_price_after_discount(self):

								return	self.get_total_price()	-	self.get_discount()

These	methods	are	as	follows:

coupon():	We	define	this	method	as	property.	If	the	cart	contains

a	coupon_id	attribute,	the	Coupon	object	with	the	given	ID	is

returned.

get_discount():	If	the	cart	contains	a	coupon,	we	retrieve	its

discount	rate	and	return	the	amount	to	be	deducted	from

the	total	amount	of	the	cart.

get_total_price_after_discount():	We	return	the	total	amount	of

the	cart	after	deducting	the	amount	returned	by	the

get_discount()	method.

The	Cart	class	is	now	prepared	to	handle	a	coupon	applied	to	the
current	session	and	apply	the	corresponding	discount.

Let's	include	the	coupon	system	in	the	cart's	detail	view.	Edit	the
views.py	file	of	the	cart	application	and	add	the	following	import	at	the
top	of	the	file:

from	coupons.forms	import	CouponApplyForm

Further	down,	edit	the	cart_detail	view	and	add	the	new	form	to	it	as
follows:

def	cart_detail(request):

				cart	=	Cart(request)

				for	item	in	cart:

								item['update_quantity_form']	=	CartAddProductForm(

																										initial={'quantity':	item['quantity'],

																										'update':	True})

				coupon_apply_form	=	CouponApplyForm()

				return	render(request,

																		'cart/detail.html',

																		{'cart':	cart,

																			'coupon_apply_form':	coupon_apply_form})

Edit	the	cart/detail.html	template	of	the	cart	application	and	locate	the
following	lines:

<tr	class="total">

		<td>Total</td>

		<td	colspan="4"></td>

		<td	class="num">${{	cart.get_total_price	}}</td>

</tr>

Replace	them	with	the	following:

{%	if	cart.coupon	%}

		<tr	class="subtotal">

				<td>Subtotal</td>

				<td	colspan="4"></td>

				<td	class="num">${{	cart.get_total_price|floatformat:"2"	}}</td>

		</tr>

		<tr>

				<td>

						"{{	cart.coupon.code	}}"	coupon	

						({{	cart.coupon.discount	}}%	off)

				</td>

				<td	colspan="4"></td>

				<td	class="num	neg">

						-	${{	cart.get_discount|floatformat:"2"	}}

				</td>

		</tr>

{%	endif	%}

<tr	class="total">

		<td>Total</td>

		<td	colspan="4"></td>

		<td	class="num">

				${{	cart.get_total_price_after_discount|floatformat:"2"	}}

		</td>

</tr>

This	is	the	code	for	displaying	an	optional	coupon	and	its	discount
rate.	If	the	cart	contains	a	coupon,	we	display	a	first	row,	including
the	total	amount	of	the	cart	as	the	subtotal.	Then	we	use	a	second
row	to	display	the	current	coupon	applied	to	the	cart.	Finally,	we
display	the	total	price	including	any	discount	by	calling	the
get_total_price_after_discount()	method	of	the	cart	object.

In	the	same	file,	include	the	following	code	after	the	</table>	HTML
tag:

<p>Apply	a	coupon:</p>

<form	action="{%	url	"coupons:apply"	%}"	method="post">

		{{	coupon_apply_form	}}

		<input	type="submit"	value="Apply">

		{%	csrf_token	%}

</form>

This	will	display	the	form	to	enter	a	coupon	code	and	apply	it	to	the
current	cart.

Open	http://127.0.0.1:8000/	in	your	browser,	add	a	product	to	the	cart,
and	apply	the	coupon	you	created	by	entering	its	code	in	the	form.
You	should	see	that	the	cart	displays	the	coupon	discount	as
follows:

Let's	add	the	coupon	to	the	next	step	of	the	purchase	process.	Edit
the	orders/order/create.html	template	of	the	orders	application	and
locate	the	following	lines:

		{%	for	item	in	cart	%}

				

						{{	item.quantity	}}x	{{	item.product.name	}}	

						${{	item.total_price	}}

				

		{%	endfor	%}

Replace	them	with	the	following	code:

		{%	for	item	in	cart	%}

				

						{{	item.quantity	}}x	{{	item.product.name	}}	

						${{	item.total_price|floatformat:"2"	}}

				

		{%	endfor	%}

		{%	if	cart.coupon	%}

				

						"{{	cart.coupon.code	}}"	({{	cart.coupon.discount	}}%	off)

						-	${{	cart.get_discount|floatformat:"2"	}}

				

		{%	endif	%}

The	order	summary	should	now	include	the	coupon	applied,	if	there
is	one.	Now	find	the	following	line:

<p>Total:	${{	cart.get_total_price	}}</p>

Replace	it	with	the	following:

<p>Total:	${{	cart.get_total_price_after_discount|floatformat:"2"	}}</p>

By	doing	so,	the	total	price	will	also	be	calculated	by	applying	the
discount	of	the	coupon.

Open	http://127.0.0.1:8000/orders/create/	in	your	browser.	You	should	see
that	the	order	summary	includes	the	applied	coupon	as	follows:

Users	can	now	apply	coupons	to	their	shopping	cart.	However,	we
still	need	to	store	coupon	information	in	the	order	that	is	created
when	users	check	out	the	cart.

Applying	coupons	to	orders
We	are	going	to	store	the	coupon	that	was	applied	to	each	order.
First,	we	need	to	modify	the	Order	model	to	store	the	related	Coupon
object,	if	there	is	any.

Edit	the	models.py	file	of	the	orders	application	and	add	the	following
imports	to	it:

from	decimal	import	Decimal

from	django.core.validators	import	MinValueValidator,	\

																																			MaxValueValidator

from	coupons.models	import	Coupon

Then,	add	the	following	fields	to	the	Order	model:

class	Order(models.Model):

			#	...

				coupon	=	models.ForeignKey(Coupon,

																															related_name='orders',

																															null=True,

																															blank=True,

																															on_delete=models.SET_NULL)

				discount	=	models.IntegerField(default=0,

																																			validators=[MinValueValidator(0),

																																															MaxValueValidator(100)])

These	fields	allow	us	to	store	an	optional	coupon	for	the	order	and
the	discount	percentage	applied	with	the	coupon.	The	discount	is
stored	in	the	related	Coupon	object,	but	we	include	it	in	the	Order	model
to	preserve	it	if	the	coupon	is	modified	or	deleted.	We	set	on_delete	to
models.SET_NULL	so	that	if	the	coupon	gets	deleted,	the	coupon	field	is	set
to	Null.

We	need	to	create	a	migration	to	include	the	new	fields	of	the	Order

model.	Run	the	following	command	from	the	command	line:

python	manage.py	makemigrations

You	should	see	an	output	like	the	following:

Migrations	for	'orders':

		orders/migrations/0003_auto_20180307_2202.py:

				-	Add	field	coupon	to	order

				-	Add	field	discount	to	order

Apply	the	new	migration	with	the	following	command:

python	manage.py	migrate	orders

You	should	see	a	confirmation	indicating	that	the	new	migration
has	been	applied.	The	Order	model	field	changes	are	now	synced	with
the	database.

Go	back	to	the	models.py	file	and	change	the	get_total_cost()	method	of
the	Order	model	as	follows:

class	Order(models.Model):

				#	...

				def	get_total_cost(self):

								total_cost	=	sum(item.get_cost()	for	item	in	self.items.all())

								return	total_cost	-	total_cost	*	\

												(self.discount	/	Decimal('100'))

The	get_total_cost()	method	of	the	Order	model	will	now	take	into
account	the	discount	applied	if	there	is	one.

Edit	the	views.py	file	of	the	orders	application	and	modify	the
order_create	view	to	save	the	related	coupon	and	its	discount	when
creating	a	new	order.	Find	the	following	line:

order	=	form.save()

Replace	it	with	the	following:

order	=	form.save(commit=False)

if	cart.coupon:

				order.coupon	=	cart.coupon

				order.discount	=	cart.coupon.discount

order.save()

In	the	new	code,	we	create	an	Order	object	using	the	save()	method	of
the	OrderCreateForm	form.	We	avoid	saving	it	to	the	database	yet	by
using	commit=False.	If	the	cart	contains	a	coupon,	we	store	the	related
coupon	and	the	discount	that	was	applied.	Then	we	save	the	order
object	to	the	database.

Make	sure	the	development	server	is	running	with	the	command
python	manage.py	runserver.

Open	http://127.0.0.1:8000/	in	your	browser	and	complete	a	purchase
using	the	coupon	you	created.	When	you	finish	a	successful
purchase,	you	can	go	to	http://127.0.0.1:8000/admin/orders/order/	and	check
that	the	order	object	contains	the	coupon	and	the	applied	discount
as	follows:

You	can	also	modify	the	admin	order	detail	template	and	the	order
PDF	bill	to	display	the	applied	coupon	the	same	way	we	did	for	the
cart.

Next,	we	are	going	to	add	internationalization	to	our	project.

Adding	internationalization	and
localization
Django	offers	full	internationalization	and	localization	support.	It
allows	you	to	translate	your	application	into	multiple	languages	and
it	handles	locale-specific	formatting	for	dates,	times,	numbers,	and
time	zones.	Let's	clarify	the	difference	between	internationalization
and	localization.	Internationalization	(frequently	abbreviated	to
i18n)	is	the	process	of	adapting	software	for	the	potential	use	of
different	languages	and	locales,	so	that	it	isn't	hardwired	to	a
specific	language	or	locale.	Localization	(abbreviated	to	l10n)	is
the	process	of	actually	translating	the	software	and	adapting	it	to	a
particular	locale.	Django	itself	is	translated	into	more	than	50
languages	using	its	internationalization	framework.

Internationalization	with
Django
The	internationalization	framework	allows	you	to	easily	mark
strings	for	translation	both	in	Python	code	and	in	your	templates.	It
relies	on	the	GNU	gettext	toolset	to	generate	and	manage	message
files.	A	message	file	is	a	plain	text	file	that	represents	a	language.
It	contains	a	part,	or	all,	of	the	translation	strings	found	in	your
application	and	their	respective	translations	for	a	single	language.
Message	files	have	the	.po	extension.

Once	the	translation	is	done,	message	files	are	compiled	to	offer
rapid	access	to	translated	strings.	The	compiled	translation	files
have	the	.mo	extension.

Internationalization	and
localization	settings
Django	provides	several	settings	for	internationalization.	The
following	settings	are	the	most	relevant	ones:

USE_I18N:	A	Boolean	that	specifies	whether	Django's

translation	system	is	enabled.	This	is	True	by	default.

USE_L10N:	A	Boolean	indicating	whether	localized	formatting	is

enabled.	When	active,	localized	formats	are	used	to

represent	dates	and	numbers.	This	is	False	by	default.

USE_TZ:	A	Boolean	that	specifies	whether	datetimes	are	time

zone-aware.	When	you	create	a	project	with	the	startproject

command,	this	is	set	to	True.

LANGUAGE_CODE:	The	default	language	code	for	the	project.	This	is

in	standard	language	ID	format,	for	example,	'en-us'	for

American	English,	or	'en-gb'	for	British	English.	This	setting

requires	USE_I18N	to	be	set	to	True	in	order	to	take	effect.	You

can	find	a	list	of	valid	language	IDs	at

http://www.i18nguy.com/unicode/language-identifiers.html.

LANGUAGES:	A	tuple	that	contains	available	languages	for	the

project.	They	come	in	two	tuples	of	a	language	code	and

language	name.	You	can	see	the	list	of	available	languages

at	django.conf.global_settings.	When	you	choose	which	languages

your	site	will	be	available	in,	you	set	LANGUAGES	to	a	subset	of

http://www.i18nguy.com/unicode/language-identifiers.html

that	list.

LOCALE_PATHS:	A	list	of	directories	where	Django	looks	for

message	files	containing	translations	for	this	project.

TIME_ZONE:	A	string	that	represents	the	time	zone	for	the

project.	This	is	set	to	'UTC'	when	you	create	a	new	project

using	the	startproject	command.	You	can	set	it	to	any	other

time	zone,	such	as	'Europe/Madrid'.

These	are	some	of	the	internationalization	and	localization	settings
available.	You	can	find	the	full	list	at	https://docs.djangoproject.com/en/2.0/
ref/settings/#globalization-i18n-l10n.

https://docs.djangoproject.com/en/2.0/ref/settings/#globalization-i18n-l10n

Internationalization
management	commands
Django	includes	the	following	management	commands	to	manage
translations:

makemessages:	This	runs	over	the	source	tree	to	find	all	strings

marked	for	translation	and	creates	or	updates	the	.po

message	files	in	the	locale	directory.	A	single	.po	file	is	created

for	each	language.

compilemessages:	This	compiles	the	existing	.po	message	files	to

.mo	files	that	are	used	to	retrieve	translations.

You	will	need	the	gettext	toolkit	to	be	able	to	create,	update,	and
compile	message	files.	Most	Linux	distributions	include	the	gettext
toolkit.	If	you	are	using	macOS	X,	probably	the	simplest	way	to
install	it	is	via	Homebrew	at	https://brew.sh/	with	the	command	brew
install	gettext.	You	might	also	need	to	force	link	it	with	the	command
brew	link	gettext	--force.	For	Windows,	follow	the	steps	at	https://docs.dja
ngoproject.com/en/2.0/topics/i18n/translation/#gettext-on-windows.

https://brew.sh/
https://docs.djangoproject.com/en/2.0/topics/i18n/translation/#gettext-on-windows

How	to	add	translations	to	a
Django	project
Let's	take	a	look	at	the	process	to	internationalize	our	project.	We
will	need	to	do	the	following:

1.	 Mark	strings	for	translation	in	our	Python	code	and	our

templates

2.	 Run	the	makemessages	command	to	create	or	update	message

files	that	include	all	translation	strings	from	our	code

3.	 Translate	the	strings	contained	in	the	message	files	and

compile	them	using	the	compilemessages	management	command

How	Django	determines	the
current	language
Django	comes	with	a	middleware	that	determines	the	current
language	based	on	request	data.	This	is	the	LocaleMiddleware
middleware	that	resides	in	django.middleware.locale.	LocaleMiddleware
performs	the	following	tasks:

1.	 If	you	are	using	i18_patterns,	that	is,	you	use	translated	URL

patterns,	it	looks	for	a	language	prefix	in	the	requested	URL

to	determine	the	current	language.

2.	 If	no	language	prefix	is	found,	it	looks	for	an	existing

LANGUAGE_SESSION_KEY	in	the	current	user's	session.

3.	 If	the	language	is	not	set	in	the	session,	it	looks	for	an

existing	cookie	with	the	current	language.	A	custom	name

for	this	cookie	can	be	provided	in	the	LANGUAGE_COOKIE_NAME

setting.	By	default,	the	name	for	this	cookie	is	django_language.

4.	 If	no	cookie	is	found,	it	looks	for	the	Accept-Language	HTTP

header	of	the	request.

5.	 If	the	Accept-Language	header	does	not	specify	a	language,

Django	uses	the	language	defined	in	the	LANGUAGE_CODE	setting.

By	default,	Django	will	use	the	language	defined	in	the	LANGUAGE_CODE
setting	unless	you	are	using	LocaleMiddleware.	The	process	described
here	only	applies	when	using	this	middleware.

Preparing	our	project	for
internationalization
Let's	prepare	our	project	to	use	different	languages.	We	are	going	to
create	an	English	and	a	Spanish	version	for	our	shop.	Edit	the
settings.py	file	of	your	project	and	add	the	following	LANGUAGES	setting	to
it.	Place	it	next	to	the	LANGUAGE_CODE	setting:

LANGUAGES	=	(

				('en',	'English'),

				('es',	'Spanish'),

)

The	LANGUAGES	setting	contains	two	tuples	that	consist	of	a	language
code	and	a	name.	Language	codes	can	be	locale-specific,	such	as	en-
us	or	en-gb,	or	generic,	such	as	en.	With	this	setting,	we	specify	that
our	application	will	only	be	available	in	English	and	Spanish.	If	we
don't	define	a	custom	LANGUAGES	setting,	the	site	will	be	available	in	all
the	languages	that	Django	is	translated	into.

Make	your	LANGUAGE_CODE	setting	look	as	follows:

LANGUAGE_CODE	=	'en'

Add	'django.middleware.locale.LocaleMiddleware'	to	the	MIDDLEWARE	setting.
Make	sure	that	this	middleware	comes	after	SessionMiddleware	because
LocaleMiddleware	needs	to	use	session	data.	It	also	has	to	be	placed
before	CommonMiddleware	because	the	latter	needs	an	active	language	to
resolve	the	requested	URL.	The	MIDDLEWARE	setting	should	now	look	as
follows:

MIDDLEWARE	=	[

				'django.middleware.security.SecurityMiddleware',

				'django.contrib.sessions.middleware.SessionMiddleware',

				'django.middleware.locale.LocaleMiddleware',

				'django.middleware.common.CommonMiddleware',

				#	...

]

The	order	of	middleware	classes	is	very	important	because	each	middleware
can	depend	on	data	set	by	other	middleware	executed	previously.
Middleware	is	applied	for	requests	in	order	of	appearance	in	MIDDLEWARE,	and	in
reverse	order	for	responses.

Create	the	following	directory	structure	inside	the	main	project
directory,	next	to	the	manage.py	file:

locale/

				en/

				es/

The	locale	directory	is	the	place	where	message	files	for	your
application	will	reside.	Edit	the	settings.py	file	again	and	add	the
following	setting	to	it:

LOCALE_PATHS	=	(

				os.path.join(BASE_DIR,	'locale/'),

)

The	LOCALE_PATHS	setting	specifies	the	directories	where	Django	has	to
look	for	translation	files.	Locale	paths	that	appear	first	have	the
highest	precedence.

When	you	use	the	makemessages	command	from	your	project	directory,
message	files	will	be	generated	in	the	locale/	path	we	created.
However,	for	applications	that	contain	a	locale/	directory,	message
files	will	be	generated	in	that	directory.

Translating	Python	code
To	translate	literals	in	your	Python	code,	you	can	mark	strings	for
translation	using	the	gettext()	function	included	in
django.utils.translation.	This	function	translates	the	message	and
returns	a	string.	The	convention	is	to	import	this	function	as	a
shorter	alias	named	_	(underscore	character).

You	can	find	all	the	documentation	about	translations	at	https://docs.
djangoproject.com/en/2.0/topics/i18n/translation/.

https://docs.djangoproject.com/en/2.0/topics/i18n/translation/

Standard	translations
The	following	code	shows	how	to	mark	a	string	for	translation:

from	django.utils.translation	import	gettext	as	_

output	=	_('Text	to	be	translated.')

Lazy	translations
Django	includes	lazy	versions	for	all	of	its	translation	functions,
which	have	the	suffix	_lazy().	When	using	the	lazy	functions,	strings
are	translated	when	the	value	is	accessed,	rather	than	when	the
function	is	called	(this	is	why	they	are	translated	lazily).	The	lazy
translation	functions	come	in	handy	when	strings	marked	for
translation	are	in	paths	that	are	executed	when	modules	are	loaded.

Using	gettext_lazy()	instead	of	gettext(),	strings	are	translated	when	the	value	is
accessed	rather	than	when	the	function	is	called.	Django	offers
a	lazy	version	for	all	translation	functions.

Translations	including
variables
The	strings	marked	for	translation	can	include	placeholders	to
include	variables	in	the	translations.	The	following	code	is	an
example	of	a	translation	string	with	a	placeholder:

from	django.utils.translation	import	gettext	as	_

month	=	_('April')

day	=	'14'

output	=	_('Today	is	%(month)s	%(day)s')	%	{'month':	month,

																																												'day':	day}

By	using	placeholders,	you	can	reorder	the	text	variables.	For
example,	an	English	translation	of	the	previous	example	might	be
"Today	is	April	14",	while	the	Spanish	one	is	"Hoy	es	14	de	Abril".
Always	use	string	interpolation	instead	of	positional	interpolation
when	you	have	more	than	one	parameter	for	the	translation	string.
By	doing	so,	you	will	be	able	to	reorder	the	placeholder	text.

Plural	forms	in	translations
For	plural	forms,	you	can	use	ngettext()	and	ngettext_lazy().	These
functions	translate	singular	and	plural	forms	depending	on	an
argument	that	indicates	the	number	of	objects.	The	following
example	shows	how	to	use	them:

output	=	ngettext('there	is	%(count)d	product',

																		'there	are	%(count)d	products',

																		count)	%	{'count':	count}

Now	that	you	know	the	basics	about	translating	literals	in	our
Python	code,	it's	time	to	apply	translations	to	our	project.

Translating	your	own	code
Edit	the	settings.py	file	of	your	project,	import	the	gettext_lazy()
function,	and	change	the	LANGUAGES	setting	as	follows	to	translate	the
language	names:

from	django.utils.translation	import	gettext_lazy	as	_

LANGUAGES	=	(

				('en',	_('English')),

				('es',	_('Spanish')),

)

Here,	we	use	the	gettext_lazy()	function	instead	of	gettext()	to	avoid	a
circular	import,	thus	translating	the	languages'	names	when	they
are	accessed.

Open	the	shell	and	run	the	following	command	from	your	project
directory:

django-admin	makemessages	--all

You	should	see	the	following	output:

processing	locale	es

processing	locale	en

Take	a	look	at	the	locale/	directory.	You	should	see	a	file	structure
like	the	following:

en/

				LC_MESSAGES/

								django.po

es/

				LC_MESSAGES/

								django.po

A	.po	message	file	has	been	created	for	each	language.	Open
es/LC_MESSAGES/django.po	with	a	text	editor.	At	the	end	of	the	file,	you
should	be	able	to	see	the	following:

#:	myshop/settings.py:117

msgid	"English"

msgstr	""

#:	myshop/settings.py:118

msgid	"Spanish"

msgstr	""

Each	translation	string	is	preceded	by	a	comment	showing	details
about	the	file	and	line	where	it	was	found.	Each	translation	includes
two	strings:

msgid:	The	translation	string	as	it	appears	in	the	source	code.

msgstr:	The	language	translation,	which	is	empty	by	default.

This	is	where	you	have	to	enter	the	actual	translation	for	the

given	string.

Fill	in	the	msgstr	translations	for	the	given	msgid	string	as	follows:

#:	myshop/settings.py:117

msgid	"English"

msgstr	"Inglés"

#:	myshop/settings.py:118

msgid	"Spanish"

msgstr	"Español"

Save	the	modified	message	file,	open	the	shell,	and	run	the
following	command:

django-admin	compilemessages

If	everything	goes	well,	you	should	see	an	output	like	the	following:

processing	file	django.po	in	myshop/locale/en/LC_MESSAGES

processing	file	django.po	in	myshop/locale/es/LC_MESSAGES

The	output	gives	you	information	about	the	message	files	that	are
being	compiled.	Take	a	look	at	the	locale	directory	of	the	myshop
project	again.	You	should	see	the	following	files:

en/

				LC_MESSAGES/

								django.mo

								django.po

es/

				LC_MESSAGES/

								django.mo

								django.po

You	can	see	that	a	.mo	compiled	message	file	has	been	generated	for
each	language.

We	have	translated	the	language	names	themselves.	Now	let's
translate	the	model	field	names	that	are	displayed	in	the	site.	Edit
the	models.py	file	of	the	orders	application	and	add	names	marked	for
translation	for	the	Order	model	fields	as	follows:

from	django.utils.translation	import	gettext_lazy	as	_

class	Order(models.Model):

				first_name	=	models.CharField(_('first	name'),

																																		max_length=50)

				last_name	=	models.CharField(_('last	name'),

																																	max_length=50)

				email	=	models.EmailField(_('e-mail'))

				address	=	models.CharField(_('address'),

																															max_length=250)

				postal_code	=	models.CharField(_('postal	code'),

																																			max_length=20)

				city	=	models.CharField(_('city'),

																												max_length=100)

				#	...

We	have	added	names	for	the	fields	that	are	displayed	when	a	user
is	placing	a	new	order.	These	are	first_name,	last_name,	email,	address,
postal_code,	and	city.	Remember	that	you	can	also	use	the	verbose_name
attribute	to	name	the	fields.

Create	the	following	directory	structure	inside	the	orders	application
directory:

locale/

				en/

				es/

By	creating	a	locale	directory,	translation	strings	of	this	application
will	be	stored	in	a	message	file	under	this	directory	instead	of	the
main	messages	file.	In	this	way,	you	can	generate	separated
translation	files	for	each	application.

Open	the	shell	from	the	project	directory	and	run	the	following
command:

django-admin	makemessages	--all

You	should	see	the	following	output:

processing	locale	es

processing	locale	en

Open	the	locale/es/LC_MESSAGES/django.po	file	of	the	order	application	using
a	text	editor.	You	will	see	the	translation	strings	for	the	Order	model.
Fill	in	the	following	msgstr	translations	for	the	given	msgid	strings:

#:	orders/models.py:10

msgid	"first	name"

msgstr	"nombre"

#:	orders/models.py:11

msgid	"last	name"

msgstr	"apellidos"

#:	orders/models.py:12

msgid	"e-mail"

msgstr	"e-mail"

#:	orders/models.py:13

msgid	"address"

msgstr	"dirección"

#:	orders/models.py:14

msgid	"postal	code"

msgstr	"código	postal"

#:	orders/models.py:15

msgid	"city"

msgstr	"ciudad"

After	you	have	finished	adding	the	translations,	save	the	file.

Besides	a	text	editor,	you	can	use	Poedit	to	edit	translations.	Poedit
is	a	software	to	edit	translations,	and	it	uses	gettext.	It	is	available
for	Linux,	Windows,	and	macOS	X.	You	can	download	Poedit	from	h
ttps://poedit.net/.

Let's	also	translate	the	forms	of	our	project.	OrderCreateForm	of	the	orders
application	does	not	have	to	be	translated,	since	it	is	ModelForm	and	it
uses	the	verbose_name	attribute	of	the	Order	model	fields	for	the	form
field	labels.	We	are	going	to	translate	the	forms	of	cart	and	coupons
applications.

Edit	the	forms.py	file	inside	the	cart	application	directory	and	add	a
label	attribute	to	the	quantity	field	of	the	CartAddProductForm,	and	then
mark	this	field	for	translation	as	follows:

from	django	import	forms

from	django.utils.translation	import	gettext_lazy	as	_

https://poedit.net/

PRODUCT_QUANTITY_CHOICES	=	[(i,	str(i))	for	i	in	range(1,	21)]

class	CartAddProductForm(forms.Form):

				quantity	=	forms.TypedChoiceField(

																																choices=PRODUCT_QUANTITY_CHOICES,

																																coerce=int,

																																label=_('Quantity'))

				update	=	forms.BooleanField(required=False,

																																initial=False,

																																widget=forms.HiddenInput)

Edit	the	forms.py	file	of	the	coupons	application	and	translate	the
CouponApplyForm	form	as	follows:

from	django	import	forms

from	django.utils.translation	import	gettext_lazy	as	_

class	CouponApplyForm(forms.Form):

				code	=	forms.CharField(label=_('Coupon'))

We	have	added	a	label	to	the	code	field	and	marked	it	for	translation.

Translating	templates
Django	offers	the	{%	trans	%}	and	{%	blocktrans	%}	template	tags	to
translate	strings	in	templates.	In	order	to	use	the	translation
template	tags,	you	have	to	add	{%	load	i18n	%}	at	the	top	of	your
template	to	load	them.

The	{%	trans	%}	template	tag
The	{%	trans	%}	template	tag	allows	you	to	mark	a	string,	a	constant,
or	variable	content	for	translation.	Internally,	Django	executes
gettext()	on	the	given	text.	This	is	how	to	mark	a	string	for
translation	in	a	template:

{%	trans	"Text	to	be	translated"	%}

You	can	use	as	to	store	the	translated	content	in	a	variable	that	you
can	use	throughout	your	template.	The	following	example	stores	the
translated	text	in	a	variable	called	greeting:

{%	trans	"Hello!"	as	greeting	%}

<h1>{{	greeting	}}</h1>

The	{%	trans	%}	tag	is	useful	for	simple	translation	strings,	but	it
cannot	handle	content	for	translation	that	includes	variables.

The	{%	blocktrans	%}	template
tag
The	{%	blocktrans	%}	template	tag	allows	you	to	mark	content	that
includes	literals	and	variable	content	using	placeholders.	The
following	example	shows	you	how	to	use	the	{%	blocktrans	%}	tag,
including	a	name	variable	in	the	content	for	translation:

{%	blocktrans	%}Hello	{{	name	}}!{%	endblocktrans	%}

You	can	use	with	to	include	template	expressions	such	as	accessing
object	attributes	or	applying	template	filters	to	variables.	You
always	have	to	use	placeholders	for	these.	You	cannot	access
expressions	or	object	attributes	inside	the	blocktrans	block.	The
following	example	shows	you	how	to	use	with	to	include	an	object
attribute	to	which	the	capfirst	filter	is	applied:

{%	blocktrans	with	name=user.name|capfirst	%}

		Hello	{{	name	}}!

{%	endblocktrans	%}

Use	the	{%	blocktrans	%}	tag	instead	of	{%	trans	%}	when	you	need	to	include
variable	content	in	your	translation	string.

Translating	the	shop	templates
Edit	the	shop/base.html	template	of	the	shop	application.	Make	sure	that
you	load	the	i18n	tag	at	the	top	of	the	template	and	mark	strings	for
translation	as	follows:

{%	load	i18n	%}

{%	load	static	%}

<!DOCTYPE	html>

<html>

<head>

		<meta	charset="utf-8"	/>

		<title>

				{%	block	title	%}{%	trans	"My	shop"	%}{%	endblock	%}

		</title>

		<link	href="{%	static	"css/base.css"	%}"	rel="stylesheet">

</head>

<body>

		<div	id="header">

				{%	trans	"My	shop"	%}

		</div>

		<div	id="subheader">

				<div	class="cart">

						{%	with	total_items=cart|length	%}

								{%	if	cart|length	>	0	%}

										{%	trans	"Your	cart"	%}:

										

												{%	blocktrans	with	total_items_plural=total_items|pluralize	

													total_price=cart.get_total_price	%}

														{{	total_items	}}	item{{	total_items_plural	}},

														${{	total_price	}}

												{%	endblocktrans	%}

										

								{%	else	%}

										{%	trans	"Your	cart	is	empty."	%}

								{%	endif	%}

						{%	endwith	%}

				</div>

		</div>

		<div	id="content">

				{%	block	content	%}

				{%	endblock	%}

		</div>

</body>

</html>

Notice	the	{%	blocktrans	%}	tag	to	display	the	cart's	summary.	The
cart's	summary	was	previously	as	follows:

{{	total_items	}}	item{{	total_items|pluralize	}},	

${{	cart.get_total_price	}}

We	used	{%	blocktrans	with	...	%}	to	set	up	placeholders	for
total_items|pluralize	(template	tag	applied	here)	and
cart.get_total_price	(object	method	called	here),	resulting	in	the
following:

{%	blocktrans	with	total_items_plural=total_items|pluralize

	total_price=cart.get_total_price	%}

		{{	total_items	}}	item{{	total_items_plural	}},	

		${{	total_price	}}

{%	endblocktrans	%}

Next,	edit	the	shop/product/detail.html	template	of	the	shop	application
and	load	the	i18n	tags	at	the	top	of	it,	but	after	the	{%	extends	%}	tag,
which	always	has	to	be	the	first	tag	in	the	template:

{%	load	i18n	%}

Then,	find	the	following	line:

<input	type="submit"	value="Add	to	cart">

Replace	it	with	the	following:

<input	type="submit"	value="{%	trans	"Add	to	cart"	%}">

Now,	translate	the	orders	application	templates.	Edit	the

orders/order/create.html	template	of	the	orders	application	and	mark	text
for	translation,	as	follows:

{%	extends	"shop/base.html"	%}

{%	load	i18n	%}

{%	block	title	%}

		{%	trans	"Checkout"	%}

{%	endblock	%}

{%	block	content	%}

		<h1>{%	trans	"Checkout"	%}</h1>

		<div	class="order-info">

				<h3>{%	trans	"Your	order"	%}</h3>

				

						{%	for	item	in	cart	%}

								

										{{	item.quantity	}}x	{{	item.product.name	}}	

										${{	item.total_price	}}

								

						{%	endfor	%}

						{%	if	cart.coupon	%}

								

										{%	blocktrans	with	code=cart.coupon.code

											discount=cart.coupon.discount	%}

												"{{	code	}}"	({{	discount	}}%	off)

										{%	endblocktrans	%}

										-	${{	cart.get_discount|floatformat:"2"	}}

								

						{%	endif	%}

				

				<p>{%	trans	"Total"	%}:	${{		

				cart.get_total_price_after_discount|floatformat:"2"	}}</p>

		</div>

		<form	action="."	method="post"	class="order-form">

				{{	form.as_p	}}

				<p><input	type="submit"	value="{%	trans	"Place	order"	%}"></p>

				{%	csrf_token	%}

		</form>

{%	endblock	%}

Take	a	look	at	the	following	files	in	the	code	that	accompany	this
chapter	to	see	how	strings	have	been	marked	for	translation:

The	shop	application:	Template	shop/product/list.html

The	orders	application:	Template	orders/order/created.html

The	cart	application:	Template	cart/detail.html

Let's	update	the	message	files	to	include	the	new	translation	strings.
Open	the	shell	and	run	the	following	command:

django-admin	makemessages	--all

The	.po	files	are	inside	the	locale	directory	of	the	myshop	project	and
you'll	see	that	the	orders	application	now	contains	all	the	strings	that
we	marked	for	translation.

Edit	the	.po	translation	files	of	the	project	and	the	orders	application
and	include	Spanish	translations	in	the	msgstr.	You	can	also	use	the
translated	.po	files	in	the	source	code	that	accompanies	this	chapter.

Run	the	following	command	to	compile	the	translation	files:

django-admin	compilemessages

You	will	see	the	following	output:

processing	file	django.po	in	myshop/locale/en/LC_MESSAGES

processing	file	django.po	in	myshop/locale/es/LC_MESSAGES

processing	file	django.po	in	myshop/orders/locale/en/LC_MESSAGES

processing	file	django.po	in	myshop/orders/locale/es/LC_MESSAGES

A	.mo	file	containing	compiled	translations	has	been	generated	for
each	.po	translation	file.

Using	the	Rosetta	translation
interface
Rosetta	is	a	third-party	application	that	allows	you	to	edit
translations	using	the	same	interface	as	the	Django	administration
site.	Rosetta	makes	it	easy	to	edit	.po	files	and	it	updates	compiled
translation	files.	Let's	add	it	to	our	project.

Install	Rosetta	via	pip	using	this	command:

pip	install	django-rosetta==0.8.1

Then,	add	'rosetta'	to	the	INSTALLED_APPS	setting	in	your
project's	settings.py	file	as	follows:

INSTALLED_APPS	=	[

				#	...

				'rosetta',

]

You	need	to	add	Rosetta's	URLs	to	your	main	URL	configuration.
Edit	the	main	urls.py	file	of	your	project	and	add	the	following	URL
pattern	to	it:

urlpatterns	=	[

				#	...

				path('rosetta/',	include('rosetta.urls')),

				path('',	include('shop.urls',	namespace='shop')),

]

Make	sure	you	place	it	before	the	shop.urls	pattern	to	avoid	undesired
pattern	match.

Open	http://127.0.0.1:8000/admin/	and	log	in	with	a	superuser.	Then,
navigate	to	http://127.0.0.1:8000/rosetta/	in	your	browser.	In
the	Filter	menu,	click	THIRD	PARTY	to	display	all	the	available
message	files,	including	those	that	belong	to
the	orders	application.	You	should	see	a	list	of	existing	languages	as
follows:

Click	the	Myshop	link	under	the	Spanish	section	to	edit	Spanish
translations.	You	should	see	a	list	of	translation	strings	as	follows:

You	can	enter	the	translations	under	the	Spanish	column.	The
OCCURRENCES(S)	column	displays	the	files	and	line	of	code
where	each	translation	string	was	found.

Translations	that	include	placeholders	will	appear	as	follows:

Rosetta	uses	a	different	background	color	to	display	placeholders.
When	you	translate	content,	make	sure	you	keep	placeholders
untranslated.	For	example,	take	the	following	string:

%(total_items)s	item%(total_items_plural)s,	$%(total_price)s

It	is	translated	into	Spanish	as	follows:

%(total_items)s	producto%(total_items_plural)s,	$%(total_price)s

You	can	take	a	look	at	the	source	code	that	comes	along	with	this
chapter	to	use	the	same	Spanish	translations	for	your	project.

When	you	finish	editing	translations,	click	the	Save	and	translate
next	block	button	to	save	the	translations	to	the	.po	file.	Rosetta
compiles	the	message	file	when	you	save	translations,	so	there	is	no
need	for	you	to	run	the	compilemessages	command.	However,	Rosetta
requires	write	access	to	the	locale	directories	to	write	the	message
files.	Make	sure	that	the	directories	have	valid	permissions.

If	you	want	other	users	to	be	able	to	edit	translations,	open
http://127.0.0.1:8000/admin/auth/group/add/	in	your	browser	and	create	a
new	group	named	translators.	Then,	access
http://127.0.0.1:8000/admin/auth/user/	to	edit	the	users	to	whom	you	want
to	grant	permissions	so	that	they	can	edit	translations.	When
editing	a	user,	under	the	Permissions	section,	add	the	translators
group	to	the	Chosen	Groups	for	each	user.	Rosetta	is	only	available
to	superusers	or	users	that	belong	to	the	translators	group.

You	can	read	Rosetta's	documentation	at	https://django-rosetta.readthedo
cs.io/en/latest/.

When	you	add	new	translations	in	your	production	environment,	if	you
serve	Django	with	a	real	web	server,	you	will	have	to	reload	your	server
after	running	the	compilemessages	command,	or	after	saving	the	translations
with	Rosetta	for	changes	to	take	effect.

https://django-rosetta.readthedocs.io/en/latest/

Fuzzy	translations
You	might	have	noticed	that	there	is	a	FUZZY	column	in	Rosetta.
This	is	not	a	Rosetta	feature;	it	is	provided	by	gettext.	If	the	fuzzy
flag	is	active	for	a	translation,	it	will	not	be	included	in	the	compiled
message	files.	This	flag	marks	translation	strings	that	need	to	be
reviewed	by	a	translator.	When	.po	files	are	updated	with	new
translation	strings,	it	is	possible	that	some	translation	strings	are
automatically	flagged	as	fuzzy.	This	happens	when	gettext	finds	some
msgid	that	has	been	slightly	modified.	gettext	pairs	it	with	what	it
thinks	was	the	old	translation	and	flags	it	as	fuzzy	for	review.	The
translator	should	then	review	fuzzy	translations,	remove	the	fuzzy
flag,	and	compile	the	translation	file	again.

URL	patterns	for
internationalization
Django	offers	internationalization	capabilities	for	URLs.	It	includes
two	main	features	for	internationalized	URLs:

Language	prefix	in	URL	patterns:	Adding	a	language

prefix	to	URLs	to	serve	each	language	version	under	a

different	base	URL

Translated	URL	patterns:	Translating	URL	patterns	so

that	every	URL	is	different	for	each	language

A	reason	for	translating	URLs	is	to	optimize	your	site	for	search
engines.	By	adding	a	language	prefix	to	your	patterns,	you	will	be
able	to	index	a	URL	for	each	language	instead	of	a	single	URL	for	all
of	them.	Furthermore,	by	translating	URLs	into	each	language,	you
will	provide	search	engines	with	URLs	that	will	rank	better	for	each
language.

Adding	a	language	prefix	to
URL	patterns
Django	allows	you	to	add	a	language	prefix	to	your	URL	patterns.
For	example,	the	English	version	of	your	site	can	be	served	under	a
path	starting	/en/,	and	the	Spanish	version	/es/.

To	use	languages	in	URL	patterns,	you	have	to	use	the
LocaleMiddleware	provided	by	Django.	The	framework	will	use	it	to
identify	the	current	language	from	the	requested	URL.	You	added	it
previously	to	the	MIDDLEWARE	setting	of	your	project,	so	you	don't	need
to	do	it	now.

Let's	add	a	language	prefix	to	our	URL	patterns.	Edit	the	main
urls.py	file	of	the	myshop	project	and	add	i18n_patterns()	as	follows:

from	django.conf.urls.i18n	import	i18n_patterns

urlpatterns	=	i18n_patterns(

	path('admin/',	admin.site.urls),

	path('cart/',	include('cart.urls',	namespace='cart')),

	path('orders/',	include('orders.urls',	namespace='orders')),

	path('payment/',	include('payment.urls',	namespace='payment')),

	path('coupons/',	include('coupons.urls',	namespace='coupons')),

	path('rosetta/',	include('rosetta.urls')),

	path('',	include('shop.urls',	namespace='shop')),

)

You	can	combine	non-translatable	standard	URL	patterns	and
patterns	under	i18n_patterns	so	that	some	patterns	include	a	language
prefix	and	others	don't.	However,	it's	best	to	use	translated	URLs
only	to	avoid	the	possibility	that	a	carelessly	translated	URL
matches	a	non-translated	URL	pattern.

Run	the	development	server	and	open	http://127.0.0.1:8000/	in	your
browser.	Django	will	perform	the	steps	described	previously	in
the	How	Django	determines	the	current	language	section	to
determine	the	current	language,	and	it	will	redirect	you	to	the
requested	URL,	including	the	language	prefix.	Take	a	look	at	the
URL	in	your	browser;	it	should	now	look	like	http://127.0.0.1:8000/en/.
The	current	language	is	the	one	set	by	the	Accept-Language	header	of
your	browser	if	it	is	Spanish	or	English,	otherwise	the	default
LANGUAGE_CODE	(English)	defined	in	your	settings.

Translating	URL	patterns
Django	supports	translated	strings	in	URL	patterns.	You	can	use	a
different	translation	for	each	language	for	a	single	URL	pattern.
You	can	mark	URL	patterns	for	translation	the	same	way	you	would
do	with	literals,	using	the	ugettext_lazy()	function.

Edit	the	main	urls.py	file	of	the	myshop	project	and	add	translation
strings	to	the	regular	expressions	of	the	URL	patterns	for	the	cart,
orders,	payment,	and	coupons	applications	as	follows:

from	django.utils.translation	import	gettext_lazy	as	_

urlpatterns	=	i18n_patterns(

	path(_('admin/'),	admin.site.urls),

	path(_('cart/'),	include('cart.urls',	namespace='cart')),

	path(_('orders/'),	include('orders.urls',	namespace='orders')),

	path(_('payment/'),	include('payment.urls',	namespace='payment')),

	path(_('coupons/'),	include('coupons.urls',	namespace='coupons')),

	path('rosetta/',	include('rosetta.urls')),

	path('',	include('shop.urls',	namespace='shop')),

)

Edit	the	urls.py	file	of	the	orders	application	and	mark	URL	patterns
for	translation	as	follows:

from	django.utils.translation	import	gettext_lazy	as	_

urlpatterns	=	[

				path(_('create/'),	views.order_create,	name='order_create'),

				#	...

]

Edit	the	urls.py	file	of	the	payment	application	and	change	the	code	to
the	following:

from	django.utils.translation	import	gettext_lazy	as	_

urlpatterns	=	[

				path(_('process/'),	views.payment_process,	name='process'),

				path(_('done/'),	views.payment_done,	name='done'),

				path(_('canceled/'),	views.payment_canceled,	name='canceled'),

]

We	don't	need	to	translate	the	URL	patterns	of	the	shop	application
since	they	are	built	with	variables	and	do	not	include	any	other
literals.

Open	the	shell	and	run	the	next	command	to	update	the	message
files	with	the	new	translations:

django-admin	makemessages	--all

Make	sure	the	development	server	is	running.	Open
http://127.0.0.1:8000/en/rosetta/	in	your	browser	and	click	the	Myshop
link	under	the	Spanish	section.	Now	you	will	see	the	URL	patterns
for	translation.	You	can	click	on	Untranslated	only	to	only	see	the
strings	that	have	not	been	translated	yet.	You	can	now	translate	the
URLs.

Allowing	users	to	switch
language
Since	we	are	serving	content	that	is	available	in	multiple	languages,
we	should	let	our	users	switch	the	site's	language.	We	are	going	to
add	a	language	selector	to	our	site.	The	language	selector	will
consist	of	a	list	of	available	languages,	which	are	displayed	using
links.

Edit	the	shop/base.html	template	of	the	shop	application	and	find	the
following	lines:

<div	id="header">

		{%	trans	"My	shop"	%}

</div>

Replace	them	with	the	following	code:

<div	id="header">

		{%	trans	"My	shop"	%}

		{%	get_current_language	as	LANGUAGE_CODE	%}

		{%	get_available_languages	as	LANGUAGES	%}

		{%	get_language_info_list	for	LANGUAGES	as	languages	%}

		<div	class="languages">

				<p>{%	trans	"Language"	%}:</p>

				<ul	class="languages">

						{%	for	language	in	languages	%}

								

										<a	href="/{{	language.code	}}/"	

										{%	if	language.code	==	LANGUAGE_CODE	%}	class="selected"{%	endif	

%}>

												{{	language.name_local	}}

										

								

						{%	endfor	%}

				

		</div>

</div>

This	is	how	we	build	our	language	selector:

1.	 First,	we	load	the	internationalization	tags	using	{%	load	i18n

%}

2.	 We	use	the	{%	get_current_language	%}	tag	to	retrieve	the	current

language

3.	 We	get	the	languages	defined	in	the	LANGUAGES	setting	using

the	{%	get_available_languages	%}	template	tag

4.	 We	use	the	tag	{%	get_language_info_list	%}	to	provide	easy	access

to	the	language	attributes

5.	 We	build	an	HTML	list	to	display	all	available	languages	and

we	add	a	selected	class	attribute	to	the	current	active	language

We	use	the	template	tags	provided	by	i18n,	based	on	the	languages
available	in	the	settings	of	your	project.	Now	open
http://127.0.0.1:8000/	in	your	browser	and	take	a	look.	You	should	see
the	language	selector	in	the	top	right-hand	corner	of	the	site	as
follows:

Users	can	now	easily	switch	to	their	preferred	language.

Translating	models	with
django-parler
Django	does	not	provide	a	solution	for	translating	models	out	of	the
box.	You	have	to	implement	your	own	solution	to	manage	content
stored	in	different	languages,	or	use	a	third-party	module	for	model
translation.	There	are	several	third-party	applications	that	allow
you	to	translate	model	fields.	Each	of	them	takes	a	different
approach	to	storing	and	accessing	translations.	One	of	these
applications	is	django-parler.	This	module	offers	a	very	effective	way	to
translate	models	and	it	integrates	smoothly	with	Django's
administration	site.

django-parler	generates	a	separate	database	table	for	each	model	that
contains	translations.	This	table	includes	all	the	translated	fields
and	a	foreign	key	for	the	original	object	that	the	translation	belongs
to.	It	also	contains	a	language	field,	since	each	row	stores	the
content	for	a	single	language.

Installing	django-parler
Install	django-parler	via	pip	using	the	following	command:

pip	install	django-parler==1.9.2

Edit	the	settings.py	file	of	your	project	and	add	'parler'	to
the	INSTALLED_APPS	setting	as	follows:

INSTALLED_APPS	=	[

				#	...

				'parler',

]

Also	add	the	following	code	to	your	settings:

PARLER_LANGUAGES	=	{

				None:	(

								{'code':	'en'},

								{'code':	'es'},

),

				'default':	{

								'fallback':	'en',

								'hide_untranslated':	False,

				}

}

This	setting	defines	the	available	languages	en	and	es	for	django-parler.
We	specify	the	default	language	en	and	we	indicate	that	django-parler
should	not	hide	untranslated	content.

Translating	model	fields
Let's	add	translations	for	our	product	catalog.	django-parler	provides	a
TranslatedModel	model	class	and	a	TranslatedFields	wrapper	to	translate
model	fields.	Edit	the	models.py	file	inside	the	shop	application
directory	and	add	the	following	import:

from	parler.models	import	TranslatableModel,	TranslatedFields

Then,	modify	the	Category	model	to	make	the	name	and	slug	fields
translatable	as	follows:

class	Category(TranslatableModel):

				translations	=	TranslatedFields(

								name	=	models.CharField(max_length=200,

																																db_index=True),

								slug	=	models.SlugField(max_length=200,

																																db_index=True,

																																unique=True)

)

The	Category	model	now	inherits	from	TranslatedModel	instead	of
models.Model	and	both	the	name	and	slug	fields	are	included	in	the
TranslatedFields	wrapper.

Edit	the	Product	model	to	add	translations	for	the	name,	slug,	and
description	fields	as	follows:

class	Product(TranslatableModel):

				translations	=	TranslatedFields(

								name	=	models.CharField(max_length=200,	db_index=True),

								slug	=	models.SlugField(max_length=200,	db_index=True),

								description	=	models.TextField(blank=True)

)

				category	=	models.ForeignKey(Category,

																																	related_name='products')

				image	=	models.ImageField(upload_to='products/%Y/%m/%d',

																														blank=True)

				price	=	models.DecimalField(max_digits=10,	decimal_places=2)

				available	=	models.BooleanField(default=True)

				created	=	models.DateTimeField(auto_now_add=True)

				updated	=	models.DateTimeField(auto_now=True)

django-parler	manages	translations	by	generating	another	model	for
each	translatable	model.	In	the	following	,	you	can	see	the	fields	of
the	Product	model	and	what	the	generated	ProductTranslation	model	will
look	like:

The	ProductTranslation	model	generated	by	django-parler	includes	the	name,
slug,	and	description	translatable	fields,	a	language_code	field,	and
ForeignKey	for	the	master	Product	object.	There	is	a	one-to-many
relationship	from	Product	to	ProductTranslation.	A	ProductTranslation	object
will	exist	for	each	available	language	of	each	Product	object.

Since	Django	uses	a	separate	table	for	translations,	there	are	some
Django	features	that	we	cannot	use.	It	is	not	possible	to	use	a
default	ordering	by	a	translated	field.	You	can	filter	by	translated
fields	in	queries,	but	you	cannot	include	a	translatable	field	in	the
ordering	Meta	options.

Edit	the	models.py	file	of	the	shop	application	and	comment	out	the
ordering	attribute	of	the	Category	Meta	class:

class	Category(TranslatableModel):

				#	...

				class	Meta:

								#	ordering	=	('name',)

								verbose_name	=	'category'

								verbose_name_plural	=	'categories'

We	also	have	to	comment	out	the	ordering	and	index_together	attributes
of	the	Product	Meta	class.	The	current	version	of	django-parler	does	not
provide	support	to	validate	index_together.	Comment	out	the	Product	Meta
class	as	follows:

class	Product(TranslatableModel):

				#	...

				#	class	Meta:

				#				ordering	=	('-name',)

				#				index_together	=	(('id',	'slug'),)

You	can	read	more	about	django-parler	module's	compatibility	with
Django	at	https://django-parler.readthedocs.io/en/latest/compatibility.html.

https://django-parler.readthedocs.io/en/latest/compatibility.html

Integrating	translations	in	the
administration	site
django-parler	integrates	smoothly	with	the	Django	administration	site.
It	includes	a	TranslatableAdmin	class	that	overrides	the	ModelAdmin	class
provided	by	Django	to	manage	model	translations.

Edit	the	admin.py	file	of	the	shop	application	and	add	the	following
import	to	it:

from	parler.admin	import	TranslatableAdmin

Modify	the	CategoryAdmin	and	ProductAdmin	classes	to	inherit	from
TranslatableAdmin	instead	of	ModelAdmin.	django-parler	doesn't	support	the
prepopulated_fields	attribute,	but	it	does	support	the
get_prepopulated_fields()	method	that	provides	the	same	functionality.
Let's	change	this	accordingly.	Edit	the	admin.py	file	to	make	it	look	as
follows:

from	django.contrib	import	admin

from	.models	import	Category,	Product

from	parler.admin	import	TranslatableAdmin

@admin.register(Category)

class	CategoryAdmin(TranslatableAdmin):

				list_display	=	['name',	'slug']

				def	get_prepopulated_fields(self,	request,	obj=None):

								return	{'slug':	('name',)}

@admin.register(Product)

class	ProductAdmin(TranslatableAdmin):

				list_display	=	['name',	'slug',	'price',

																				'available',	'created',	'updated']

				list_filter	=	['available',	'created',	'updated']

				list_editable	=	['price',	'available']

				def	get_prepopulated_fields(self,	request,	obj=None):

								return	{'slug':	('name',)}

We	have	adapted	the	administration	site	to	work	with	the	new
translated	models.	We	can	now	sync	the	database	with	the	model
changes	that	we	made.

Creating	migrations	for	model
translations
Open	the	shell	and	run	the	following	command	to	create	a	new
migration	for	the	model	translations:

python	manage.py	makemigrations	shop	--name	"translations"

You	will	see	the	following	output:

Migrations	for	'shop':

		shop/migrations/0002_translations.py

				-	Create	model	CategoryTranslation

				-	Create	model	ProductTranslation

				-	Change	Meta	options	on	category

				-	Change	Meta	options	on	product

				-	Remove	field	name	from	category

				-	Remove	field	slug	from	category

				-	Alter	index_together	for	product	(0	constraint(s))

				-	Add	field	master	to	producttranslation

				-	Add	field	master	to	categorytranslation

				-	Remove	field	description	from	product

				-	Remove	field	name	from	product

				-	Remove	field	slug	from	product

				-	Alter	unique_together	for	producttranslation	(1	constraint(s))

				-	Alter	unique_together	for	categorytranslation	(1	constraint(s))

This	migration	automatically	includes	the	CategoryTranslation	and
ProductTranslation	models	created	dynamically	by	django-parler.	It's
important	to	note	that	this	migration	deletes	the	previous	existing
fields	from	our	models.	This	means	that	we	will	lose	that	data	and
will	need	to	set	our	categories	and	products	again	in	the	admin	site
after	running	it.

Run	the	following	command	to	apply	the	migration:

python	manage.py	migrate	shop

You	will	see	an	output	that	ends	with	the	following	line:

Applying	shop.0002_translations...	OK

Our	models	are	now	synchronized	with	the	database.

Run	the	development	server	using	python	manage.py	runserver	and	open
http://127.0.0.1:8000/en/admin/shop/category/	in	your	browser.	You	will	see
that	existing	categories	lost	their	name	and	slug	due	to	deleting
those	fields	and	using	the	translatable	models	generated	by	django-
parler	instead.	Click	on	a	category	to	edit	it.	You	will	see	that
the	Change	category	page	includes	two	different	tabs,	one
for	English	and	one	for	Spanish	translations:

Make	sure	to	fill	in	a	name	and	slug	for	all	existing	categories.	Also
add	a	Spanish	translation	for	each	of	them	and	click	the
SAVE	button.	Make	sure	to	save	the	changes	before	you	change	tabs
or	you	will	lose	them.

After	completing	the	data	for	existing	categories,
open	http://127.0.0.1:8000/en/admin/shop/product/	and	edit	each	of	the
products	providing	an	English	and	Spanish	name,	slug,	and
description.

Adapting	views	for	translations
We	have	to	adapt	our	shop	views	to	use	translation	QuerySets.	Run
the	following	command	to	open	the	Python	shell:

python	manage.py	shell

Let's	take	a	look	at	how	you	can	retrieve	and	query	translation
fields.	To	get	the	object	with	translatable	fields	translated	in	a
specific	language,	you	can	use	Django's	activate()	function	as	follows:

>>>	from	shop.models	import	Product

>>>	from	django.utils.translation	import	activate

>>>	activate('es')

>>>	product=Product.objects.first()

>>>	product.name

'Té	verde'

Another	way	to	do	this	is	by	using	the	language()	manager	provided	by
django-parler	as	follows:

>>>	product=Product.objects.language('en').first()

>>>	product.name

'Green	tea'

When	you	access	translated	fields,	they	are	resolved	using	the
current	language.	You	can	set	a	different	current	language	for	an
object	to	access	that	specific	translation	as	follows:

>>>	product.set_current_language('es')

>>>	product.name

'Té	verde'

>>>	product.get_current_language()

'es'

When	performing	a	QuerySet	using	filter(),	you	can	filter	using	the
related	translation	objects	with	the	translations__	syntax	as	follows:

>>>	Product.objects.filter(translations__name='Green	tea')

<TranslatableQuerySet	[<Product:	Té	verde>]>

Let's	adapt	the	product	catalog	views.	Edit	the	views.py	file	of	the	shop
application	and	in	the	product_list	view,	find	the	following	line:

category	=	get_object_or_404(Category,	slug=category_slug)

Replace	it	with	the	following	ones:

language	=	request.LANGUAGE_CODE

category	=	get_object_or_404(Category,

																													translations__language_code=language,

																													translations__slug=category_slug)

Then,	edit	the	product_detail	view	and	find	the	following	lines:

product	=	get_object_or_404(Product,

																												id=id,

																												slug=slug,

																												available=True)

Replace	them	with	the	following	code:

language	=	request.LANGUAGE_CODE

product	=	get_object_or_404(Product,

																												id=id,

																												translations__language_code=language,

																												translations__slug=slug,

																												available=True)

The	product_list	and	product_detail	views	are	now	adapted	to	retrieve
objects	using	translated	fields.	Run	the	development	server	and
open	http://127.0.0.1:8000/es/	in	your	browser.	You	should	see	the

product	list	page,	including	all	products	translated	into	Spanish:

Now	each	product's	URL	is	built	using	the	slug	field	translated	into
the	current	language.	For	example,	the	URL	for	a	product	in
Spanish	is	http://127.0.0.1:8000/es/2/te-rojo/,	whereas	in	English	the
URL	is	http://127.0.0.1:8000/en/2/red-tea/.	If	you	navigate	to	a	product
detail	page,	you	will	see	the	translated	URL	and	the	contents	of	the
selected	language,	as	shown	in	the	following	example:

If	you	want	to	know	more	about	django-parler,	you	can	find	the	full
documentation	at	https://django-parler.readthedocs.io/en/latest/.

You	have	learned	how	to	translate	Python	code,	templates,	URL
patterns,	and	model	fields.	To	complete	the	internationalization
and	localization	process,	we	need	to	use	localized	formatting	for
dates,	times,	and	numbers	as	well.

https://django-parler.readthedocs.io/en/latest/

Format	localization
Depending	on	the	user's	locale,	you	might	want	to	display	dates,
times,	and	numbers	in	different	formats.	The	localized	formatting
can	be	activated	by	changing	the	USE_L10N	setting	to	True	in	the
settings.py	file	of	your	project.

When	USE_L10N	is	enabled,	Django	will	try	to	use	a	locale-specific
format	whenever	it	outputs	a	value	in	a	template.	You	can	see	that
decimal	numbers	in	the	English	version	of	your	site	are	displayed
with	a	dot	separator	for	decimal	places,	while	in	the	Spanish	version
they	are	displayed	using	a	comma.	This	is	due	to	the	locale	formats
specified	for	the	es	locale	by	Django.	You	can	take	a	look	at	the
Spanish	formatting	configuration	at	https://github.com/django/django/blob/
stable/2.0.x/django/conf/locale/es/formats.py.

Normally,	you	will	set	the	USE_L10N	setting	to	True	and	let	Django	apply
the	format	localization	for	each	locale.	However,	there	might	be
situations	in	which	you	don't	want	to	use	localized	values.	This	is
especially	relevant	when	outputting	JavaScript	or	JSON	that	has	to
provide	a	machine-readable	format.

Django	offers	a	{%	localize	%}	template	tag	that	allows	you	to	turn
on/off	localization	for	template	fragments.	This	gives	you	control
over	localized	formatting.	You	will	have	to	load	the	l10n	tags	to	be
able	to	use	this	template	tag.	The	following	is	an	example	of	how	to
turn	localization	on	and	off	in	a	template:

{%	load	l10n	%}

{%	localize	on	%}

		{{	value	}}

{%	endlocalize	%}

https://github.com/django/django/blob/stable/2.0.x/django/conf/locale/es/formats.py

{%	localize	off	%}

		{{	value	}}

{%	endlocalize	%}

Django	also	offers	the	localize	and	unlocalize	template	filters	to	force
or	avoid	localization	of	a	value.	These	filters	can	be	applied	as
follows:

{{	value|localize	}}

{{	value|unlocalize	}}

You	can	also	create	custom	format	files	to	specify	locale	formatting.
You	can	find	further	information	about	format	localization	at	https://
docs.djangoproject.com/en/2.0/topics/i18n/formatting/.

https://docs.djangoproject.com/en/2.0/topics/i18n/formatting/

Using	django-localflavor	to
validate	form	fields
django-localflavor	is	a	third-party	module	that	contains	a	collection	of
specific	utils,	such	as	form	fields	or	model	fields	that	are	specific	for
each	country.	It's	very	useful	to	validate	local	regions,	local	phone
numbers,	identity	card	numbers,	social	security	numbers,	and	so
on.	The	package	is	organized	into	a	series	of	modules	named	after
ISO	3166	country	codes.

Install	django-localflavor	using	the	following	command:

pip	install	django-localflavor==2.0

Edit	the	settings.py	file	of	your	project	and	add	localflavor	to
the	INSTALLED_APPS	setting	as	follows:

INSTALLED_APPS	=	[

				#	...

				'localflavor',

]

We	are	going	to	add	the	United	States's	zip	code	field	so	that	a	valid
U.S.	zip	code	is	required	to	create	a	new	order.

Edit	the	forms.py	file	of	the	orders	application	and	make	it	look	as
follows:

from	django	import	forms

from	.models	import	Order

from	localflavor.us.forms	import	USZipCodeField

class	OrderCreateForm(forms.ModelForm):

				postal_code	=	USZipCodeField()

				class	Meta:

								model	=	Order

								fields	=	['first_name',	'last_name',	'email',	'address',

																		'postal_code',	'city']

We	import	the	USZipCodeField	field	from	the	us	package	of	localflavor	and
use	it	for	the	postal_code	field	of	the	OrderCreateForm	form.

Run	the	development	server	and	open
http://127.0.0.1:8000/en/orders/create/	in	your	browser.	Fill	in	all	fields,
enter	a	three-letter	postal	code,	and	then	submit	the	form.	You	will
get	the	following	validation	error	that	is	raised	by	USZipCodeField:

Enter	a	zip	code	in	the	format	XXXXX	or	XXXXX-XXXX.

This	is	just	a	brief	example	of	how	to	use	a	custom	field	from
localflavor	in	your	own	project	for	validation	purposes.	The	local
components	provided	by	localflavor	are	very	useful	to	adapt	your
application	to	specific	countries.	You	can	read	the	django-localflavor
documentation	and	see	all	available	local	components	for	each
country	at	https://django-localflavor.readthedocs.io/en/latest/.

Next,	we	are	going	to	build	a	recommendation	engine	into	our	shop.

https://django-localflavor.readthedocs.io/en/latest/

Building	a	recommendation
engine
A	recommendation	engine	is	a	system	that	predicts	the	preference
or	rating	that	a	user	would	give	to	an	item.	The	system	selects
relevant	items	for	the	users	based	on	their	behavior	and	the
knowledge	it	has	about	them.	Nowadays,	recommendation	systems
are	used	in	many	online	services.	They	help	users	by	selecting	the
stuff	they	might	be	interested	in	from	the	vast	amount	of	available
data	that	is	irrelevant	to	them.	Offering	good	recommendations
enhances	user	engagement.	E-commerce	sites	also	benefit	from
offering	relevant	product	recommendations	by	increasing	their
average	sale.

We	are	going	to	create	a	simple,	yet	powerful,	recommendation
engine	that	suggests	products	that	are	usually	bought	together.	We
will	suggest	products	based	on	historical	sales,	thus	identifying
products	that	are	usually	bought	together.	We	are	going	to	suggest
complementary	products	in	two	different	scenarios:

Product	detail	page:	We	will	display	a	list	of	products

that	are	usually	bought	with	the	given	product.	This	will	be

displayed	as:	Users	who	bought	this	also	bought	X,	Y,	Z.	We

need	a	data	structure	that	allows	us	to	store	the	number	of

times	that	each	product	has	been	bought	together	with	the

product	being	displayed.

Cart	detail	page:	Based	on	the	products	users	add	to	the

cart,	we	are	going	to	suggest	products	that	are	usually

bought	together	with	these	ones.	In	this	case,	the	score	we

calculate	to	obtain	related	products	has	to	be	aggregated.

We	are	going	to	use	Redis	to	store	products	that	are	purchased
together.	Remember	that	you	already	used	Redis	in	Chapter	6,
Tracking	User	Actions.	If	you	haven't	installed	Redis	yet,	you	can
find	installation	instructions	in	that	chapter.

Recommending	products
based	on	previous	purchases
Now,	we	will	recommend	products	to	users	based	on	what	they
have	added	to	the	cart.	We	are	going	to	store	a	key	in	Redis	for	each
product	bought	on	our	site.	The	product	key	will	contain	a	Redis
sorted	set	with	scores.	We	will	increment	the	score	by	1	for	each
product	bought	together	every	time	a	new	purchase	is	completed.

When	an	order	is	successfully	paid	for,	we	store	a	key	for	each
product	bought,	including	a	sorted	set	of	products	that	belong	to	the
same	order.	The	sorted	set	allows	us	to	give	scores	for	products	that
are	bought	together.

Remember	to	install	redis-py	in	your	environment	using	the
following	command:

pip	install	redis==2.10.6

Edit	the	settings.py	file	of	your	project	and	add	the	following	settings
to	it:

REDIS_HOST	=	'localhost'

REDIS_PORT	=	6379

REDIS_DB	=	1

These	are	the	settings	required	to	establish	a	connection	with	the
Redis	server.	Create	a	new	file	inside	the	shop	application	directory
and	name	it	recommender.py.	Add	the	following	code	to	it:

import	redis

from	django.conf	import	settings

from	.models	import	Product

#	connect	to	redis

r	=	redis.StrictRedis(host=settings.REDIS_HOST,

																						port=settings.REDIS_PORT,

																						db=settings.REDIS_DB)

class	Recommender(object):

				def	get_product_key(self,	id):

								return	'product:{}:purchased_with'.format(id)

				def	products_bought(self,	products):

								product_ids	=	[p.id	for	p	in	products]

								for	product_id	in	product_ids:

												for	with_id	in	product_ids:

																#	get	the	other	products	bought	with	each	product

																if	product_id	!=	with_id:

																				#	increment	score	for	product	purchased	together

																				r.zincrby(self.get_product_key(product_id),

																														with_id,

																														amount=1)

This	is	the	Recommender	class	that	will	allow	us	to	store	product
purchases	and	retrieve	product	suggestions	for	a	given	product	or
products.	The	get_product_key()	method	receives	an	ID	of	a	Product
object	and	builds	the	Redis	key	for	the	sorted	set	where	related
products	are	stored,	which	looks	like	product:[id]:purchased_with.

The	products_bought()	method	receives	a	list	of	Product	objects	that	have
been	bought	together	(that	is,	belong	to	the	same	order).	In	this
method,	we	perform	the	following	tasks:

1.	 We	get	the	product	IDs	for	the	given	Product	objects.

2.	 We	iterate	over	the	product	IDs.	For	each	ID,	we	iterate	over

the	product	IDs	and	skip	the	same	product	so	that	we	get	the

products	that	are	bought	together	with	each	product.

3.	 We	get	the	Redis	product	key	for	each	product	bought	using

the	get_product_id()	method.	For	a	product	with	an	ID	of	33,	this

method	returns	the	key	product:33:purchased_with.	This	is	the	key

for	the	sorted	set	that	contains	the	product	IDs	of	products

that	were	bought	together	with	this	one.

4.	 We	increment	the	score	of	each	product	ID	contained	in	the

sorted	set	by	1.	The	score	represents	the	times	another

product	has	been	bought	together	with	the	given	product.

So	we	have	a	method	to	store	and	score	the	products	that	were
bought	together.	Now	we	need	a	method	to	retrieve	the	products
that	are	bought	together	for	a	list	of	given	products.	Add	the
following	suggest_products_for()	method	to	the	Recommender	class:

def	suggest_products_for(self,	products,	max_results=6):

				product_ids	=	[p.id	for	p	in	products]

				if	len(products)	==	1:

								#	only	1	product

								suggestions	=	r.zrange(

																									self.get_product_key(product_ids[0]),

																									0,	-1,	desc=True)[:max_results]

				else:

								#	generate	a	temporary	key

								flat_ids	=	''.join([str(id)	for	id	in	product_ids])

								tmp_key	=	'tmp_{}'.format(flat_ids)

								#	multiple	products,	combine	scores	of	all	products

								#	store	the	resulting	sorted	set	in	a	temporary	key

								keys	=	[self.get_product_key(id)	for	id	in	product_ids]

								r.zunionstore(tmp_key,	keys)

								#	remove	ids	for	the	products	the	recommendation	is	for

								r.zrem(tmp_key,	*product_ids)

								#	get	the	product	ids	by	their	score,	descendant	sort

								suggestions	=	r.zrange(tmp_key,	0,	-1,	

																															desc=True)[:max_results]

								#	remove	the	temporary	key

								r.delete(tmp_key)

				suggested_products_ids	=	[int(id)	for	id	in	suggestions]

				#	get	suggested	products	and	sort	by	order	of	appearance

				suggested_products	=	

list(Product.objects.filter(id__in=suggested_products_ids))

				suggested_products.sort(key=lambda	x:	suggested_products_ids.index(x.id))

				return	suggested_products

The	suggest_products_for()	method	receives	the	following	parameters:

products:	This	is	a	list	of	Product	objects	to	get

recommendations	for.	It	can	contain	one	or	more	products.

max_results:	This	is	an	integer	that	represents	the	maximum

number	of	recommendations	to	return.

In	this	method,	we	perform	the	following	actions:

1.	 We	get	the	product	IDs	for	the	given	Product	objects.

2.	 If	only	one	product	is	given,	we	retrieve	the	ID	of	the

products	that	were	bought	together	with	the	given	product,

ordered	by	the	total	number	of	times	that	they	were	bought

together.	To	do	so,	we	use	Redis'	ZRANGE	command.	We	limit

the	number	of	results	to	the	number	specified	in	the

max_results	attribute	(6	by	default).

3.	 If	more	than	one	product	is	given,	we	generate	a	temporary

Redis	key	built	with	the	IDs	of	the	products.

4.	 We	combine	and	sum	all	scores	for	the	items	contained	in

the	sorted	set	of	each	of	the	given	products.	This	is	done

using	the	Redis'	ZUNIONSTORE	command.	The	ZUNIONSTORE

command	performs	a	union	of	the	sorted	sets	with	the	given

keys,	and	stores	the	aggregated	sum	of	scores	of	the

elements	in	a	new	Redis	key.	You	can	read	more	about	this

command	at	https://redis.io/commands/ZUNIONSTORE.	We	save	the

aggregated	scores	in	the	temporary	key.

5.	 Since	we	are	aggregating	scores,	we	might	obtain	the	same

products	we	are	getting	recommendations	for.	We	remove

them	from	the	generated	sorted	set	using	the	ZREM	command.

6.	 We	retrieve	the	IDs	of	the	products	from	the	temporary	key,

https://redis.io/commands/ZUNIONSTORE

ordered	by	their	score	using	the	ZRANGE	command.	We	limit

the	number	of	results	to	the	number	specified	in	the

max_results	attribute.	Then	we	remove	the	temporary	key.

7.	 Finally,	we	get	the	Product	objects	with	the	given	IDs	and	we

order	the	products	in	the	same	order	as	them.

For	practical	purposes,	let's	also	add	a	method	to	clear	the
recommendations.	Add	the	following	method	to	the	Recommender	class:

def	clear_purchases(self):

								for	id	in	Product.objects.values_list('id',	flat=True):

												r.delete(self.get_product_key(id))

Let's	try	our	recommendation	engine.	Make	sure	you	include
several	Product	objects	in	the	database	and	initialize	the	Redis	server
using	the	following	command	from	the	shell	in	your	Redis
directory:

src/redis-server

Open	another	shell,	and	run	the	following	command	to	open	the
Python	shell:

python	manage.py	shell

Make	sure	to	have	at	least	four	different	products	in	your	database.
Retrieve	four	different	products	by	their	name:

>>>	from	shop.models	import	Product

>>>	black_tea	=	Product.objects.get(translations__name='Black	tea')

>>>	red_tea	=	Product.objects.get(translations__name='Red	tea')

>>>	green_tea	=	Product.objects.get(translations__name='Green	tea')

>>>	tea_powder	=	Product.objects.get(translations__name='Tea	powder')

Then,	add	some	test	purchases	to	the	recommendation	engine:

>>>	from	shop.recommender	import	Recommender

>>>	r	=	Recommender()

>>>	r.products_bought([black_tea,	red_tea])

>>>	r.products_bought([black_tea,	green_tea])

>>>	r.products_bought([red_tea,	black_tea,	tea_powder])

>>>	r.products_bought([green_tea,	tea_powder])

>>>	r.products_bought([black_tea,	tea_powder])

>>>	r.products_bought([red_tea,	green_tea])

We	have	stored	the	following	scores:

black_tea:		red_tea	(2),	tea_powder	(2),	green_tea	(1)

red_tea:				black_tea	(2),	tea_powder	(1),	green_tea	(1)

green_tea:		black_tea	(1),	tea_powder	(1),	red_tea(1)

tea_powder:	black_tea	(2),	red_tea	(1),	green_tea	(1)

Let's	activate	a	language	to	retrieve	translated	products	and	get
product	recommendations	to	buy	together	with	a	given	single
product:

>>>	from	django.utils.translation	import	activate

>>>	activate('en')

>>>	r.suggest_products_for([black_tea])

[<Product:	Tea	powder>,	<Product:	Red	tea>,	<Product:	Green	tea>]

>>>	r.suggest_products_for([red_tea])

[<Product:	Black	tea>,	<Product:	Tea	powder>,	<Product:	Green	tea>]

>>>	r.suggest_products_for([green_tea])

[<Product:	Black	tea>,	<Product:	Tea	powder>,	<Product:	Red	tea>]

>>>	r.suggest_products_for([tea_powder])

[<Product:	Black	tea>,	<Product:	Red	tea>,	<Product:	Green	tea>]

You	can	see	that	the	order	for	recommended	products	is	based	on
their	score.	Let's	get	recommendations	for	multiple	products	with
aggregated	scores:

>>>	r.suggest_products_for([black_tea,	red_tea])

[<Product:	Tea	powder>,	<Product:	Green	tea>]

>>>	r.suggest_products_for([green_tea,	red_tea])

[<Product:	Black	tea>,	<Product:	Tea	powder>]

>>>	r.suggest_products_for([tea_powder,	black_tea])

[<Product:	Red	tea>,	<Product:	Green	tea>]

You	can	see	that	the	order	of	the	suggested	products	matches	the
aggregated	scores.	For	example,	products	suggested	for	black_tea	and
red_tea	are	tea_powder	(2+1)	and	green_tea	(1+1).

We	have	verified	that	our	recommendation	algorithm	works	as
expected.	Let's	display	recommendations	for	products	on	our	site.

Edit	the	views.py	file	of	the	shop	application.	Add	the	functionality	to
retrieve	a	maximum	of	four	recommended		products	in	the
product_detail	view	as	follows:

from	.recommender	import	Recommender

def	product_detail(request,	id,	slug):

				language	=	request.LANGUAGE_CODE

				product	=	get_object_or_404(Product,

																																id=id,

																																translations__language_code=language,

																																translations__slug=slug,

																																available=True)

				cart_product_form	=	CartAddProductForm()

				r	=	Recommender()

				recommended_products	=	r.suggest_products_for([product],	4)

				return	render(request,

																		'shop/product/detail.html',

																		{'product':	product,

																		'cart_product_form':	cart_product_form,

																		'recommended_products':	recommended_products})

Edit	the	shop/product/detail.html	template	of	the	shop	application	and	add
the	following	code	after	{{	product.description|linebreaks	}}:

{%	if	recommended_products	%}

		<div	class="recommendations">

				<h3>{%	trans	"People	who	bought	this	also	bought"	%}</h3>

				{%	for	p	in	recommended_products	%}

						<div	class="item">

								

										<img	src="{%	if	p.image	%}{{	p.image.url	}}{%	else	%}

										{%	static		"img/no_image.png"	%}{%	endif	%}">

								

								<p>{{	p.name	}}</p>

						</div>

				{%	endfor	%}

		</div>

{%	endif	%}

Run	the	development	server	and	open	http://127.0.0.1:8000/en/	in	your
browser.	Click	on	any	product	to	view	its	details.	You	should	see
that	recommended	products	are	displayed	below	the	product,	as
shown	in	the	following	screenshot:

We	are	also	going	to	include	product	recommendations	in	the	cart.
The	recommendation	will	be	based	on	the	products	that	the	user
has	added	to	the	cart.
Edit	views.py	inside	the	cart	application,	import	the	Recommender	class,
and	edit	the	cart_detail	view	to	make	it	look	as	follows:

from	shop.recommender	import	Recommender

def	cart_detail(request):

				cart	=	Cart(request)

				for	item	in	cart:

								item['update_quantity_form']	=	CartAddProductForm(

												initial={'quantity':	item['quantity'],

												'update':	True})

				coupon_apply_form	=	CouponApplyForm()

				r	=	Recommender()

				cart_products	=	[item['product']	for	item	in	cart]

				recommended_products	=	r.suggest_products_for(cart_products,

																																																		max_results=4)

return	render(request,

														'cart/detail.html',

														{'cart':	cart,

															'coupon_apply_form':	coupon_apply_form,

															'recommended_products':	recommended_products})

Edit	the	cart/detail.html	template	of	the	cart	application	and	add	the
following	code	just	after	the	</table>	HTML	tag:

{%	if	recommended_products	%}

		<div	class="recommendations	cart">

				<h3>{%	trans	"People	who	bought	this	also	bought"	%}</h3>

				{%	for	p	in	recommended_products	%}

						<div	class="item">

								

										<img	src="{%	if	p.image	%}{{	p.image.url	}}{%	else	%}

										{%	static	"img/no_image.png"	%}{%	endif	%}">

								

								<p>{{	p.name	}}</p>

						</div>

				{%	endfor	%}

		</div>

{%	endif	%}

Open	http://127.0.0.1:8000/en/	in	your	browser	and	add	a	couple	of
products	to	your	cart.	When	you	navigate	to
http://127.0.0.1:8000/en/cart/,	you	should	see	the	aggregated	product
recommendations	for	the	items	in	the	cart	as	follows:

Congratulations!	You	have	built	a	complete	recommendation
engine	using	Django	and	Redis.

Summary
In	this	chapter,	you	created	a	coupon	system	using	sessions.	You
learned	how	internationalization	and	localization	work.	You	also
built	a	recommendation	engine	using	Redis.

In	the	next	chapter,	you	will	start	a	new	project.	You	will	build	an	e-
learning	platform	with	Django	using	class-based	views	and	you	will
create	a	custom	content	management	system.

Building	an	E-Learning
Platform
In	the	previous	chapter,	you	added	internationalization	to	your
online	shop	project.	You	also	built	a	coupon	system	and	a	product
recommendation	engine.	In	this	chapter,	you	will	create	a	new
project.	You	will	build	an	e-learning	platform,	creating	a	custom
Content	Management	System	(CMS).

In	this	chapter,	you	will	learn	how	to:

Create	fixtures	for	your	models

Use	model	inheritance

Create	custom	model	fields

Use	class-based	views	and	mixins

Build	formsets

Manage	groups	and	permissions

Create	a	CMS

Setting	up	the	e-learning
project
Our	final	practical	project	will	be	an	e-learning	platform.	In	this
chapter,	we	are	going	to	build	a	flexible	CMS	that	allows	instructors
to	create	courses	and	manage	their	contents.

First,	create	a	virtual	environment	for	your	new	project	and	activate
it	with	the	following	commands:

mkdir	env

virtualenv	env/educa

source	env/educa/bin/activate

Install	Django	in	your	virtual	environment	with	the	following
command:

pip	install	Django==2.0.5

We	are	going	to	manage	image	uploads	in	our	project,	so	we	also
need	to	install	Pillow	with	the	following	command:

pip	install	Pillow==5.1.0

Create	a	new	project	using	the	following	command:

django-admin	startproject	educa

Enter	the	new	educa	directory	and	create	a	new	application	using	the
following	commands:

cd	educa

django-admin	startapp	courses

Edit	the	settings.py	file	of	the	educa	project	and	add	courses	to
the	INSTALLED_APPS	setting	as	follows:

INSTALLED_APPS	=	[

				'courses.apps.CoursesConfig',

				'django.contrib.admin',

				'django.contrib.auth',

				'django.contrib.contenttypes',

				'django.contrib.sessions',

				'django.contrib.messages',

				'django.contrib.staticfiles',

]

The	courses	application	is	now	active	for	the	project.	Let's	define	the
models	for	courses	and	course	contents.

Building	the	course	models
Our	e-learning	platform	will	offer	courses	on	various	subjects.	Each
course	will	be	divided	into	a	configurable	number	of	modules,	and
each	module	will	contain	a	configurable	number	of	contents.	There
will	be	contents	of	various	types:	text,	file,	image,	or	video.	The
following	example	shows	what	the	data	structure	of	our	course
catalog	will	look	like:

Subject	1

		Course	1

				Module	1

						Content	1	(image)

						Content	2	(text)

				Module	2

						Content	3	(text)

						Content	4	(file)

						Content	5	(video)

						...

Let's	build	the	course	models.	Edit	the	models.py	file	of	the	courses
application	and	add	the	following	code	to	it:

from	django.db	import	models

from	django.contrib.auth.models	import	User

class	Subject(models.Model):

				title	=	models.CharField(max_length=200)

				slug	=	models.SlugField(max_length=200,	unique=True)

				class	Meta:

								ordering	=	['title']

				def	__str__(self):

								return	self.title

class	Course(models.Model):

				owner	=	models.ForeignKey(User,

																														related_name='courses_created',

																														on_delete=models.CASCADE)

				subject	=	models.ForeignKey(Subject,

																																related_name='courses',

																																on_delete=models.CASCADE)

				title	=	models.CharField(max_length=200)

				slug	=	models.SlugField(max_length=200,	unique=True)

				overview	=	models.TextField()

				created	=	models.DateTimeField(auto_now_add=True)

				class	Meta:

								ordering	=	['-created']

				def	__str__(self):

								return	self.title

class	Module(models.Model):

				course	=	models.ForeignKey(Course,

																															related_name='modules',

																															on_delete=models.CASCADE)

				title	=	models.CharField(max_length=200)

				description	=	models.TextField(blank=True)

				def	__str__(self):

								return	self.title

These	are	the	initial	Subject,	Course,	and	Module	models.	The	Course	model
fields	are	as	follows:

owner:	The	instructor	that	created	this	course.

subject:	The	subject	that	this	course	belongs	to.	A	ForeignKey

field	that	points	to	the	Subject	model.

title:	The	title	of	the	course.

slug:	The	slug	of	the	course.	This	will	be	used	in	URLs	later.

overview:	This	is	a	TextField	column	to	include	an	overview	of

the	course.

created:	The	date	and	time	when	the	course	was	created.	It

will	be	automatically	set	by	Django	when	creating	new

objects	because	of	auto_now_add=True.

Each	course	is	divided	into	several	modules.	Therefore,	the	Module
model	contains	a	ForeignKey	field	that	points	to	the	Course	model.

Open	the	shell	and	run	the	following	command	to	create	the	initial
migration	for	this	app:

python	manage.py	makemigrations

You	will	see	the	following	output:

Migrations	for	'courses':

		0001_initial.py:

				-	Create	model	Course

				-	Create	model	Module

				-	Create	model	Subject

				-	Add	field	subject	to	course

Then,	run	the	following	command	to	apply	all	migrations	to	the
database:

python	manage.py	migrate

You	should	see	output	including	all	applied	migrations,	including
those	of	Django.	The	output	will	contain	the	following	line:

Applying	courses.0001_initial...	OK

The	models	of	our	courses	app	have	been	synced	to	the	database.

Registering	the	models	in	the
administration	site
Let's	add	the	course	models	to	the	administration	site.	Edit	the
admin.py	file	inside	the	courses	application	directory	and	add	the
following	code	to	it:

from	django.contrib	import	admin

from	.models	import	Subject,	Course,	Module

@admin.register(Subject)

class	SubjectAdmin(admin.ModelAdmin):

				list_display	=	['title',	'slug']

				prepopulated_fields	=	{'slug':	('title',)}

class	ModuleInline(admin.StackedInline):

				model	=	Module

@admin.register(Course)

class	CourseAdmin(admin.ModelAdmin):

				list_display	=	['title',	'subject',	'created']

				list_filter	=	['created',	'subject']

				search_fields	=	['title',	'overview']

				prepopulated_fields	=	{'slug':	('title',)}

				inlines	=	[ModuleInline]

The	models	for	the	course	application	are	now	registered	in	the
administration	site.	Remember,	we	use	the	@admin.register()	decorator
to	register	models	in	the	administration	site.

Using	fixtures	to	provide	initial
data	for	models
Sometimes	you	might	want	to	pre-populate	your	database	with
hardcoded	data.	This	is	useful	to	automatically	include	initial	data
in	the	project	setup	instead	of	having	to	add	it	manually.	Django
comes	with	a	simple	way	to	load	and	dump	data	from	the	database
into	files	that	are	called	fixtures.

Django	supports	fixtures	in	JSON,	XML,	or	YAML	formats.	We	are
going	to	create	a	fixture	to	include	several	initial	Subject	objects	for
our	project.

First,	create	a	superuser	using	the	following	command:

python	manage.py	createsuperuser

Then,	run	the	development	server	using	the	following	command:

python	manage.py	runserver

Open	http://127.0.0.1:8000/admin/courses/subject/	in	your	browser.	Create
several	subjects	using	the	administration	site.	The	list	display	page
should	look	as	follows:

Run	the	following	command	from	the	shell:

python	manage.py	dumpdata	courses	--indent=2

You	will	see	output	similar	to	the	following:

[

{

		"model":	"courses.subject",

		"pk":	1,

		"fields":	{

				"title":	"Mathematics",

				"slug":	"mathematics"

		}

},

{

		"model":	"courses.subject",

		"pk":	2,

		"fields":	{

				"title":	"Music",

				"slug":	"music"

		}

},

{

		"model":	"courses.subject",

		"pk":	3,

		"fields":	{

				"title":	"Physics",

				"slug":	"physics"

		}

},

{

		"model":	"courses.subject",

		"pk":	4,

		"fields":	{

				"title":	"Programming",

				"slug":	"programming"

		}

}

]

The	dumpdata	command	dumps	data	from	the	database	into	the
standard	output,	serialized	in	JSON	format	by	default.	The
resulting	data	structure	includes	information	about	the	model	and
its	fields	for	Django	to	be	able	to	load	it	into	the	database.

You	can	limit	the	output	to	the	models	of	an	application	by
providing	the	application	names	to	the	command	or	specifying
single	models	for	outputting	data	using	the	app.Model	format.	You	can
also	specify	the	format	using	the	--format	flag.	By	default,	dumpdata

outputs	the	serialized	data	to	the	standard	output.	However,	you
can	indicate	an	output	file	using	the	--output	flag.	The	--indent	flag
allows	you	to	specify	indentation.	For	more	information	on	dumpdata
parameters,	run	python	manage.py	dumpdata	--help.

Save	this	dump	to	a	fixtures	file	into	a	fixtures/	directory	in	the	orders
application	using	the	following	commands:

mkdir	courses/fixtures

python	manage.py	dumpdata	courses	--indent=2	--

output=courses/fixtures/subjects.json

Run	the	development	server	and	use	the	administration	site	to
remove	the	subjects	you	created.	Then,	load	the	fixture	into	the
database	using	the	following	command:

python	manage.py	loaddata	subjects.json

All	Subject	objects	included	in	the	fixture	are	loaded	into	the
database.

By	default,	Django	looks	for	files	in	the	fixtures/	directory	of	each
application,	but	you	can	specify	the	complete	path	to	the	fixture	file
for	the	loaddata	command.	You	can	also	use	the	FIXTURE_DIRS	setting	to
tell	Django	additional	directories	to	look	for	fixtures.

Fixtures	are	not	only	useful	for	setting	up	initial	data,	but	also	to	provide
sample	data	for	your	application	or	data	required	for	your	tests.

You	can	read	about	how	to	use	fixtures	for	testing	at	https://docs.django
project.com/en/2.0/topics/testing/tools/#fixture-loading.

If	you	want	to	load	fixtures	in	model	migrations,	take	a	look	at
Django's	documentation	about	data	migrations.	You	can	find	the
documentation	for	migrating	data	at	https://docs.djangoproject.com/en/2.0/
topics/migrations/#data-migrations.

https://docs.djangoproject.com/en/2.0/topics/testing/tools/#fixture-loading
https://docs.djangoproject.com/en/2.0/topics/migrations/#data-migrations

Creating	models	for	diverse
content
We	plan	to	add	different	types	of	content	to	the	course	modules
such	as	texts,	images,	files,	and	videos.	We	need	a	versatile	data
model	that	allows	us	to	store	diverse	content.	In	Chapter	6,	Tracking
User	Actions,	you	have	learned	the	convenience	of	using	generic
relations	to	create	foreign	keys	that	can	point	to	objects	of	any
model.	We	are	going	to	create	a	Content	model	that	represents	the
modules'	contents	and	define	a	generic	relation	to	associate	any
kind	of	content.

Edit	the	models.py	file	of	the	courses	application	and	add	the	following
imports:

from	django.contrib.contenttypes.models	import	ContentType

from	django.contrib.contenttypes.fields	import	GenericForeignKey

Then,	add	the	following	code	to	the	end	of	the	file:

class	Content(models.Model):

				module	=	models.ForeignKey(Module,

																															related_name='contents',

																															on_delete=models.CASCADE)

				content_type	=	models.ForeignKey(ContentType,	

																																					on_delete=models.CASCADE)

				object_id	=	models.PositiveIntegerField()

				item	=	GenericForeignKey('content_type',	'object_id')

This	is	the	Content	model.	A	module	contains	multiple	contents,	so	we
define	a	ForeignKey	field	to	the	Module	model.	We	also	set	up	a	generic
relation	to	associate	objects	from	different	models	that	represent
different	types	of	content.	Remember	that	we	need	three	different

fields	to	set	up	a	generic	relationship.	In	our	Content	model,	these	are:

content_type:	A	ForeignKey	field	to	the	ContentType	model

object_id:	This	is	PositiveIntegerField	to	store	the	primary	key	of

the	related	object

item:	A	GenericForeignKey	field	to	the	related	object	by	combining

the	two	previous	fields

Only	the	content_type	and	object_id	fields	have	a	corresponding	column
in	the	database	table	of	this	model.	The	item	field	allows	you	to
retrieve	or	set	the	related	object	directly,	and	its	functionality	is
built	on	top	of	the	other	two	fields.

We	are	going	to	use	a	different	model	for	each	type	of	content.	Our
content	models	will	have	some	common	fields,	but	they	will	differ
in	the	actual	data	they	can	store.

Using	model	inheritance
Django	supports	model	inheritance.	It	works	in	a	similar	way	to
standard	class	inheritance	in	Python.	Django	offers	the	following
three	options	to	use	model	inheritance:

Abstract	models:	Useful	when	you	want	to	put	some

common	information	into	several	models.	No	database	table

is	created	for	the	abstract	model.

Multi-table	model	inheritance:	Applicable	when	each

model	in	the	hierarchy	is	considered	a	complete	model	by

itself.	A	database	table	is	created	for	each	model.

Proxy	models:	Useful	when	you	need	to	change	the

behavior	of	a	model,	for	example,	by	including	additional

methods,	changing	the	default	manager,	or	using	different

meta	options.	No	database	table	is	created	for	proxy	models.

Let's	take	a	closer	look	at	each	of	them.

Abstract	models
An	abstract	model	is	a	base	class	in	which	you	define	fields	you
want	to	include	in	all	child	models.	Django	doesn't	create	any
database	table	for	abstract	models.	A	database	table	is	created	for
each	child	model,	including	the	fields	inherited	from	the	abstract
class	and	the	ones	defined	in	the	child	model.

To	mark	a	model	as	abstract,	you	need	to	include	abstract=True	in	its
Meta	class.	Django	will	recognize	that	it	is	an	abstract	model	and	will
not	create	a	database	table	for	it.	To	create	child	models,	you	just
need	to	subclass	the	abstract	model.

The	following		example	shows	an	abstract	Content	model	and	a	child
Text	model:

from	django.db	import	models

class	BaseContent(models.Model):

				title	=	models.CharField(max_length=100)

				created	=	models.DateTimeField(auto_now_add=True)

				class	Meta:

								abstract	=	True

class	Text(BaseContent):

				body	=	models.TextField()

In	this	case,	Django	would	create	a	table	for	the	Text	model	only,
including	the	title,	created,	and	body	fields.

Multi-table	model	inheritance
In	multi-table	inheritance,	each	model	corresponds	to	a	database
table.	Django	creates	a	OneToOneField	field	for	the	relationship	in	the
child's	model	to	its	parent.

To	use	multi-table	inheritance,	you	have	to	subclass	an	existing
model.	Django	will	create	a	database	table	for	both	the	original
model	and	the	sub-model.	The	following	example	shows	multi-table
inheritance:

from	django.db	import	models

class	BaseContent(models.Model):

				title	=	models.CharField(max_length=100)

				created	=	models.DateTimeField(auto_now_add=True)

class	Text(BaseContent):

				body	=	models.TextField()

Django	would	include	an	automatically	generated	OneToOneField	field
in	the	Text	model	and	create	a	database	table	for	each	model.

Proxy	models
Proxy	models	are	used	to	change	the	behavior	of	a	model,	for
example,	by	including	additional	methods	or	different	meta
options.	Both	models	operate	on	the	database	table	of	the	original
model.	To	create	a	proxy	model,	add	proxy=True	to	the	Meta	class	of	the
model.

The	following	example	illustrates	how	to	create	a	proxy	model:

from	django.db	import	models

from	django.utils	import	timezone

class	BaseContent(models.Model):

				title	=	models.CharField(max_length=100)

				created	=	models.DateTimeField(auto_now_add=True)

class	OrderedContent(BaseContent):

				class	Meta:

								proxy	=	True

								ordering	=	['created']

				def	created_delta(self):

								return	timezone.now()	-	self.created

Here,	we	define	an	OrderedContent	model	that	is	a	proxy	model	for	the
Content	model.	This	model	provides	a	default	ordering	for	QuerySets
and	an	additional	created_delta()	method.	Both	models,	Content	and
OrderedContent,	operate	on	the	same	database	table,	and	objects	are
accessible	via	the	ORM	through	either	model.

Creating	the	content	models
The	Content	model	of	our	courses	application	contains	a	generic
relation	to	associate	different	types	of	content	to	it.	We	will	create	a
different	model	for	each	type	of	content.	All	content	models	will
have	some	fields	in	common	and	additional	fields	to	store	custom
data.	We	are	going	to	create	an	abstract	model	that	provides	the
common	fields	for	all	content	models.

Edit	the	models.py	file	of	the	courses	application	and	add	the	following
code	to	it:

class	ItemBase(models.Model):

				owner	=	models.ForeignKey(User,

																														related_name='%(class)s_related',

																														on_delete=models.CASCADE)

				title	=	models.CharField(max_length=250)

				created	=	models.DateTimeField(auto_now_add=True)

				updated	=	models.DateTimeField(auto_now=True)

				class	Meta:

								abstract	=	True

				def	__str__(self):

								return	self.title

class	Text(ItemBase):

				content	=	models.TextField()

class	File(ItemBase):

				file	=	models.FileField(upload_to='files')

class	Image(ItemBase):

							file	=	models.FileField(upload_to='images')

class	Video(ItemBase):

				url	=	models.URLField()

In	this	code,	we	define	an	abstract	model	named	ItemBase.	Therefore,
we	have	set	abstract=True	in	its	Meta	class.	In	this	model,	we	define	the
owner,	title,	created,	and	updated	fields.	These	common	fields	will	be	used
for	all	types	of	content.	The	owner	field	allows	us	to	store	which	user
created	the	content.	Since	this	field	is	defined	in	an	abstract	class,
we	need	different	related_name	for	each	sub-model.	Django	allows	us
to	specify	a	placeholder	for	the	model	class	name	in	the	related_name
attribute	as	%(class)s.	By	doing	so,	related_name	for	each	child	model	will
be	generated	automatically.	Since	we	use	'%(class)s_related'	as
related_name,	the	reverse	relation	for	child	models	will
be	text_related,	file_related,	image_related,	and	video_related	respectively.

We	have	defined	four	different	content	models,	which	inherit	from
the	ItemBase	abstract	model.	These	are	as	follows:

Text:	To	store	text	content

File:	To	store	files,	such	as	PDF

Image:	To	store	image	files

Video:	To	store	videos;	we	use	an	URLField	field	to	provide	a

video	URL	in	order	to	embed	it

Each	child	model	contains	the	fields	defined	in	the	ItemBase	class	in
addition	to	its	own	fields.	A	database	table	will	be	created	for	the
Text,	File,	Image,	and	Video	models	respectively.	There	will	be	no
database	table	associated	to	the	ItemBase	model	since	it	is	an	abstract
model.

Edit	the	Content	model	you	created	previously	and	modify	its
content_type	field	as	follows:

content_type	=	models.ForeignKey(ContentType,

																			on_delete=models.CASCADE,

																			limit_choices_to={'model__in':(

																																					'text',

																																					'video',

																																					'image',

																																					'file')})

We	add	a	limit_choices_to	argument	to	limit	the	ContentType	objects	that
can	be	used	for	the	generic	relationship.	We	use	the	model__in	field
lookup	to	filter	the	query	to	the	ContentType	objects	with	a	model
attribute	that	is	'text',	'video',	'image',	or	'file'.

Let's	create	a	migration	to	include	the	new	models	we	have	added.
Run	the	following	command	from	the	command	line:

python	manage.py	makemigrations

You	will	see	the	following	output:

Migrations	for	'courses':

		courses/migrations/0002_content_file_image_text_video.py

				-	Create	model	Content

				-	Create	model	File

				-	Create	model	Image

				-	Create	model	Text

				-	Create	model	Video

Then,	run	the	following	command	to	apply	the	new	migration:

python	manage.py	migrate

The	output	you	see	should	end	with	the	following	line:

Applying	courses.0002_content_file_image_text_video...	OK

We	have	created	models	that	are	suitable	to	add	diverse	content	to
the	course	modules.	However,	there	is	still	something	missing	in
our	models.	The	course	modules	and	contents	should	follow	a
particular	order.	We	need	a	field	that	allows	us	to	order	them	easily.

Creating	custom	model	fields
Django	comes	with	a	complete	collection	of	model	fields	that	you
can	use	to	build	your	models.	However,	you	can	also	create	your
own	model	fields	to	store	custom	data	or	alter	the	behavior	of
existing	fields.

We	need	a	field	that	allows	us	to	define	an	order	for	objects.	An	easy
way	to	specify	an	order	for	objects	using	existing	Django	fields	is	by
adding	a	PositiveIntegerField	to	your	models.	Using	integers,	we	can
easily	specify	the	order	of	objects.	We	can	create	a	custom	order
field	that	inherits	from	PositiveIntegerField	and	provides	additional
behavior.

There	are	two	relevant	functionalities	that	we	will	build	into	our
order	field:

Automatically	assign	an	order	value	when	no

specific	order	is	provided:	When	saving	a	new	object

with	no	specific	order,	our	field	should	automatically	assign

the	number	that	comes	after	the	last	existing	ordered	object.

If	there	are	two	objects	with	order	1	and	2	respectively,	when

saving	a	third	object,	we	should	automatically	assign	the

order	3	to	it	if	no	specific	order	has	been	provided.

Order	objects	with	respect	to	other	fields:	Course

modules	will	be	ordered	with	respect	to	the	course	they

belong	to	and	module	contents	with	respect	to	the	module

they	belong	to.

Create	a	new	fields.py	file	inside	the	courses	application	directory	and
add	the	following	code	to	it:

from	django.db	import	models

from	django.core.exceptions	import	ObjectDoesNotExist

class	OrderField(models.PositiveIntegerField):

				def	__init__(self,	for_fields=None,	*args,	**kwargs):

								self.for_fields	=	for_fields

								super(OrderField,	self).__init__(*args,	**kwargs)

				def	pre_save(self,	model_instance,	add):

								if	getattr(model_instance,	self.attname)	is	None:

												#	no	current	value

												try:

																qs	=	self.model.objects.all()

																if	self.for_fields:

																				#	filter	by	objects	with	the	same	field	values

																				#	for	the	fields	in	"for_fields"

																				query	=	{field:	getattr(model_instance,	field)\

																				for	field	in	self.for_fields}

																				qs	=	qs.filter(**query)

																#	get	the	order	of	the	last	item

																last_item	=	qs.latest(self.attname)

																value	=	last_item.order	+	1

												except	ObjectDoesNotExist:

																value	=	0

												setattr(model_instance,	self.attname,	value)

												return	value

								else:

												return	super(OrderField,

																									self).pre_save(model_instance,	add)

This	is	our	custom	OrderField.	It	inherits	from	the	PositiveIntegerField
field	provided	by	Django.	Our	OrderField	field	takes	an	optional
for_fields	parameter	that	allows	us	to	indicate	the	fields	that	the
order	has	to	be	calculated	with	respect	to.

Our	field	overrides	the	pre_save()	method	of	the	PositiveIntegerField
field,	which	is	executed	before	saving	the	field	into	the	database.	In
this	method,	we	perform	the	following	actions:

1.	 We	check	if	a	value	already	exists	for	this	field	in	the	model

instance.	We	use	self.attname,	which	is	the	attribute	name

given	to	the	field	in	the	model.	If	the	attribute's	value	is

different	than	None,	we	calculate	the	order	we	should	give	it	as

follows:

1.	 We	build	a	QuerySet	to	retrieve	all	objects	for	the

field's	model.	We	retrieve	the	model	class	the	field

belongs	to	by	accessing	self.model.

2.	 We	filter	the	QuerySet	by	the	fields'	current	value	for

the	model	fields	that	are	defined	in	the	for_fields

parameter	of	the	field,	if	any.	By	doing	so,	we

calculate	the	order	with	respect	to	the	given	fields.

3.	 We	retrieve	the	object	with	the	highest	order	with

last_item	=	qs.latest(self.attname)	from	the	database.	If	no

object	is	found,	we	assume	this	object	is	the	first	one

and	assign	the	order	0	to	it.

4.	 If	an	object	is	found,	we	add	1	to	the	highest	order

found.

5.	 We	assign	the	calculated	order	to	the	field's	value	in

the	model	instance	using	setattr()	and	return	it.

2.	 If	the	model	instance	has	a	value	for	the	current	field,	we

don't	do	anything.

When	you	create	custom	model	fields,	make	them	generic.	Avoid	hardcoding
data	that	depends	on	a	specific	model	or	field.	Your	field	should	work	in	any
model.

You	can	find	more	information	about	writing	custom	model	fields
at	https://docs.djangoproject.com/en/2.0/howto/custom-model-fields/.

https://docs.djangoproject.com/en/2.0/howto/custom-model-fields/

Adding	ordering	to	module	and
content	objects
Let's	add	the	new	field	to	our	models.	Edit	the	models.py	file	of	the
courses	application,	and	import	the	OrderField	class	and	a	field	to	the
Module	model	as	follows:

from	.fields	import	OrderField

class	Module(models.Model):

				#	...

				order	=	OrderField(blank=True,	for_fields=['course'])

We	name	the	new	field	order,	and	we	specify	that	the	ordering	is
calculated	with	respect	to	the	course	by	setting	for_fields=['course'].
This	means	that	the	order	for	a	new	module	will	be	assigned	adding
1	to	the	last	module	of	the	same	Course	object.	Now,	you	can	edit	the
__str__()	method	of	the	Module	model	to	include	its	order	as	follows:

class	Module(models.Model):

				#	...

				def	__str__(self):

								return	'{}.	{}'.format(self.order,	self.title)

Module	contents	also	need	to	follow	a	particular	order.	Add	an
OrderField	field	to	the	Content	model	as	follows:

class	Content(models.Model):

				#	...

				order	=	OrderField(blank=True,	for_fields=['module'])

This	time,	we	specify	that	the	order	is	calculated	with	respect	to	the
module	field.	Finally,	let's	add	a	default	ordering	for	both	models.	Add

the	following	Meta	class	to	the	Module	and	Content	models:

class	Module(models.Model):

				#	...

				class	Meta:

								ordering	=	['order']

class	Content(models.Model):

				#	...

				class	Meta:

								ordering	=	['order']

The	Module	and	Content	models	should	now	look	as	follows:

class	Module(models.Model):

				course	=	models.ForeignKey(Course,

																															related_name='modules',

																															on_delete=models.CASCADE)

				title	=	models.CharField(max_length=200)

				description	=	models.TextField(blank=True)

				order	=	OrderField(blank=True,	for_fields=['course'])

				class	Meta:

								ordering	=	['order']

				def	__str__(self):

								return	'{}.	{}'.format(self.order,	self.title)

class	Content(models.Model):

				module	=	models.ForeignKey(Module,

																															related_name='contents',

																															on_delete=models.CASCADE)

				content_type	=	models.ForeignKey(ContentType,

																																					on_delete=models.CASCADE,

																																					limit_choices_to={'model__in':(

																																																							'text',

																																																							'video',

																																																							'image',

																																																							'file')})

				object_id	=	models.PositiveIntegerField()

				item	=	GenericForeignKey('content_type',	'object_id')

				order	=	OrderField(blank=True,	for_fields=['module'])

				class	Meta:

												ordering	=	['order']

Let's	create	a	new	model	migration	that	reflects	the	new	order
fields.	Open	the	shell	and	run	the	following	command:

python	manage.py	makemigrations	courses

You	will	see	the	following	output:

You	are	trying	to	add	a	non-nullable	field	'order'	to	content	without	a	

default;	we	can't	do	that	(the	database	needs	something	to	populate	existing	

rows).

Please	select	a	fix:

	1)	Provide	a	one-off	default	now	(will	be	set	on	all	existing	rows	with	a	

null	value	for	this	column)

	2)	Quit,	and	let	me	add	a	default	in	models.py

Select	an	option:

Django	is	telling	us	that	we	have	to	provide	a	default	value	for	the
new	order	field	for	existing	rows	in	the	database.	If	the	field	had
null=True,	it	would	accept	null	values	and	Django	would	create	the
migration	automatically	instead	of	asking	for	a	default	value.	We
can	specify	a	default	value	or	cancel	the	migration	and	add	a	default
attribute	to	the	order	field	in	the	models.py	file	before	creating	the
migration.

Enter	1	and	press	Enter	to	provide	a	default	value	for	existing
records.	You	will	see	the	following	output:

Please	enter	the	default	value	now,	as	valid	Python

The	datetime	and	django.utils.timezone	modules	are	available,	so	you	can	do	

e.g.	timezone.now

Type	'exit'	to	exit	this	prompt

>>>

Enter	0	so	that	this	is	the	default	value	for	existing	records	and	press
Enter.	Django	will	ask	you	for	a	default	value	for	the	Module	model,
too.	Choose	the	first	option	and	enter	0	as	the	default	value	again.
Finally,	you	will	see	an	output	similar	to	the	following	one:

Migrations	for	'courses':

		courses/migrations/0003_auto_20180326_0704.py

				-	Change	Meta	options	on	content

				-	Change	Meta	options	on	module

				-	Add	field	order	to	content

				-	Add	field	order	to	module

Then,	apply	the	new	migrations	with	the	following	command:

python	manage.py	migrate

The	output	of	the	command	will	inform	you	that	the	migration	was
successfully	applied,	as	follows:

Applying	courses.0003_auto_20180326_0704...	OK

Let's	test	our	new	field.	Open	the	shell	with	the	following	command:

python	manage.py	shell

Create	a	new	course	as	follows:

>>>	from	django.contrib.auth.models	import	User

>>>	from	courses.models	import	Subject,	Course,	Module

>>>	user	=	User.objects.last()

>>>	subject	=	Subject.objects.last()

>>>	c1	=	Course.objects.create(subject=subject,	owner=user,	title='Course	1',	

slug='course1')

We	have	created	a	course	in	the	database.	Now,	let's	add	modules	to
the	course	and	see	how	their	order	is	automatically	calculated.	We
create	an	initial	module	and	check	its	order:

>>>	m1	=	Module.objects.create(course=c1,	title='Module	1')

>>>	m1.order

0

OrderField	sets	its	value	to	0,	since	this	is	the	first	Module	object	created
for	the	given	course.	Now,	we	create	a	second	module	for	the	same
course:

>>>	m2	=	Module.objects.create(course=c1,	title='Module	2')

>>>	m2.order

1

OrderField	calculates	the	next	order	value	adding	1	to	the	highest	order
for	existing	objects.	Let's	create	a	third	module,	forcing	a	specific
order:

>>>	m3	=	Module.objects.create(course=c1,	title='Module	3',	order=5)

>>>	m3.order

5

If	we	specify	a	custom	order,	the	OrderField	field	does	not	interfere
and	the	value	given	to	the	order	is	used.

Let's	add	a	fourth	module:

>>>	m4	=	Module.objects.create(course=c1,	title='Module	4')

>>>	m4.order

6

The	order	for	this	module	has	been	automatically	set.	Our	OrderField
field	does	not	guarantee	that	all	order	values	are	consecutive.
However,	it	respects	existing	order	values	and	always	assigns	the
next	order	based	on	the	highest	existing	order.

Let's	create	a	second	course	and	add	a	module	to	it:

>>>	c2	=	Course.objects.create(subject=subject,	title='Course	2',	

slug='course2',	owner=user)

>>>	m5	=	Module.objects.create(course=c2,	title='Module	1')

>>>	m5.order

0

To	calculate	the	new	module's	order,	the	field	only	takes	into
consideration	existing	modules	that	belong	to	the	same	course.
Since	this	is	the	first	module	of	the	second	course,	the	resulting
order	is	0.	This	is	because	we	specified	for_fields=['course']	in	the	order
field	of	the	Module	model.

Congratulations!	You	have	successfully	created	your	first	custom
model	field.

Creating	a	CMS
Now	that	we	have	created	a	versatile	data	model,	we	are	going	to
build	the	CMS.	The	CMS	will	allow	instructors	to	create	courses	and
manage	their	contents.	We	need	to	provide	the	following
functionality:

Log	in	to	the	CMS

List	the	courses	created	by	the	instructor

Create,	edit,	and	delete	courses

Add	modules	to	a	course	and	reorder	them

Add	different	types	of	content	to	each	module	and	reorder

contents

Adding	an	authentication
system
We	are	going	to	use	Django's	authentication	framework	in	our
platform.	Both	instructors	and	students	will	be	instances	of
Django's	User	model,	so	they	will	be	able	to	log	in	to	the	site	using
the	authentication	views	of	django.contrib.auth.

Edit	the	main	urls.py	file	of	the	educa	project	and	include	the	login	and
logout	views	of	Django's	authentication	framework:

from	django.contrib	import	admin

from	django.urls	import	path

from	django.contrib.auth	import	views	as	auth_views

urlpatterns	=	[

				path('accounts/login/',	auth_views.LoginView.as_view(),	name='login'),

				path('accounts/logout/',	auth_views.LogoutView.as_view(),	name='logout'),

				path('admin/',	admin.site.urls),

]

Creating	the	authentication
templates
Create	the	following	file	structure	inside	the	courses	application
directory:

templates/

				base.html

				registration/

								login.html

								logged_out.html

Before	building	the	authentication	templates,	we	need	to	prepare
the	base	template	for	our	project.	Edit	the	base.html	template	file	and
add	the	following	content	to	it:

{%	load	staticfiles	%}

<!DOCTYPE	html>

<html>

<head>

		<meta	charset="utf-8"	/>

		<title>{%	block	title	%}Educa{%	endblock	%}</title>

		<link	href="{%	static	"css/base.css"	%}"	rel="stylesheet">

</head>

<body>

		<div	id="header">

				Educa

				<ul	class="menu">

						{%	if	request.user.is_authenticated	%}

								Sign	out

						{%	else	%}

								Sign	in

						{%	endif	%}

				

		</div>

		<div	id="content">

				{%	block	content	%}

				{%	endblock	%}

		</div>

	

		<script	src="https://ajax.googleapis.com/ajax/libs/jquery/

			3.3.1/jquery.min.js"></script>

		<script>

				$(document).ready(function()	{

						{%	block	domready	%}

						{%	endblock	%}

				});

		</script>

</body>

</html>

This	is	the	base	template	that	will	be	extended	by	the	rest	of	the
templates.	In	this	template,	we	define	the	following	blocks:

title:	The	block	for	other	templates	to	add	a	custom	title	for

each	page.

content:	The	main	block	for	content.	All	templates	that	extend

the	base	template	should	add	content	to	this	block.

domready:	Located	inside	the	$document.ready()	function	of	jQuery.

It	allows	us	to	execute	code	when	the	DOM	has	finished

loading.

The	CSS	styles	used	in	this	template	are	located	in	the	static/
directory	of	the	courses	application,	in	the	code	that	comes	along	with
this	chapter.	Copy	the	static/	directory	into	the	same	directory	of
your	project	to	use	them.

Edit	the	registration/login.html	template	and	add	the	following	code	to
it:

{%	extends	"base.html"	%}

{%	block	title	%}Log-in{%	endblock	%}

{%	block	content	%}

		<h1>Log-in</h1>

		<div	class="module">

				{%	if	form.errors	%}

						<p>Your	username	and	password	didn't	match.	Please	try	again.</p>

				{%	else	%}

						<p>Please,	use	the	following	form	to	log-in:</p>

				{%	endif	%}

				<div	class="login-form">

						<form	action="{%	url	'login'	%}"	method="post">

								{{	form.as_p	}}

								{%	csrf_token	%}

								<input	type="hidden"	name="next"	value="{{	next	}}"	/>

								<p><input	type="submit"	value="Log-in"></p>

						</form>

				</div>

		</div>

{%	endblock	%}

This	is	a	standard	login	template	for	Django's	login	view.

Edit	the	registration/logged_out.html	template	and	add	the	following
code	to	it:

{%	extends	"base.html"	%}

{%	block	title	%}Logged	out{%	endblock	%}

{%	block	content	%}

		<h1>Logged	out</h1>

		<div	class="module">

				<p>You	have	been	successfully	logged	out.	

							You	can	log-in	again.</p>

		</div>

{%	endblock	%}

This	is	the	template	that	will	be	displayed	to	the	user	after	logout.
Run	the	development	server	with	the	following	command:

python	manage.py	runserver

Open	http://127.0.0.1:8000/accounts/login/	in	your	browser.	You	should
see	the	login	page	like	this:

Creating	class-based	views
We	are	going	to	build	views	to	create,	edit,	and	delete	courses.	We
will	use	class-based	views	for	this.	Edit	the	views.py	file	of	the	courses
application	and	add	the	following	code	to	it:

from	django.views.generic.list	import	ListView

from	.models	import	Course

class	ManageCourseListView(ListView):

				model	=	Course

				template_name	=	'courses/manage/course/list.html'

				def	get_queryset(self):

								qs	=	super(ManageCourseListView,	self).get_queryset()

								return	qs.filter(owner=self.request.user)

This	is	the	ManageCourseListView	view.	It	inherits	from	Django's	generic
ListView.	We	override	the	get_queryset()	method	of	the	view	to	retrieve
only	courses	created	by	the	current	user.	To	prevent	users	from
editing,	updating,	or	deleting	courses	they	didn't	create,	we	will	also
need	to	override	the	get_queryset()	method	in	the	create,	update,	and
delete	views.	When	you	need	to	provide	a	specific	behavior	for
several	class-based	views,	it	is	recommended	to	use	mixins.

Using	mixins	for	class-based
views
Mixins	are	a	special	kind	of	multiple	inheritance	for	a	class.	You	can
use	them	to	provide	common	discrete	functionality	that,	added	to
other	mixins,	allows	you	to	define	the	behavior	of	a	class.	There	are
two	main	situations	to	use	mixins:

You	want	to	provide	multiple	optional	features	for	a	class

You	want	to	use	a	particular	feature	in	several	classes

Django	comes	with	several	mixins	that	provide	additional
functionality	to	your	class-based	views.	You	can	learn	more	about
mixins	at	https://docs.djangoproject.com/en/2.0/topics/class-based-views/mixins/.

We	are	going	to	create	a	mixin	class	that	includes	a	common
behavior	and	use	it	for	the	course's	views.	Edit	the	views.py	file	of	the
courses	application	and	modify	it	as	follows:

from	django.urls	import	reverse_lazy

from	django.views.generic.list	import	ListView

from	django.views.generic.edit	import	CreateView,	UpdateView,	\

																																						DeleteView

from	.models	import	Course

class	OwnerMixin(object):

				def	get_queryset(self):

								qs	=	super(OwnerMixin,	self).get_queryset()

								return	qs.filter(owner=self.request.user)

class	OwnerEditMixin(object):

				def	form_valid(self,	form):

								form.instance.owner	=	self.request.user

https://docs.djangoproject.com/en/2.0/topics/class-based-views/mixins/

								return	super(OwnerEditMixin,	self).form_valid(form)

class	OwnerCourseMixin(OwnerMixin):

				model	=	Course

class	OwnerCourseEditMixin(OwnerCourseMixin,	OwnerEditMixin):

				fields	=	['subject',	'title',	'slug',	'overview']

				success_url	=	reverse_lazy('manage_course_list')

				template_name	=	'courses/manage/course/form.html'

class	ManageCourseListView(OwnerCourseMixin,	ListView):

				template_name	=	'courses/manage/course/list.html'

class	CourseCreateView(OwnerCourseEditMixin,	CreateView):

				pass

class	CourseUpdateView(OwnerCourseEditMixin,	UpdateView):

				pass

class	CourseDeleteView(OwnerCourseMixin,	DeleteView):

				template_name	=	'courses/manage/course/delete.html'

				success_url	=	reverse_lazy('manage_course_list')

In	this	code,	we	create	the	OwnerMixin	and	OwnerEditMixin	mixins.	We	will
use	these	mixins	together	with	the	ListView,	CreateView,	UpdateView,	and
DeleteView	views	provided	by	Django.	OwnerMixin	implements	the
following	method:

get_queryset():	This	method	is	used	by	the	views	to	get	the	base

QuerySet.	Our	mixin	will	override	this	method	to	filter

objects	by	the	owner	attribute	to	retrieve	objects	that	belong	to

the	current	user	(request.user).

OwnerEditMixin	implements	the	following	method:

form_valid():	This	method	is	used	by	views	that	use	Django's

ModelFormMixin	mixin,	that	is,	views	with	forms	or	modelforms

such	as	CreateView	and	UpdateView.	form_valid()	are	executed	when

the	submitted	form	is	valid.	The	default	behavior	for	this

method	is	saving	the	instance	(for	modelforms)	and

redirecting	the	user	to	success_url.	We	override	this	method	to

automatically	set	the	current	user	in	the	owner	attribute	of	the

object	being	saved.	By	doing	so,	we	set	the	owner	for	an

object	automatically	when	it	is	saved.

Our	OwnerMixin	class	can	be	used	for	views	that	interact	with	any
model	that	contains	an	owner	attribute.

We	also	define	an	OwnerCourseMixin	class	that	inherits	OwnerMixin	and
provides	the	following	attribute	for	child	views:

model:	The	model	used	for	QuerySets.	Used	by	all	views.

We	define	a	OwnerCourseEditMixin	mixin	with	the	following	attributes:

fields:	The	fields	of	the	model	to	build	the	model	form	of	the

CreateView	and	UpdateView	views.

success_url:	Used	by	CreateView	and	UpdateView	to	redirect	the	user

after	the	form	is	successfully	submitted.	We	use	a	URL	with

the	name	manage_course_list	that	we	are	going	to	create	later.

Finally,	we	create	the	following	views	that	subclass	OwnerCourseMixin:

ManageCourseListView:	Lists	the	courses	created	by	the	user.	It

inherits	from	OwnerCourseMixin	and	ListView.

CourseCreateView:	Uses	a	modelform	to	create	a	new	Course	object.

It	uses	the	fields	defined	in	OwnerCourseEditMixin	to	build	a	model

form	and	also	subclasses	CreateView.

CourseUpdateView:	Allows	editing	an	existing	Course	object.	It

inherits	from	OwnerCourseEditMixin	and	UpdateView.

CourseDeleteView:	Inherits	from	OwnerCourseMixin	and	the	generic

DeleteView.	Defines	success_url	to	redirect	the	user	after	the

object	is	deleted.

Working	with	groups	and
permissions
We	have	created	the	basic	views	to	manage	courses.	Currently,	any
user	could	access	these	views.	We	want	to	restrict	these	views	so
that	only	instructors	have	permission	to	create	and	manage	courses.
Django's	authentication	framework	includes	a	permission	system
that	allows	you	to	assign	permissions	to	users	and	groups.	We	are
going	to	create	a	group	for	instructor	users	and	assign	permissions
to	create,	update,	and	delete	courses.

Run	the	development	server	using	the	command	and	open
http://127.0.0.1:8000/admin/auth/group/add/	in	your	browser	to	create	a	new
Group	object.	Add	the	name	Instructors	and	choose	all	permissions	of
the	courses	application	except	those	of	the	Subject	model,	as	follows:

As	you	can	see,	there	are	three	different	permissions	for	each
model:	can	add,	can	change,	and	can	delete.	After	choosing
permissions	for	this	group,	click	on	the	SAVE	button.

Django	creates	permissions	for	models	automatically,	but	you	can
also	create	custom	permissions.	You	can	read	more	about	adding
custom	permissions	at	https://docs.djangoproject.com/en/2.0/topics/auth/custo
mizing/#custom-permissions.

Open	http://127.0.0.1:8000/admin/auth/user/add/	and	create	a	new	user.	Edit
the	user	and	add	it	to	the	Instructors	group,	as	follows:

Users	inherit	the	permissions	of	the	groups	they	belong	to,	but	you
can	also	add	individual	permissions	to	a	single	user	using	the
administration	site.	Users	that	have	is_superuser	set	to	True	have	all
permissions	automatically.

https://docs.djangoproject.com/en/2.0/topics/auth/customizing/#custom-permissions

Restricting	access	to	class-
based	views
We	are	going	to	restrict	access	to	the	views	so	that	only	users	with
the	appropriate	permissions	can	add,	change,	or	delete	Course
objects.	We	are	going	to	use	the	following	two	mixins	provided	by
django.contrib.auth	to	limit	access	to	views:

LoginRequiredMixin:	Replicates	the	login_required	decorator's

functionality.

PermissionRequiredMixin:	Grants	access	to	the	view	to	users	that

have	a	specific	permission.	Remember	that	superusers

automatically	have	all	permissions.

Edit	the	views.py	file	of	the	courses	application	and	add	the	following
import:

from	django.contrib.auth.mixins	import	LoginRequiredMixin,	\

																																							PermissionRequiredMixin

Make	OwnerCourseMixin	inherit	LoginRequiredMixin	like	this:

class	OwnerCourseMixin(OwnerMixin,	LoginRequiredMixin):

				model	=	Course

				fields	=	['subject',	'title',	'slug',	'overview']

				success_url	=	reverse_lazy('manage_course_list')

Then,	add	a	permission_required	attribute	to	the	create,	update,	and
delete	views,	as	follows:

class	CourseCreateView(PermissionRequiredMixin,

																							OwnerCourseEditMixin,

																							CreateView):

				permission_required	=	'courses.add_course'

class	CourseUpdateView(PermissionRequiredMixin,

																							OwnerCourseEditMixin,

																							UpdateView):

				permission_required	=	'courses.change_course'

class	CourseDeleteView(PermissionRequiredMixin,

																							OwnerCourseMixin,

																							DeleteView):

				template_name	=	'courses/manage/course/delete.html'

				success_url	=	reverse_lazy('manage_course_list')

				permission_required	=	'courses.delete_course'

PermissionRequiredMixin	checks	that	the	user	accessing	the	view	has	the
permission	specified	in	the	permission_required	attribute.	Our	views	are
now	only	accessible	to	users	that	have	proper	permissions.

Let's	create	URLs	for	these	views.	Create	a	new	file	inside	the	courses
application	directory	and	name	it	urls.py.	Add	the	following	code	to
it:

from	django.urls	import	path

from	.	import	views

urlpatterns	=	[

				path('mine/',

									views.ManageCourseListView.as_view(),

									name='manage_course_list'),

				path('create/',

									views.CourseCreateView.as_view(),

									name='course_create'),

				path('<pk>/edit/',

									views.CourseUpdateView.as_view(),

									name='course_edit'),

				path('<pk>/delete/',

									views.CourseDeleteView.as_view(),

									name='course_delete'),

]

These	are	the	URL	patterns	for	the	list,	create,	edit,	and	delete

course	views.	Edit	the	main	urls.py	file	of	the	educa	project	and
include	the	URL	patterns	of	the	courses	application,	as	follows:

from	django.urls	import	path,	include

urlpatterns	=	[

				path('accounts/login/',	auth_views.LoginView.as_view(),	name='login'),

				path('accounts/logout/',	auth_views.LogoutView.as_view(),	name='logout'),

				path('admin/',	admin.site.urls),

				path('course/',	include('courses.urls')),

]

We	need	to	create	the	templates	for	these	views.	Create	the
following	directories	and	files	inside	the	templates/	directory	of	the
courses	application:

courses/

				manage/

								course/

												list.html

												form.html

												delete.html

Edit	the	courses/manage/course/list.html	template	and	add	the	following
code	to	it:

{%	extends	"base.html"	%}

{%	block	title	%}My	courses{%	endblock	%}

{%	block	content	%}

		<h1>My	courses</h1>

		<div	class="module">

				{%	for	course	in	object_list	%}

						<div	class="course-info">

								<h3>{{	course.title	}}</h3>

								<p>

										Edit

										Delete

								</p>

						</div>

				{%	empty	%}

						<p>You	haven't	created	any	courses	yet.</p>

				{%	endfor	%}

				<p>

						Create	new	

course

				</p>

		</div>

{%	endblock	%}

This	is	the	template	for	the	ManageCourseListView	view.	In	this	template,
we	list	the	courses	created	by	the	current	user.	We	include	links	to
edit	or	delete	each	course,	and	a	link	to	create	new	courses.

Run	the	development	server	using	the	command	python	manage.py
runserver.	Open	http://127.0.0.1:8000/accounts/login/?next=/course/mine/	in	your
browser	and	log	in	with	a	user	that	belongs	to	the	Instructors	group.
After	logging	in,	you	will	be	redirected	to	the
http://127.0.0.1:8000/course/mine/	URL	and	you	should	see	the	following
page:

This	page	will	display	all	courses	created	by	the	current	user.

Let's	create	the	template	that	displays	the	form	for	the	create	and
update	course	views.	Edit	the	courses/manage/course/form.html	template

and	write	the	following	code:

{%	extends	"base.html"	%}

{%	block	title	%}

		{%	if	object	%}

				Edit	course	"{{	object.title	}}"

		{%	else	%}

				Create	a	new	course

		{%	endif	%}

{%	endblock	%}

{%	block	content	%}

		<h1>

				{%	if	object	%}

						Edit	course	"{{	object.title	}}"

				{%	else	%}

						Create	a	new	course

				{%	endif	%}

		</h1>

		<div	class="module">

				<h2>Course	info</h2>

				<form	action="."	method="post">

						{{	form.as_p	}}

						{%	csrf_token	%}

						<p><input	type="submit"	value="Save	course"></p>

				</form>

		</div>

{%	endblock	%}

The	form.html	template	is	used	for	both	the	CourseCreateView	and
CourseUpdateView	views.	In	this	template,	we	check	whether	an	object
variable	is	in	the	context.	If	object	exists	in	the	context,	we	know	that
we	are	updating	an	existing	course,	and	we	use	it	in	the	page	title.
Otherwise,	we	are	creating	a	new	Course	object.

Open	http://127.0.0.1:8000/course/mine/	in	your	browser	and	click	the
CREATE	NEW	COURSE	button.	You	will	see	the	following	page:

Fill	in	the	form	and	click	the	SAVE	COURSE	button.	The	course	will
be	saved	and	you	will	be	redirected	to	the	course	list	page.	It	should

look	as	follows:

Then,	click	the	Edit	link	for	the	course	you	have	just	created.	You
will	see	the	form	again,	but	this	time	you	are	editing	an	existing
Course	object	instead	of	creating	one.

Finally,	edit	the	courses/manage/course/delete.html	template	and	add	the
following	code:

{%	extends	"base.html"	%}

{%	block	title	%}Delete	course{%	endblock	%}

{%	block	content	%}

		<h1>Delete	course	"{{	object.title	}}"</h1>

		<div	class="module">

				<form	action=""	method="post">

						{%	csrf_token	%}

						<p>Are	you	sure	you	want	to	delete	"{{	object	}}"?</p>

						<input	type="submit"	class"button"	value="Confirm">

				</form>

		</div>

{%	endblock	%}

This	is	the	template	for	the	CourseDeleteView	view.	This	view	inherits

from	DeleteView	provided	by	Django,	which	expects	user	confirmation
to	delete	an	object.

Open	your	browser	and	click	the	Delete	link	of	your	course.	You
should	see	the	following	confirmation	page:

Click	the	CONFIRM	button.	The	course	will	be	deleted	and	you	will
be	redirected	to	the	course	list	page	again.

Instructors	can	now	create,	edit,	and	delete	courses.	Next,	we	need
to	provide	them	with	CMS	to	add	modules	and	contents	to	courses.
We	will	start	by	managing	course	modules.

Managing	course	modules	and
content
We	are	going	to	build	a	system	to	manage	course	modules	and	their
contents.	We	will	need	to	build	forms	that	can	be	used	for	managing
multiple	modules	per	course	and	different	types	of	content	for	each
module.	Both	modules	and	contents	will	have	to	follow	a	specific
order	and	we	should	be	able	to	reorder	them	using	the	CMS.

Using	formsets	for	course
modules
Django	comes	with	an	abstraction	layer	to	work	with	multiple	forms
on	the	same	page.	These	groups	of	forms	are	known	as	formsets.
Formsets	manage	multiple	instances	of	a	certain	Form	or	ModelForm.	All
forms	are	submitted	at	once	and	the	formset	takes	care	of	the	initial
number	of	forms	to	display,	limiting	the	maximum	number	of
forms	that	can	be	submitted	and	validating	all	the	forms.

Formsets	include	an	is_valid()	method	to	validate	all	forms	at	once.
You	can	also	provide	initial	data	for	the	forms	and	specify	how
many	additional	empty	forms	to	display.

You	can	learn	more	about	formsets	at	https://docs.djangoproject.com/en/2.
0/topics/forms/formsets/	and	about	model	formsets	at	https://docs.djangoproj
ect.com/en/2.0/topics/forms/modelforms/#model-formsets.

Since	a	course	is	divided	into	a	variable	number	of	modules,	it
makes	sense	to	use	formsets	to	manage	them.	Create	a	forms.py	file	in
the	courses	application	directory	and	add	the	following	code	to	it:

from	django	import	forms

from	django.forms.models	import	inlineformset_factory

from	.models	import	Course,	Module

ModuleFormSet	=	inlineformset_factory(Course,

																																						Module,

																																						fields=['title',

																																														'description'],

																																						extra=2,

																																						can_delete=True)

This	is	the	ModuleFormSet	formset.	We	build	it	using	the

https://docs.djangoproject.com/en/2.0/topics/forms/formsets/
https://docs.djangoproject.com/en/2.0/topics/forms/modelforms/#model-formsets

inlineformset_factory()	function	provided	by	Django.	Inline	formsets	are
a	small	abstraction	on	top	of	formsets	that	simplify	working	with
related	objects.	This	function	allows	us	to	build	a	model	formset
dynamically	for	the	Module	objects	related	to	a	Course	object.

We	use	the	following	parameters	to	build	the	formset:

fields:	The	fields	that	will	be	included	in	each	form	of	the

formset.

extra:	Allows	us	to	set	the	number	of	empty	extra	forms	to

display	in	the	formset.

can_delete:	If	you	set	this	to	True,	Django	will	include	a	Boolean

field	for	each	form	that	will	be	rendered	as	a	checkbox	input.

It	allows	you	to	mark	the	objects	you	want	to	delete.

Edit	the	views.py	file	of	the	courses	application	and	add	the	following
code	to	it:

from	django.shortcuts	import	redirect,	get_object_or_404

from	django.views.generic.base	import	TemplateResponseMixin,	View

from	.forms	import	ModuleFormSet

class	CourseModuleUpdateView(TemplateResponseMixin,	View):

				template_name	=	'courses/manage/module/formset.html'

				course	=	None

				def	get_formset(self,	data=None):

								return	ModuleFormSet(instance=self.course,

																													data=data)

				def	dispatch(self,	request,	pk):

								self.course	=	get_object_or_404(Course,

																																								id=pk,

																																								owner=request.user)

								return	super(CourseModuleUpdateView,

																					self).dispatch(request,	pk)

				def	get(self,	request,	*args,	**kwargs):

								formset	=	self.get_formset()

								return	self.render_to_response({'course':	self.course,

																																								'formset':	formset})

				def	post(self,	request,	*args,	**kwargs):

								formset	=	self.get_formset(data=request.POST)

								if	formset.is_valid():

												formset.save()

												return	redirect('manage_course_list')

								return	self.render_to_response({'course':	self.course,

																																								'formset':	formset})

The	CourseModuleUpdateView	view	handles	the	formset	to	add,	update,	and
delete	modules	for	a	specific	course.	This	view	inherits	from	the
following	mixins	and	views:

TemplateResponseMixin:	This	mixin	takes	charge	of	rendering

templates	and	returning	an	HTTP	response.	It	requires	a

template_name	attribute	that	indicates	the	template	to	be

rendered	and	provides	the	render_to_response()	method	to	pass

it	a	context	and	render	the	template.

View:	The	basic	class-based	view	provided	by	Django.

In	this	view,	we	implement	the	following	methods:

get_formset():	We	define	this	method	to	avoid	repeating	the

code	to	build	the	formset.	We	create	a	ModuleFormSet	object	for

the	given	Course	object	with	optional	data.

dispatch():	This	method	is	provided	by	the	View	class.	It	takes

an	HTTP	request	and	its	parameters	and	attempts	to

delegate	to	a	lowercase	method	that	matches	the	HTTP

method	used:	a	GET	request	is	delegated	to	the	get()	method

and	a	POST	request	to	post(),	respectively.	In	this	method,	we

use	the	get_object_or_404()	shortcut	function	to	get	the	Course

object	for	the	given	id	parameter	that	belongs	to	the	current

user.	We	include	this	code	in	the	dispatch()	method	because

we	need	to	retrieve	the	course	for	both	GET	and	POST	requests.

We	save	it	into	the	course	attribute	of	the	view	to	make	it

accessible	to	other	methods.

get():	Executed	for	GET	requests.	We	build	an	empty

ModuleFormSet	formset	and	render	it	to	the	template	together

with	the	current	Course	object	using	the	render_to_response()

method	provided	by	TemplateResponseMixin.

post():	Executed	for	POST	requests.	In	this	method,	we	perform

the	following	actions:

1.	 We	build	a	ModuleFormSet	instance	using	the	submitted	data.

2.	 We	execute	the	is_valid()	method	of	the	formset	to

validate	all	of	its	forms.

3.	 If	the	formset	is	valid,	we	save	it	by	calling	the	save()

method.	At	this	point,	any	changes	made,	such	as

adding,	updating,	or	marking	modules	for	deletion,	are

applied	to	the	database.	Then,	we	redirect	users	to	the

manage_course_list	URL.	If	the	formset	is	not	valid,	we

render	the	template	to	display	any	errors,	instead.

Edit	the	urls.py	file	of	the	courses	application	and	add	the	following
URL	pattern	to	it:

path('<pk>/module/',

					views.CourseModuleUpdateView.as_view(),

					name='course_module_update'),

Create	a	new	directory	inside	the	courses/manage/	template	directory

and	name	it	module.	Create	a	courses/manage/module/formset.html	template
and	add	the	following	code	to	it:

{%	extends	"base.html"	%}

{%	block	title	%}

		Edit	"{{	course.title	}}"

{%	endblock	%}

{%	block	content	%}

		<h1>Edit	"{{	course.title	}}"</h1>

		<div	class="module">

				<h2>Course	modules</h2>

				<form	action=""	method="post">

						{{	formset	}}

						{{	formset.management_form	}}

						{%	csrf_token	%}

						<input	type="submit"	class="button"	value="Save	modules">

				</form>

		</div>

{%	endblock	%}

In	this	template,	we	create	a	<form>	HTML	element,	in	which	we
include	formset.	We	also	include	the	management	form	for	the
formset	with	the	variable	{{	formset.management_form	}}.	The	management
form	includes	hidden	fields	to	control	the	initial,	total,	minimum,
and	maximum	number	of	forms.	You	can	see	it's	very	easy	to	create
a	formset.

Edit	the	courses/manage/course/list.html	template	and	add	the	following
link	for	the	course_module_update	URL	below	the	course	edit	and	delete
links:

Edit

Delete

Edit	

modules

We	have	included	the	link	to	edit	the	course	modules.	Open
http://127.0.0.1:8000/course/mine/	in	your	browser.	Create	a	course	and
click	the	Edit	modules	link	for	it.	You	should	see	a	formset	as

follows:

The	formset	includes	a	form	for	each	Module	object	contained	in	the
course.	After	these,	two	empty	extra	forms	are	displayed	because	we

set	extra=2	for	ModuleFormSet.	When	you	save	the	formset,	Django	will
include	another	two	extra	fields	to	add	new	modules.

Adding	content	to	course
modules
Now,	we	need	a	way	to	add	content	to	course	modules.	We	have
four	different	types	of	content:	text,	video,	image,	and	file.	We	can
consider	creating	four	different	views	to	create	content,	one	for	each
model.	Yet	we	are	going	to	take	a	more	generic	approach	and	create
a	view	that	handles	creating	or	updating	objects	of	any	content
model.

Edit	the	views.py	file	of	the	courses	application	and	add	the	following
code	to	it:

from	django.forms.models	import	modelform_factory

from	django.apps	import	apps

from	.models	import	Module,	Content

class	ContentCreateUpdateView(TemplateResponseMixin,	View):

				module	=	None

				model	=	None

				obj	=	None

				template_name	=	'courses/manage/content/form.html'

				def	get_model(self,	model_name):

								if	model_name	in	['text',	'video',	'image',	'file']:

												return	apps.get_model(app_label='courses',

																																		model_name=model_name)

								return	None

				def	get_form(self,	model,	*args,	**kwargs):

								Form	=	modelform_factory(model,	exclude=['owner',

																																																	'order',

																																																	'created',

																																																	'updated'])

								return	Form(*args,	**kwargs)

				def	dispatch(self,	request,	module_id,	model_name,	id=None):

								self.module	=	get_object_or_404(Module,

																																							id=module_id,

																																							course__owner=request.user)

								self.model	=	self.get_model(model_name)

								if	id:

												self.obj	=	get_object_or_404(self.model,

																																									id=id,

																																									owner=request.user)

								return	super(ContentCreateUpdateView,

											self).dispatch(request,	module_id,	model_name,	id)

This	is	the	first	part	of	ContentCreateUpdateView.	It	will	allow	us	to	create
and	update	contents	of	different	models.	This	view	defines	the
following	methods:

get_model():	Here,	we	check	that	the	given	model	name	is	one

of	the	four	content	models:	Text,	Video,	Image,	or	File.	Then,	we

use	Django's	apps	module	to	obtain	the	actual	class	for	the	given

model	name.	If	the	given	model	name	is	not	one	of	the	valid

ones,	we	return	None.

get_form():	We	build	a	dynamic	form	using	the	modelform_factory()

function	of	the	form's	framework.	Since	we	are	going	to

build	a	form	for	the	Text,	Video,	Image,	and	File	models,	we	use

the	exclude	parameter	to	specify	the	common	fields	to	exclude

from	the	form	and	let	all	other	attributes	be	included

automatically.	By	doing	so,	we	don't	have	to	know	which

fields	to	include	depending	on	the	model.

dispatch():	It	receives	the	following	URL	parameters	and

stores	the	corresponding	module,	model,	and	content	object

as	class	attributes:

module_id:	The	ID	for	the	module	that	the	content

is/will	be	associated	with.

model_name:	The	model	name	of	the	content	to

create/update.

id:	The	ID	of	the	object	that	is	being	updated.	It's	None

to	create	new	objects.

Add	the	following	get()	and	post()	methods	to	ContentCreateUpdateView:

def	get(self,	request,	module_id,	model_name,	id=None):

				form	=	self.get_form(self.model,	instance=self.obj)

				return	self.render_to_response({'form':	form,

																																				'object':	self.obj})

def	post(self,	request,	module_id,	model_name,	id=None):

				form	=	self.get_form(self.model,

																									instance=self.obj,

																									data=request.POST,

																									files=request.FILES)

				if	form.is_valid():

								obj	=	form.save(commit=False)

								obj.owner	=	request.user

								obj.save()

								if	not	id:

												#	new	content

												Content.objects.create(module=self.module,

																																			item=obj)

								return	redirect('module_content_list',	self.module.id)

				return	self.render_to_response({'form':	form,

																																				'object':	self.obj})

These	methods	are	as	follows:

get():	Executed	when	a	GET	request	is	received.	We	build	the

model	form	for	the	Text,	Video,	Image,	or	File	instance	that	is

being	updated.	Otherwise,	we	pass	no	instance	to	create	a

new	object,	since	self.obj	is	None	if	no	ID	is	provided.

post():	Executed	when	a	POST	request	is	received.	We	build	the

modelform	passing	any	submitted	data	and	files	to	it.	Then,

we	validate	it.	If	the	form	is	valid,	we	create	a	new	object	and

assign	request.user	as	its	owner	before	saving	it	to	the

database.	We	check	for	the	id	parameter.	If	no	ID	is

provided,	we	know	the	user	is	creating	a	new	object	instead

of	updating	an	existing	one.	If	this	is	a	new	object,	we	create

a	Content	object	for	the	given	module	and	associate	the	new

content	to	it.

Edit	the	urls.py	file	of	the	courses	application	and	add	the	following
URL	patterns	to	it:

path('module/<int:module_id>/content/<model_name>/create/',

					views.ContentCreateUpdateView.as_view(),

					name='module_content_create'),

path('module/<int:module_id>/content/<model_name>/<id>/',

					views.ContentCreateUpdateView.as_view(),

					name='module_content_update'),

The	new	URL	patterns	are	as	follows:

module_content_create:	To	create	new	text,	video,	image,	or	file

objects	and	add	them	to	a	module.	It	includes	the	module_id

and	model_name	parameters.	The	first	one	allows	linking	the

new	content	object	to	the	given	module.	The	latter	specifies

the	content	model	to	build	the	form	for.

module_content_update:	To	update	an	existing	text,	video,	image,

or	file	object.	It	includes	the	module_id	and	model_name

parameters	and	an	id	parameter	to	identify	the	content	that

is	being	updated.

Create	a	new	directory	inside	the	courses/manage/	template	directory
and	name	it	content.	Create	the	template	courses/manage/content/form.html
and	add	the	following	code	to	it:

{%	extends	"base.html"	%}

{%	block	title	%}

		{%	if	object	%}

				Edit	content	"{{	object.title	}}"

		{%	else	%}

				Add	a	new	content

		{%	endif	%}

{%	endblock	%}

{%	block	content	%}

		<h1>

				{%	if	object	%}

						Edit	content	"{{	object.title	}}"

				{%	else	%}

						Add	a	new	content

				{%	endif	%}

		</h1>

		<div	class="module">

				<h2>Course	info</h2>

				<form	action=""	method="post"	enctype="multipart/form-data">

						{{	form.as_p	}}

						{%	csrf_token	%}

						<p><input	type="submit"	value="Save	content"></p>

				</form>

		</div>

{%	endblock	%}

This	is	the	template	for	the	ContentCreateUpdateView	view.	In	this
template,	we	check	whether	an	object	variable	is	in	the	context.	If
object	exists	in	the	context,	we	are	updating	an	existing	object.
Otherwise,	we	are	creating	a	new	object.

We	include	enctype="multipart/form-data"	in	the	<form>	HTML	element;
because	the	form	contains	a	file	upload	for	the	File	and	Image	content
models.

Run	the	development	server,	open	http://127.0.0.1:8000/course/mine/,
click	Edit	modules	for	an	existing	course,	and	create	a	module.

Open	the	Python	shell	with	the	command	python	manage.py	shell	and
obtain	the	ID	of	the	most	recently	created	module,	as	follows:

>>>	from	courses.models	import	Module

>>>	Module.objects.latest('id').id

6

Run	the	development	server	and
open	http://127.0.0.1:8000/course/module/6/content/image/create/	in	your
browser,	replacing	the	module	ID	by	the	one	you	obtained	before.
You	will	see	the	form	to	create	an	Image	object,	as	follows:

Don't	submit	the	form	yet.	If	you	try	to	do	so,	it	will	fail	because	we
haven't	defined	the	module_content_list	URL	yet.	We	are	going	to	create
it	in	a	bit.

We	also	need	a	view	for	deleting	contents.	Edit	the	views.py	file	of	the
courses	application	and	add	the	following	code:

class	ContentDeleteView(View):

				def	post(self,	request,	id):

								content	=	get_object_or_404(Content,

																																				id=id,

																																				module__course__owner=request.user)

								module	=	content.module

								content.item.delete()

								content.delete()

								return	redirect('module_content_list',	module.id)

The	ContentDeleteView	class	retrieves	the	Content	object	with	the	given	ID;
it	deletes	the	related	Text,	Video,	Image,	or	File	object;	and	finally,	it
deletes	the	Content	object	and	redirects	the	user	to	the
module_content_list	URL	to	list	the	other	contents	of	the	module.

Edit	the	urls.py	file	of	the	courses	application	and	add	the	following
URL	pattern	to	it:

path('content/<int:id>/delete/',

					views.ContentDeleteView.as_view(),

					name='module_content_delete'),

Now,	instructors	can	create,	update,	and	delete	contents	easily.

Managing	modules	and
contents
We	have	built	views	to	create,	edit,	and	delete	course	modules	and
contents.	Now,	we	need	a	view	to	display	all	modules	for	a	course
and	list	contents	for	a	specific	module.

Edit	the	views.py	file	of	the	courses	application	and	add	the	following
code	to	it:

class	ModuleContentListView(TemplateResponseMixin,	View):

				template_name	=	'courses/manage/module/content_list.html'

				def	get(self,	request,	module_id):

								module	=	get_object_or_404(Module,

																																			id=module_id,

																																			course__owner=request.user)

								return	self.render_to_response({'module':	module})

This	is	ModuleContentListView.	This	view	gets	the	Module	object	with	the
given	ID	that	belongs	to	the	current	user	and	renders	a	template
with	the	given	module.

Edit	the	urls.py	file	of	the	courses	application	and	add	the	following
URL	pattern	to	it:

path('module/<int:module_id>/',

					views.ModuleContentListView.as_view(),

					name='module_content_list'),

Create	a	new	template	inside	the	templates/courses/manage/module/
directory	and	name	it	content_list.html.	Add	the	following	code	to	it:

{%	extends	"base.html"	%}

{%	block	title	%}

		Module	{{	module.order|add:1	}}:	{{	module.title	}}

{%	endblock	%}

{%	block	content	%}

{%	with	course=module.course	%}

		<h1>Course	"{{	course.title	}}"</h1>

		<div	class="contents">

				<h3>Modules</h3>

				<ul	id="modules">

						{%	for	m	in	course.modules.all	%}

								<li	data-id="{{	m.id	}}"	{%	if	m	==	module	%}

									class="selected"{%	endif	%}>

										

												

														Module	{{	m.order|add:1	}}

												

												

												{{	m.title	}}

										

								

						{%	empty	%}

								No	modules	yet.

						{%	endfor	%}

				

				<p>

				Edit	modules</p>

		</div>

		<div	class="module">

				<h2>Module	{{	module.order|add:1	}}:	{{	module.title	}}</h2>

				<h3>Module	contents:</h3>

				<div	id="module-contents">

						{%	for	content	in	module.contents.all	%}

								<div	data-id="{{	content.id	}}">

										{%	with	item=content.item	%}

												<p>{{	item	}}</p>

												Edit

												<form	action="{%	url	"module_content_delete"	content.id	%}"	

													method="post">

														<input	type="submit"	value="Delete">

														{%	csrf_token	%}

												</form>

										{%	endwith	%}

								</div>

						{%	empty	%}

								<p>This	module	has	no	contents	yet.</p>

						{%	endfor	%}

				</div>

				<h3>Add	new	content:</h3>

				<ul	class="content-types">

						

						Text

						

						Image

						

						Video

						

						File

				

		</div>

{%	endwith	%}

{%	endblock	%}

This	is	the	template	that	displays	all	modules	for	a	course	and	the
contents	of	the	selected	module.	We	iterate	over	the	course	modules
to	display	them	in	a	sidebar.	We	iterate	over	the	module's	contents
and	access	content.item	to	get	the	related	Text,	Video,	Image,	or	File	object.
We	also	include	links	to	create	new	text,	video,	image,	or	file
contents.

We	want	to	know	which	type	of	object	each	of	the	item	objects	is:	Text,
Video,	Image,	or	File.	We	need	the	model	name	to	build	the	URL	to	edit
the	object.	Besides	this,	we	could	display	each	item	in	the	template
differently,	based	on	the	type	of	content	it	is.	We	can	get	the	model
for	an	object	from	the	model's	Meta	class,	by	accessing	the	object's
_meta	attribute.	Nevertheless,	Django	doesn't	allow	accessing
variables	or	attributes	starting	with	an	underscore	in	templates	to
prevent	retrieving	private	attributes	or	calling	private	methods.	We
can	solve	this	by	writing	a	custom	template	filter.

Create	the	following	file	structure	inside	the	courses	application
directory:

templatetags/

				__init__.py

				course.py

Edit	the	course.py	module	and	add	the	following	code	to	it:

from	django	import	template

register	=	template.Library()

@register.filter

def	model_name(obj):

				try:

								return	obj._meta.model_name

				except	AttributeError:

								return	None

This	is	the	model_name	template	filter.	We	can	apply	it	in	templates	as
object|model_name	to	get	the	model	name	for	an	object.

Edit	the	templates/courses/manage/module/content_list.html	template	and	add
the	following	line	below	the	{%	extends	%}	template	tag:

{%	load	course	%}

This	will	load	the	course	template	tags.	Then,	replace	the	following
lines:

<p>{{	item	}}</p>

Edit

Replace	them	with	the	following	ones:

<p>{{	item	}}	({{	item|model_name	}})</p>

<a	href="{%	url	"module_content_update"	module.id	item|model_name	item.id	

%}">Edit

Now,	we	display	the	item	model	in	the	template	and	use	the	model
name	to	build	the	link	to	edit	the	object.	Edit	the
courses/manage/course/list.html	template	and	add	a	link	to	the
module_content_list	URL	like	this:

Edit	modules

{%	if	course.modules.count	>	0	%}

		

		Manage	contents

{%	endif	%}

The	new	link	allows	users	to	access	the	contents	of	the	first	module
of	the	course,	if	any.

Open	http://127.0.0.1:8000/course/mine/	and	click	the	Manage
contents	link	for	a	course	that	contains	at	least	one	module.	You
will	see	a	page	like	the	following	one:

When	you	click	on	a	module	in	the	left	sidebar,	its	contents	are
displayed	in	the	main	area.	The	template	also	includes	links	to	add
a	new	text,	video,	image,	or	file	content	for	the	module	being
displayed.	Add	a	couple	of	different	types	of	content	to	the	module
and	take	a	look	at	the	result.	The	contents	will	appear	after	Module
contents	like	in	the	following	example:

Reordering	modules	and
contents
We	need	to	provide	a	simple	way	to	reorder	course	modules	and
their	contents.	We	will	use	a	JavaScript	drag-n-drop	widget	to	let
our	users	reorder	the	modules	of	a	course	by	dragging	them.	When
users	finish	dragging	a	module,	we	will	launch	an	asynchronous
request	(AJAX)	to	store	the	new	module	order.

Using	mixins	from	django-
braces
django-braces	is	a	third-party	module	that	contains	a	collection	of
generic	mixins	for	Django.	These	mixins	provide	additional	features
for	class-based	views.	You	can	see	a	list	of	all	mixins	provided	by
django-braces	at	https://django-braces.readthedocs.io/.

We	will	use	the	following	mixins	of	django-braces:

CsrfExemptMixin:	To	avoid	checking	the	CSRF	token	in	the	POST

requests.	We	need	this	to	perform	AJAX	POST	requests

without	having	to	generate	a	csrf_token.

JsonRequestResponseMixin:	Parses	the	request	data	as	JSON	and

also	serializes	the	response	as	JSON	and	returns	an	HTTP

response	with	the	application/json	content	type.

Install	django-braces	via	pip	using	the	following	command:

pip	install	django-braces==1.13.0

We	need	a	view	that	receives	the	new	order	of	modules'	ID	encoded
in	JSON.	Edit	the	views.py	file	of	the	courses	application	and	add	the
following	code	to	it:

from	braces.views	import	CsrfExemptMixin,	JsonRequestResponseMixin

class	ModuleOrderView(CsrfExemptMixin,

																						JsonRequestResponseMixin,

https://django-braces.readthedocs.io/

																						View):

				def	post(self,	request):

								for	id,	order	in	self.request_json.items():

												Module.objects.filter(id=id,

																			course__owner=request.user).update(order=order)

								return	self.render_json_response({'saved':	'OK'})

This	is	the	ModuleOrderView	view.	

We	can	build	a	similar	view	to	order	a	module's	contents.	Add	the
following	code	to	the	views.py	file:

class	ContentOrderView(CsrfExemptMixin,

																							JsonRequestResponseMixin,

																							View):

				def	post(self,	request):

								for	id,	order	in	self.request_json.items():

												Content.objects.filter(id=id,

																							module__course__owner=request.user)	\

																							.update(order=order)

								return	self.render_json_response({'saved':	'OK'})

Now,	edit	the	urls.py	file	of	the	courses	application	and	add	the
following	URL	patterns	to	it:

path('module/order/',

					views.ModuleOrderView.as_view(),

					name='module_order'),

path('content/order/',

					views.ContentOrderView.as_view(),

					name='content_order'),

Finally,	we	need	to	implement	the	drag-n-drop	functionality	in	the
template.	We	will	use	the	jQuery	UI	library	for	this.	jQuery	UI	is
built	on	top	of	jQuery	and	it	provides	a	set	of	interface	interactions,
effects,	and	widgets.	We	will	use	its	sortable	element.	First,	we	need
to	load	jQuery	UI	in	the	base	template.	Open	the	base.html	file	located
in	the	templates/	directory	of	the	courses	application,	and	add	jQuery
UI	below	the	script	to	load	jQuery	as	follows:

<script	

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js">

</script>

<script	src="https://ajax.googleapis.com/ajax/libs/jqueryui/1.12.1/jquery-

ui.min.js"></script>

We	load	the	jQuery	UI	library	just	after	the	jQuery	framework.
Now,	edit	the	courses/manage/module/content_list.html	template	and	add	the
following	code	to	it	at	the	bottom	of	the	template:

{%	block	domready	%}

$('#modules').sortable({

				stop:	function(event,	ui)	{

								modules_order	=	{};

								$('#modules').children().each(function(){

												//	update	the	order	field

												$(this).find('.order').text($(this).index()	+	1);

												//	associate	the	module's	id	with	its	order

												modules_order[$(this).data('id')]	=	$(this).index();

								});

								$.ajax({

												type:	'POST',

												url:	'{%	url	"module_order"	%}',

												contentType:	'application/json;	charset=utf-8',

												dataType:	'json',

															data:	JSON.stringify(modules_order)

											});

				}

});

$('#module-contents').sortable({

				stop:	function(event,	ui)	{

								contents_order	=	{};

								$('#module-contents').children().each(function(){

												//	associate	the	module's	id	with	its	order

												contents_order[$(this).data('id')]	=	$(this).index();

								});

								$.ajax({

												type:	'POST',

												url:	'{%	url	"content_order"	%}',

												contentType:	'application/json;	charset=utf-8',

												dataType:	'json',

												data:	JSON.stringify(contents_order),

								});

				}

});

{%	endblock	%}

This	JavaScript	code	is	in	the	{%	block	domready	%}	block	and	therefore	it
will	be	included	in	the	$(document).ready()	event	of	jQuery	that	we
defined	in	the	base.html	template.	This	guarantees	that	our	JavaScript
code	is	executed	once	the	page	has	been	loaded.	We	define	a	sortable
element	for	the	modules	list	in	the	sidebar	and	a	different	one	for
the	module's	content	list.	Both	work	in	a	similar	manner.	In	this
code,	we	perform	the	following	tasks:

1.	 First,	we	define	a	sortable	element	for	the	modules	HTML

element.	Remember	that	we	use	#modules,	since	jQuery	uses

CSS	notation	for	selectors.

2.	 We	specify	a	function	for	the	stop	event.	This	event	is

triggered	every	time	the	user	finishes	sorting	an	element.

3.	 We	create	an	empty	modules_order	dictionary.	The	keys	for	this

dictionary	will	be	the	modules'	ID,	and	the	values	will	be	the

assigned	order	for	each	module.

4.	 We	iterate	over	the	#module	children	elements.	We	recalculate

the	displayed	order	for	each	module	and	get	its	data-id

attribute,	which	contains	the	module's	ID.	We	add	the	ID	as

the	key	of	the	modules_order	dictionary	and	the	new	index	of	the

module	as	the	value.

5.	 We	launch	an	AJAX	POST	request	to	the	content_order	URL,

including	the	serialized	JSON	data	of	modules_order	in	the

request.	The	corresponding	ModuleOrderView	takes	care	of

updating	the	modules'	order.

The	sortable	element	to	order	contents	is	quite	similar	to	this	one.	Go
back	to	your	browser	and	reload	the	page.	Now,	you	will	be	able	to
click	and	drag	both	modules	and	contents	to	reorder	them	like	the

following	example:

Great!	Now	you	can	reorder	both	course	modules	and	module
contents.

Summary
In	this	chapter,	you	learned	how	to	create	a	versatile	CMS.	You	used
model	inheritance	and	created	a	custom	model	field.	You	also
worked	with	class-based	views	and	mixins.	You	created	formsets
and	a	system	to	manage	diverse	types	of	content.

In	the	next	chapter,	you	will	create	a	student	registration	system.
You	will	also	render	different	kinds	of	content,	and	you	will	learn
how	to	work	with	Django's	cache	framework.

Rendering	and	Caching
Content
In	the	previous	chapter,	you	used	model	inheritance	and	generic
relationships	to	create	flexible	course	content	models.	You	also	built
a	course	management	system	using	class-based	views,	formsets,
and	AJAX	ordering	for	contents.	In	this	chapter,	you	will:

Create	public	views	for	displaying	course	information

Build	a	student	registration	system

Manage	student	enrollment	in	courses

Render	diverse	course	contents

Cache	content	using	the	cache	framework

We	will	start	by	creating	a	course	catalog	for	students	to	browse
existing	courses	and	be	able	to	enroll	in	them.

Displaying	courses
For	our	course	catalog,	we	have	to	build	the	following	functionality:

List	all	available	courses,	optionally	filtered	by	subject

Display	a	single	course	overview

Edit	the	views.py	file	of	the	courses	application	and	add	the	following
code:

from	django.db.models	import	Count

from	.models	import	Subject

class	CourseListView(TemplateResponseMixin,	View):

				model	=	Course

				template_name	=	'courses/course/list.html'

				def	get(self,	request,	subject=None):

								subjects	=	Subject.objects.annotate(

																							total_courses=Count('courses'))

								courses	=	Course.objects.annotate(

																							total_modules=Count('modules'))

								if	subject:

												subject	=	get_object_or_404(Subject,	slug=subject)

												courses	=	courses.filter(subject=subject)

								return	self.render_to_response({'subjects':	subjects,

																																								'subject':	subject,

																																								'courses':	courses})

This	is	the	CourseListView	view.	It	inherits	from	TemplateResponseMixin	and
View.	In	this	view,	we	perform	the	following	tasks:

1.	 We	retrieve	all	subjects,	including	the	total	number	of

courses	for	each	of	them.	We	use	the	ORM's	annotate()

method	with	the	Count()	aggregation	function	to	include	the

total	number	of	courses	for	each	subject.

2.	 We	retrieve	all	available	courses,	including	the	total	number

of	modules	contained	in	each	course.

3.	 If	a	subject	slug	URL	parameter	is	given,	we	retrieve	the

corresponding	subject	object	and	we	limit	the	query	to	the

courses	that	belong	to	the	given	subject.

4.	 We	use	the	render_to_response()	method	provided	by

TemplateResponseMixin	to	render	the	objects	to	a	template	and

return	an	HTTP	response.

Let's	create	a	detail	view	for	displaying	a	single	course	overview.
Add	the	following	code	to	the	views.py	file:

from	django.views.generic.detail	import	DetailView

class	CourseDetailView(DetailView):

				model	=	Course

				template_name	=	'courses/course/detail.html'

This	view	inherits	from	the	generic	DetailView	provided	by	Django.
We	specify	the	model	and	template_name	attributes.	Django's	DetailView
expects	a	primary	key	(pk)	or	slug	URL	parameter	to	retrieve	a	single
object	for	the	given	model.	Then,	it	renders	the	template	specified
in	template_name,	including	the	object	in	the	context	as	object.

Edit	the	main	urls.py	file	of	the	educa	project	and	add	the	following
URL	pattern	to	it:

from	courses.views	import	CourseListView

urlpatterns	=	[

				#	...

				path('',	CourseListView.as_view(),	name='course_list'),

]

We	add	the	course_list	URL	pattern	to	the	main	urls.py	file	of	the
project	because	we	want	to	display	the	list	of	courses	in	the	URL
http://127.0.0.1:8000/	and	all	other	URLs	for	the	courses	application	have
the	/course/	prefix.

Edit	the	urls.py	file	of	the	courses	application	and	add	the	following
URL	patterns:

path('subject/<slug:subject>)/',

					views.CourseListView.as_view(),

					name='course_list_subject'),

path('<slug:slug>/',

					views.CourseDetailView.as_view(),

					name='course_detail'),

We	define	the	following	URL	patterns:

course_list_subject:	For	displaying	all	courses	for	a	subject

course_detail:	For	displaying	a	single	course	overview

Let's	build	templates	for	the	CourseListView	and	CourseDetailView	views.
Create	the	following	file	structure	inside	the	templates/courses/
directory	of	the	courses	application:

course/

				list.html

				detail.html

Edit	the	courses/course/list.html	template	and	write	the	following	code:

{%	extends	"base.html"	%}

{%	block	title	%}

				{%	if	subject	%}

								{{	subject.title	}}	courses

				{%	else	%}

								All	courses

				{%	endif	%}

{%	endblock	%}

{%	block	content	%}

<h1>

				{%	if	subject	%}

								{{	subject.title	}}	courses

				{%	else	%}

								All	courses

				{%	endif	%}

</h1>

<div	class="contents">

				<h3>Subjects</h3>

				<ul	id="modules">

								<li	{%	if	not	subject	%}class="selected"{%	endif	%}>

												All

								

								{%	for	s	in	subjects	%}

												<li	{%	if	subject	==	s	%}class="selected"{%	endif	%}>

																

																				{{	s.title	}}

																				
{{	s.total_courses	}}	courses

																

												

								{%	endfor	%}

				

</div>

<div	class="module">

				{%	for	course	in	courses	%}

								{%	with	subject=course.subject	%}

												<h3>

												{{	course.title	}}</h3>

												<p>

																

																{{	subject	}}.

																{{	course.total_modules	}}	modules.

																Instructor:	{{	course.owner.get_full_name	}}

												</p>

								{%	endwith	%}

				{%	endfor	%}

</div>

{%	endblock	%}

This	is	the	template	for	listing	the	available	courses.	We	create	an
HTML	list	to	display	all	Subject	objects	and	build	a	link	to	the
course_list_subject	URL	for	each	of	them.	We	add	a	selected	HTML	class
to	highlight	the	current	subject,	if	any.	We	iterate	over	every	Course

object,	displaying	the	total	number	of	modules	and	the	instructor
name.

Run	the	development	server	and	open	http://127.0.0.1:8000/	in	your
browser.	You	should	see	a	page	similar	to	the	following	one:

The	left	sidebar	contains	all	subjects,	including	the	total	number	of
courses	for	each	of	them.	You	can	click	any	subject	to	filter	the
courses	displayed.

Edit	the	courses/course/detail.html	template	and	add	the	following	code
to	it:

{%	extends	"base.html"	%}

{%	block	title	%}

				{{	object.title	}}

{%	endblock	%}

{%	block	content	%}

				{%	with	subject=course.subject	%}

								<h1>

												{{	object.title	}}

								</h1>

								<div	class="module">

												<h2>Overview</h2>

												<p>

																

																{{	subject.title	}}.

																{{	course.modules.count	}}	modules.

																Instructor:	{{	course.owner.get_full_name	}}

												</p>

												{{	object.overview|linebreaks	}}

								</div>

				{%	endwith	%}

{%	endblock	%}

In	this	template,	we	display	the	overview	and	details	for	a	single
course.	Open	http://127.0.0.1:8000/	in	your	browser	and	click	one	of	the
courses.	You	should	see	a	page	with	the	following	structure:

We	have	created	a	public	area	for	displaying	courses.	Next,	we	need

to	allow	users	to	register	as	students	and	enroll	in	courses.

Adding	student	registration
Create	a	new	application	using	the	following	command:

python	manage.py	startapp	students

Edit	the	settings.py	file	of	the	educa	project	and	add	the	new
application	to	the	INSTALLED_APPS	setting,	as	follows:

INSTALLED_APPS	=	[

				#	...

				'students.apps.StudentsConfig',

]

Creating	a	student	registration
view
Edit	the	views.py	file	of	the	students	application	and	write	the	following
code:

from	django.urls	import	reverse_lazy

from	django.views.generic.edit	import	CreateView

from	django.contrib.auth.forms	import	UserCreationForm

from	django.contrib.auth	import	authenticate,	login

class	StudentRegistrationView(CreateView):

				template_name	=	'students/student/registration.html'

				form_class	=	UserCreationForm

				success_url	=	reverse_lazy('student_course_list')

				def	form_valid(self,	form):

								result	=	super(StudentRegistrationView,

																							self).form_valid(form)

								cd	=	form.cleaned_data

								user	=	authenticate(username=cd['username'],

																												password=cd['password1'])

								login(self.request,	user)

								return	result

This	is	the	view	that	allows	students	to	register	on	our	site.	We	use
the	generic	CreateView,	which	provides	the	functionality	for	creating
model	objects.	This	view	requires	the	following	attributes:

template_name:	The	path	of	the	template	to	render	this	view.

form_class:	The	form	for	creating	objects,	which	has	to	be

ModelForm.	We	use	Django's	UserCreationForm	as	the	registration

form	to	create	User	objects.

success_url:	The	URL	to	redirect	the	user	to	when	the	form	is

successfully	submitted.	We	reverse	the	student_course_list	URL,

which	we	are	going	to	create	in	the	Accessing	the	course

contents	section	for	listing	the	courses	students	are	enrolled

in.

The	form_valid()	method	is	executed	when	valid	form	data	has	been
posted.	It	has	to	return	an	HTTP	response.	We	override	this	method
to	log	the	user	in	after	successfully	signing	up.

Create	a	new	file	inside	the	students	application	directory	and	name	it
urls.py.	Add	the	following	code	to	it:

from	django.urls	import	path

from	.	import	views

urlpatterns	=	[

				path('register/',

									views.StudentRegistrationView.as_view(),

									name='student_registration'),

]

Then,	edit	the	main	urls.py	of	the	educa	project	and	include	the	URLs
for	the	students	application	by	adding	the	following	pattern	to	your
URL	configuration:

urlpatterns	=	[

				#	...

				path('students/',	include('students.urls')),

]

Create	the	following	file	structure	inside	the	students	application
directory:

templates/

				students/

								student/

												registration.html

Edit	the	students/student/registration.html	template	and	add	the	following
code	to	it:

{%	extends	"base.html"	%}

{%	block	title	%}

				Sign	up

{%	endblock	%}

{%	block	content	%}

				<h1>

								Sign	up

				</h1>

				<div	class="module">

								<p>Enter	your	details	to	create	an	account:</p>

								<form	action=""	method="post">

												{{	form.as_p	}}

												{%	csrf_token	%}

												<p><input	type="submit"	value="Create	my	account"></p>

								</form>

				</div>

{%	endblock	%}

Run	the	development	server	and	open
http://127.0.0.1:8000/students/register/	in	your	browser.	You	should	see
the	registration	form	like	this:

Note	that	the	student_course_list	URL	specified	in	the	success_url	
attribute	of	the	StudentRegistrationView	view	doesn't	exist	yet.	If	you
submit	the	form,	Django	won't	find	the	URL	to	redirect	you	after	a
successful	registration.	We	will	create	this	URL	in	the	Accessing	the
course	contents	section.

Enrolling	in	courses
After	users	create	an	account,	they	should	be	able	to	enroll	in	courses.
In	order	to	store	enrollments,	we	need	to	create	a	many-to-many
relationship	between	the	Course	and	User	models.

Edit	the	models.py	file	of	the	courses	application	and	add	the	following
field	to	the	Course	model:

students	=	models.ManyToManyField(User,

																																		related_name='courses_joined',

																																		blank=True)

From	the	shell,	execute	the	following	command	to	create	a
migration	for	this	change:

python	manage.py	makemigrations

You	will	see	an	output	similar	to	this:

Migrations	for	'courses':

		courses/migrations/0004_course_students.py

				-	Add	field	students	to	course

Then,	execute	the	next	command	to	apply	pending	migrations:

python	manage.py	migrate

You	should	see	output	that	ends	with	the	following	line:

Applying	courses.0004_course_students...	OK

We	can	now	associate	students	with	the	courses	in	which	they	are
enrolled.	Let's	create	the	functionality	for	students	to	enroll	in
courses.

Create	a	new	file	inside	the	students	application	directory	and	name	it
forms.py.	Add	the	following	code	to	it:

from	django	import	forms

from	courses.models	import	Course

class	CourseEnrollForm(forms.Form):

				course	=	forms.ModelChoiceField(queryset=Course.objects.all(),

																																				widget=forms.HiddenInput)

We	are	going	to	use	this	form	for	students	to	enroll	in	courses.	The
course	field	is	for	the	course	in	which	the	user	gets	enrolled.
Therefore,	it's	a	ModelChoiceField.	We	use	a	HiddenInput	widget	because	we
are	not	going	to	show	this	field	to	the	user.	We	are	going	to	use	this
form	in	the	CourseDetailView	view	to	display	a	button	to	enroll.

Edit	the	views.py	file	of	the	students	application	and	add	the	following
code:

from	django.views.generic.edit	import	FormView

from	django.contrib.auth.mixins	import	LoginRequiredMixin

from	.forms	import	CourseEnrollForm

class	StudentEnrollCourseView(LoginRequiredMixin,	FormView):

				course	=	None

				form_class	=	CourseEnrollForm

				def	form_valid(self,	form):

								self.course	=	form.cleaned_data['course']

								self.course.students.add(self.request.user)

								return	super(StudentEnrollCourseView,

																					self).form_valid(form)

				def	get_success_url(self):

								return	reverse_lazy('student_course_detail',

																												args=[self.course.id])

This	is	the	StudentEnrollCourseView.	view.	It	handles	students	enrolling	in
courses.	The	view	inherits	from	the	LoginRequiredMixin	mixin	so	that	only
logged	in	users	can	access	the	view.	It	also	inherits	from	Django's
FormView	view	since	we	handle	a	form	submission.	We	use	the
CourseEnrollForm	form	for	the	form_class	attribute	and	also	define	a	course
attribute	for	storing	the	given	Course	object.	When	the	form	is	valid,
we	add	the	current	user	to	the	students	enrolled	in	the	course.

The	get_success_url()	method	returns	the	URL	the	user	will	be
redirected	to	if	the	form	was	successfully	submitted.	This	method	is
equivalent	to	the	success_url	attribute.	We	reverse	the
student_course_detail	URL,	which	we	will	create	in	the	next	Accessing
the	course	contents	section	in	order	to	display	the	course	contents.

Edit	the	urls.py	file	of	the	students	application	and	add	the	following
URL	pattern	to	it:

path('enroll-course/',

					views.StudentEnrollCourseView.as_view(),

					name='student_enroll_course'),

Let's	add	the	enroll	button	form	to	the	course	overview	page.	Edit
the	views.py	file	of	the	courses	application	and	modify	CourseDetailView	to
make	it	look	as	follows:

from	students.forms	import	CourseEnrollForm

class	CourseDetailView(DetailView):

				model	=	Course

				template_name	=	'courses/course/detail.html'

				def	get_context_data(self,	**kwargs):

								context	=	super(CourseDetailView,

																								self).get_context_data(**kwargs)

								context['enroll_form']	=	CourseEnrollForm(

																																			initial={'course':self.object})

								return	context

We	use	the	get_context_data()	method	to	include	the	enrollment	form

in	the	context	for	rendering	the	templates.	We	initialize	the	hidden
course	field	of	the	form	with	the	current	Course	object,	so	that	it	can
be	submitted	directly.

Edit	the	courses/course/detail.html	template	and	find	the	following	line:

{{	object.overview|linebreaks	}}

Replace	it	with	the	following	code:

{{	object.overview|linebreaks	}}

{%	if	request.user.is_authenticated	%}

				<form	action="{%	url	"student_enroll_course"	%}"	method="post">

								{{	enroll_form	}}

								{%	csrf_token	%}

								<input	type="submit"	class="button"	value="Enroll	now">

				</form>

{%	else	%}

				

								Register	to	enroll

				

{%	endif	%}

This	is	the	button	for	enrolling	in	courses.	If	the	user	is
authenticated,	we	display	the	enrollment	button,	including	the
hidden	form	that	points	to	the	student_enroll_course	URL.	If	the	user	is
not	authenticated,	we	display	a	link	to	register	in	the	platform.

Make	sure	the	development	server	is	running,	open
http://127.0.0.1:8000/	in	your	browser	and	click	a	course.	If	you	are
logged	in,	you	should	see	an	ENROLL	NOW	button	placed	below
the	course	overview,	as	follows:

If	you	are	not	logged	in,	you	will	see	a	REGISTER	TO
ENROLL	button	instead.

Accessing	the	course	contents
We	need	a	view	for	displaying	the	courses	the	students	are	enrolled
in,	and	a	view	for	accessing	the	actual	course	contents.	Edit	the
views.py	file	of	the	students	application	and	add	the	following	code	to	it:

from	django.views.generic.list	import	ListView

from	courses.models	import	Course

class	StudentCourseListView(LoginRequiredMixin,	ListView):

				model	=	Course

				template_name	=	'students/course/list.html'

				def	get_queryset(self):

								qs	=	super(StudentCourseListView,	self).get_queryset()

								return	qs.filter(students__in=[self.request.user])

This	is	the	view	for	students	to	list	the	courses	they	are	enrolled	in.
It	inherits	from	LoginRequiredMixin	to	make	sure	that	only	logged	in
users	can	access	the	view.	It	also	inherits	from	the	generic	ListView
for	displaying	a	list	of	Course	objects.	We	override	the	get_queryset()
method	for	retrieving	only	the	courses	the	user	is	enrolled	in;	we
filter	the	QuerySet	by	the	student's	ManyToManyField	field	for	doing	so.

Then,	add	the	following	code	to	the	views.py	file:

from	django.views.generic.detail	import	DetailView

class	StudentCourseDetailView(DetailView):

				model	=	Course

				template_name	=	'students/course/detail.html'

				def	get_queryset(self):

								qs	=	super(StudentCourseDetailView,	self).get_queryset()

								return	qs.filter(students__in=[self.request.user])

				def	get_context_data(self,	**kwargs):

								context	=	super(StudentCourseDetailView,

																								self).get_context_data(**kwargs)

								#	get	course	object

								course	=	self.get_object()

								if	'module_id'	in	self.kwargs:

												#	get	current	module

												context['module']	=	course.modules.get(

																																				id=self.kwargs['module_id'])

								else:

												#	get	first	module

												context['module']	=	course.modules.all()[0]

								return	context

This	is	StudentCourseDetailView.	We	override	the	get_queryset()	method	to
limit	the	base	QuerySet	to	courses	in	which	the	user	is	enrolled.	We
also	override	the	get_context_data()	method	to	set	a	course	module	in
the	context	if	the	module_id	URL	parameter	is	given.	Otherwise,	we	set
the	first	module	of	the	course.	This	way,	students	will	be	able	to
navigate	through	modules	inside	a	course.

Edit	the	urls.py	file	of	the	students	application	and	add	the	following
URL	patterns	to	it:

path('courses/',

					views.StudentCourseListView.as_view(),

					name='student_course_list'),

path('course/<pk>/',

					views.StudentCourseDetailView.as_view(),

					name='student_course_detail'),

path('course/<pk>/<module_id>/',

					views.StudentCourseDetailView.as_view(),

					name='student_course_detail_module'),

Create	the	following	file	structure	inside	the	templates/students/
directory	of	the	students	application:

course/

				detail.html

				list.html

Edit	the	students/course/list.html	template	and	add	the	following	code
to	it:

{%	extends	"base.html"	%}

{%	block	title	%}My	courses{%	endblock	%}

{%	block	content	%}

				<h1>My	courses</h1>

				<div	class="module">

								{%	for	course	in	object_list	%}

												<div	class="course-info">

																<h3>{{	course.title	}}</h3>

																<p>

																Access	contents</p>

												</div>

								{%	empty	%}

												<p>

																You	are	not	enrolled	in	any	courses	yet.

																Browse	courses	

																to	enroll	in	a	course.	

												</p>

								{%	endfor	%}

				</div>

{%	endblock	%}

This	template	displays	the	courses	the	user	is	enrolled	in.
Remember	that	when	a	new	student	successfully	registers	with	the
platform,	they	will	be	redirected	to	the	student_course_list	URL.	Let's
also	redirect	students	to	this	URL	when	they	log	in	to	the	platform.

Edit	the	settings.py	file	of	the	educa	project	and	add	the	following	code
to	it:

from	django.urls	import	reverse_lazy

LOGIN_REDIRECT_URL	=	reverse_lazy('student_course_list')

This	is	the	setting	used	by	the	auth	module	to	redirect	the	user	to
after	a	successful	login	if	no	next	parameter	is	present	in	the
request.	After	successful	login,	students	will	be	redirected	to
the	student_course_list	URL	to	view	the	courses	that	they	are	enrolled

in.

Edit	the	students/course/detail.html	template	and	add	the	following	code
to	it:

{%	extends	"base.html"	%}

{%	block	title	%}

				{{	object.title	}}

{%	endblock	%}

{%	block	content	%}

				<h1>

								{{	module.title	}}

				</h1>

				<div	class="contents">

								<h3>Modules</h3>

								<ul	id="modules">

								{%	for	m	in	object.modules.all	%}

												<li	data-id="{{	m.id	}}"	{%	if	m	==	module	

												%}class="selected"

												{%	endif	%}>

																<a	href="{%	url	"student_course_detail_module"	

																object.id	m.id	%}">

																				

																								Module	{{	m.order|add:1	}}

																				

																				

																				

																				{{	m.title	}}

																

												

								{%	empty	%}

												No	modules	yet.

								{%	endfor	%}

								

				</div>

				<div	class="module">

								{%	for	content	in	module.contents.all	%}

												{%	with	item=content.item	%}

																<h2>{{	item.title	}}</h2>

																{{	item.render	}}

												{%	endwith	%}

								{%	endfor	%}

				</div>

{%	endblock	%}

This	is	the	template	for	enrolled	students	to	access	the	contents	of	a
course.	First,	we	build	an	HTML	list	including	all	course	modules
and	highlighting	the	current	module.	Then,	we	iterate	over	the
current	module	contents	and	access	each	content	item	to	display	it
using	{{	item.render	}}.	We	are	going	to	add	the	render()	method	to	the
content	models	next.	This	method	will	take	care	of	rendering	the
content	properly.

Rendering	different	types	of
content
We	need	to	provide	a	way	to	render	each	type	of	content.	Edit	the
models.py	file	of	the	courses	application	and	add	the	following	render()
method	to	the	ItemBase	model:

from	django.template.loader	import	render_to_string

from	django.utils.safestring	import	mark_safe

class	ItemBase(models.Model):

				#	...

				def	render(self):

								return	render_to_string('courses/content/{}.html'.format(

																			self._meta.model_name),	{'item':	self})

This	method	uses	the	render_to_string()	function	for	rendering	a
template	and	returning	the	rendered	content	as	a	string.	Each	kind
of	content	is	rendered	using	a	template	named	after	the	content
model.	We	use	self._meta.model_name	to	generate	the	appropriate
template	name	for	each	content	model	dynamically.	The	render()
method	provides	a	common	interface	for	rendering	diverse	content.

Create	the	following	file	structure	inside	the	templates/courses/
directory	of	the	courses	application:

content/

				text.html

				file.html

				image.html

				video.html

Edit	the	courses/content/text.html	template	and	write	this	code:

{{	item.content|linebreaks|safe	}}

Edit	the	courses/content/file.html	template	and	add	the	following:

<p>Download	file</p>

Edit	the	courses/content/image.html	template	and	write:

<p></p>

For	files	uploaded	with	ImageField	and	FileField	to	work,	we	need	to	set
up	our	project	to	serve	media	files	with	the	development	server.
Edit	the	settings.py	file	of	your	project	and	add	the	following	code	to
it:

MEDIA_URL	=	'/media/'

MEDIA_ROOT	=	os.path.join(BASE_DIR,	'media/')

Remember	that	MEDIA_URL	is	the	base	URL	to	serve	uploaded	media
files	and	MEDIA_ROOT	is	the	local	path	where	the	files	are	located.

Edit	the	main	urls.py	file	of	your	project	and	add	the	following
imports:

from	django.conf	import	settings

from	django.conf.urls.static	import	static

Then,	write	the	following	lines	at	the	end	of	the	file:

if	settings.DEBUG:

				urlpatterns	+=	static(settings.MEDIA_URL,

																										document_root=settings.MEDIA_ROOT)

Your	project	is	now	ready	to	upload	and	serve	media	files.	The
Django	development	server	will	be	in	charge	of	serving	the	media

files	during	development	(that	is,	when	the	DEBUG	setting	is	set
to	True).	Remember	that	the	development	server	is	not	suitable	for
production	use.	You	will	learn	how	to	set	up	a	production
environment	in	Chapter	13,	Going	Live.

We	also	have	to	create	a	template	for	rendering	Video	objects.	We	will
use	django-embed-video	for	embedding	video	content.	django-embed-video	is	a
third-party	Django	application	that	allows	you	to	embed	videos	in
your	templates,	from	sources	such	as	YouTube	or	Vimeo,	by	simply
providing	the	video's	public	URL.

Install	the	package	with	the	following	command:

pip	install	django-embed-video==1.1.2

Edit	the	settings.py	file	of	your	project	and	add	the	app	to	the
INSTALLED_APPS,	setting	as	follows:

INSTALLED_APPS	=	[

				#	...

				'embed_video',

]

You	can	find	django-embed-video	application's	documentation	at	https://dj
ango-embed-video.readthedocs.io/en/latest/.

Edit	the	courses/content/video.html	template	and	write	the	following
code:

{%	load	embed_video_tags	%}

{%	video	item.url	"small"	%}

Now	run	the	development	server	and	access
http://127.0.0.1:8000/course/mine/	in	your	browser.

Access	the	site	with	a	user	that	belongs	to	the	Instructors	group,	and

https://django-embed-video.readthedocs.io/en/latest/

add	multiple	contents	to	a	course.	To	include	video	content,	you	can
just	copy	any	YouTube	URL,	such	as	https://www.youtube.com/watch?
v=bgV39DlmZ2U,	and	include	it	in	the	url	field	of	the	form.

After	adding	contents	to	the	course	open	http://127.0.0.1:8000/,	click
the	course	and	click	on	the	ENROLL	NOW	button.	You	should	be
enrolled	in	the	course	and	redirected	to	the	student_course_detail	URL.
The	following	screenshot	shows	a	sample	course	content:

Great!	You	have	created	a	common	interface	for	rendering	different
types	of	course	contents.

Using	the	cache	framework
HTTP	requests	to	your	web	application	usually	entail	database
access,	data	processing,	and	template	rendering.	This	is	much	more
expensive	in	terms	of	processing	than	serving	a	static	website.

The	overhead	in	some	requests	can	be	significant	when	your	site
starts	getting	more	and	more	traffic.	This	is	where	caching	becomes
precious.	By	caching	queries,	calculation	results,	or	rendered
content	in	an	HTTP	request,	you	will	avoid	cost-expensive
operations	in	the	following	requests.	This	translates	into	shorter
response	times	and	less	processing	on	the	server	side.

Django	includes	a	robust	cache	system	that	allows	you	to	cache	data
with	different	levels	of	granularity.	You	can	cache	a	single	query,	the
output	of	a	specific	view,	parts	of	rendered	template	content,	or
your	entire	site.	Items	are	stored	in	the	cache	system	for	a	default
time.	You	can	specify	the	default	timeout	for	cached	data.

This	is	how	you	will	usually	use	the	cache	framework	when	your
application	gets	an	HTTP	request:

1.	 Try	to	find	the	requested	data	in	the	cache

2.	 If	found,	return	the	cached	data

3.	 If	not	found,	perform	the	following	steps:

1.	 Perform	the	query	or	processing	required	to	obtain

the	data

2.	 Save	the	generated	data	in	the	cache

3.	 Return	the	data

You	can	read	detailed	information	about	Django's	cache	system	at	ht
tps://docs.djangoproject.com/en/2.0/topics/cache/.

https://docs.djangoproject.com/en/2.0/topics/cache/

Available	cache	backends
Django	comes	with	several	cache	backends.	These	are	the	following:

backends.memcached.MemcachedCache	or	backends.memcached.PyLibMCCache:	A

Memcached	backend.	Memcached	is	a	fast	and	efficient

memory-based	cache	server.	The	backend	to	use	depends	on

the	Memcached	Python	bindings	you	choose.

backends.db.DatabaseCache:	Use	the	database	as	cache	system.

backends.filebased.FileBasedCache:	Use	the	file	storage	system.

Serializes	and	stores	each	cache	value	as	a	separate	file.

backends.locmem.LocMemCache:	Local	memory	cache	backend.	This

the	default	cache	backend.

backends.dummy.DummyCache:	A	dummy	cache	backend	intended

only	for	development.	It	implements	the	cache	interface

without	actually	caching	anything.	This	cache	is	per-process

and	thread-safe.

For	optimal	performance,	use	a	memory-based	cache	backend	such	as	the
Memcached	backend.

Installing	Memcached
We	are	going	to	use	the	Memcached	backend.	Memcached	runs	in
memory	and	it	is	allotted	a	specified	amount	of	RAM.	When	the
allotted	RAM	is	full,	Memcached	starts	removing	the	oldest	data	to
store	new	data.

Download	Memcached	from	https://memcached.org/downloads.	If	you	are
using	Linux,	you	can	install	Memcached	using	the	following
command:

./configure	&&	make	&&	make	test	&&	sudo	make	install

If	you	are	using	macOS	X,	you	can	install	Memcached	with	the
Homebrew	package
manager	using	the	command	brew	install	memcached.	You	can	download
Homebrew	from	https://brew.sh/.

After	installing	Memcached,	open	a	shell	and	start	it	using	the
following	command:

memcached	-l	127.0.0.1:11211

Memcached	will	run	on	port	11211	by	default.	However,	you	can
specify	a	custom	host	and	port	by	using	the	-l	option.	You	can	find
more	information	about	Memcached	at	https://memcached.org.

After	installing	Memcached,	you	have	to	install	its	Python	bindings.
You	can	do	it	with	the	following	command:

pip	install	python-memcached==1.59

https://memcached.org/downloads
https://brew.sh/
https://memcached.org

Cache	settings
Django	provides	the	following	cache	settings:

CACHES:	A	dictionary	containing	all	available	caches	for	the

project.

CACHE_MIDDLEWARE_ALIAS:	The	cache	alias	to	use	for	storage.

CACHE_MIDDLEWARE_KEY_PREFIX:	The	prefix	to	use	for	cache	keys.

Set	a	prefix	to	avoid	key	collisions	if	you	share	the	same

cache	between	several	sites.

CACHE_MIDDLEWARE_SECONDS:	The	default	number	of	seconds	to	cache

pages.

The	caching	system	for	the	project	can	be	configured	using	the	CACHES
setting.	This	setting	is	a	dictionary	that	allows	you	to	specify	the
configuration	for	multiple	caches.	Each	cache	included	in	the	CACHES
dictionary	can	specify	the	following	data:

BACKEND:	The	cache	backend	to	use.

KEY_FUNCTION:	A	string	containing	a	dotted	path	to	a	callable

that	takes	a	prefix,	version,	and	key	as	arguments	and

returns	a	final	cache	key.

KEY_PREFIX:	A	string	prefix	for	all	cache	keys,	to	avoid

collisions.

LOCATION:	The	location	of	the	cache.	Depending	on	the	cache

backend,	this	might	be	a	directory,	a	host	and	port,	or	a

name	for	the	in-memory	backend.

OPTIONS:	Any	additional	parameters	to	be	passed	to	the	cache

backend.

TIMEOUT:	The	default	timeout,	in	seconds,	for	storing	the	cache

keys.	300	seconds	by	default,	which	is	five	minutes.	If	set	to

None,	cache	keys	will	not	expire.

VERSION:	The	default	version	number	for	the	cache	keys.	Useful

for	cache	versioning.

Adding	Memcached	to	your
project
Let's	configure	the	cache	for	our	project.	Edit	the	settings.py	file	of
the	educa	project	and	add	the	following	code	to	it:

CACHES	=	{

				'default':	{

								'BACKEND':	'django.core.cache.backends.memcached.MemcachedCache',

								'LOCATION':	'127.0.0.1:11211',

				}

}

We	are	using	the	MemcachedCache	backend.	We	specify	its	location	using
the	address:port	notation.	If	you	have	multiple	Memcached	instances,
you	can	use	a	list	for	LOCATION.

Monitoring	Memcached
In	order	to	monitor	Memcached,	we	will	use	a	third-party	package
called	django-memcache-status.	This	app	displays	statistics	for	your
Memcached	instances	in	the	administration	site.	Install	it	with	the
following	command:

pip	install	django-memcache-status==1.3

Edit	the	settings.py	file	and	add	'memcache_status'	to	the	INSTALLED_APPS
setting:

INSTALLED_APPS	=	[

				#	...

				'memcache_status',

]

Make	sure	Memcached	is	running,	start	the	development	server	in
another	shell	window,	and	open	http://127.0.0.1:8000/admin/	in	your
browser.	Log	in	to	the	administration	site	using	a	superuser.	You
should	see	the	following	block:

This	graph	shows	the	cache	usage.	The	green	color	represents	free
cache	while	red	indicates	used	space.	If	you	click	the	title	of	the	box,
it	shows	detailed	statistics	of	your	Memcached	instance.

We	have	set	up	Memcached	for	our	project	and	are	able	to	monitor

it.	Let's	start	caching	data!

Cache	levels
Django	provides	the	following	levels	of	caching	listed	here	by
ascending	order	of	granularity:

Low-level	cache	API:	Provides	the	highest	granularity.

Allows	you	to	cache	specific	queries	or	calculations.

Per-view	cache:	Provides	caching	for	individual	views.

Template	cache:	Allows	you	to	cache	template	fragments.

Per-site	cache:	The	highest-level	cache.	It	caches	your

entire	site.

Think	about	your	cache	strategy	before	implementing	caching.	Focus	first	on
expensive	queries	or	calculations,	which	are	not	calculated	on	a	per-user
basis.

Using	the	low-level	cache	API
The	low-level	cache	API	allows	you	to	store	objects	in	the	cache	with
any	granularity.	It	is	located	at	django.core.cache.	You	can	import	it	like
this:

from	django.core.cache	import	cache

This	uses	the	default	cache.	It's	equivalent	to	caches['default'].
Accessing	a	specific	cache	is	also	possible	via	its	alias:

from	django.core.cache	import	caches

my_cache	=	caches['alias']

Let's	take	a	look	at	how	the	cache	API	works.	Open	the	shell	with
the	command	python	manage.py	shell	and	execute	the	following	code:

>>>	from	django.core.cache	import	cache

>>>	cache.set('musician',	'Django	Reinhardt',	20)

We	access	the	default	cache	backend	and	use	set(key,	value,	timeout)	to
store	a	key	named	'musician'	with	a	value	that	is	the	string	'Django
Reinhardt'	for	20	seconds.	If	we	don't	specify	a	timeout,	Django	uses
the	default	timeout	specified	for	the	cache	backend	in	the	CACHES
setting.	Now,	execute	the	following	code:

>>>	cache.get('musician')

'Django	Reinhardt'

We	retrieve	the	key	from	the	cache.	Wait	for	20	seconds	and
execute	the	same	code:

>>>	cache.get('musician')

No	value	is	returned	this	time.	The	'musician'	cache	key	expired	and
the	get()	method	returns	None	because	the	key	is	not	in	the	cache
anymore.

Always	avoid	storing	a	None	value	in	a	cache	key	because	you	won't	be	able	to
distinguish	between	the	actual	value	and	a	cache	miss.

Let's	cache	a	QuerySet	with	the	following	code:

>>>	from	courses.models	import	Subject

>>>	subjects	=	Subject.objects.all()

>>>	cache.set('all_subjects',	subjects)

We	perform	a	QuerySet	on	the	Subject	model	and	store	the	returned
objects	in	the	'all_subjects'	key.	Let's	retrieve	the	cached	data:

>>>	cache.get('all_subjects')

<QuerySet	[<Subject:	Mathematics>,	<Subject:	Music>,	<Subject:	Physics>,	

<Subject:	Programming>]>

We	are	going	to	cache	some	queries	in	our	views.	Edit	the	views.py
file	of	the	courses	application	and	add	the	following	import:

from	django.core.cache	import	cache

In	the	get()	method	of	the	CourseListView,	replace	the	following	line:

subjects	=	Subject.objects.annotate(

															total_courses=Count('courses'))

Replace	it	with	the	following	ones:

subjects	=	cache.get('all_subjects')

if	not	subjects:

				subjects	=	Subject.objects.annotate(

																			total_courses=Count('courses'))

				cache.set('all_subjects',	subjects)

In	this	code,	we	try	to	get	the	all_students	key	from	the	cache	using
cache.get().	This	returns	None	if	the	given	key	is	not	found.	If	no	key	is
found	(not	cached	yet	or	cached	but	timed	out),	we	perform	the
query	to	retrieve	all	Subject	objects	and	their	number	of	courses,	and
we	cache	the	result	using	cache.set().

Run	the	development	server	and	open	http://127.0.0.1:8000/	in	your
browser.	When	the	view	is	executed,	the	cache	key	is	not	found	and
the	QuerySet	is	executed.	Open	http://127.0.0.1:8000/admin/	in	your
browser	and	expand	the	Memcached	statistics.	You	should	see
usage	data	for	the	cache	similar	to	the	following	screen:

Take	a	look	at	Curr	Items,	which	should	be	1.	This	shows	that	there
is	one	item	currently	stored	in	the	cache.	Get	Hits	shows	how	many
get	commands	were	successful	and	Get	Misses	shows	the	get
requests	for	keys	that	are	missing.	The	Miss	Ratio	is	calculated
using	both	of	them.

Now,	navigate	back	to	http://127.0.0.1:8000/	using	your	browser	and
reload	the	page	several	times.	If	you	take	a	look	at	the	cache
statistics	now,	you	will	see	several	more	reads	(Get	Hits	and	Cmd
Get	will	increase).

Caching	based	on	dynamic
data
Many	times	you	will	want	to	cache	something	that	is	based	on
dynamic	data.	In	these	cases,	you	have	to	build	dynamic	keys	that
contain	all	information	required	to	uniquely	identify	the	cached
data.	Edit	the	views.py	file	of	the	courses	application	and	modify	the
CourseListView	view	to	make	it	look	like	this:

class	CourseListView(TemplateResponseMixin,	View):

				model	=	Course

				template_name	=	'courses/course/list.html'

				def	get(self,	request,	subject=None):

								subjects	=	cache.get('all_subjects')

								if	not	subjects:

												subjects	=	Subject.objects.annotate(

																											total_courses=Count('courses'))

												cache.set('all_subjects',	subjects)

								all_courses	=	Course.objects.annotate(

																											total_modules=Count('modules'))

								if	subject:

												subject	=	get_object_or_404(Subject,	slug=subject)

												key	=	'subject_{}_courses'.format(subject.id)

												courses	=	cache.get(key)

												if	not	courses:

																courses	=	all_courses.filter(subject=subject)

																cache.set(key,	courses)

								else:

												courses	=	cache.get('all_courses')

												if	not	courses:

																courses	=	all_courses

																cache.set('all_courses',	courses)

								return	self.render_to_response({'subjects':	subjects,

																																								'subject':	subject,

																																								'courses':	courses})

In	this	case,	we	also	cache	both	all	courses	and	courses	filtered	by

subject.	We	use	the	all_courses	cache	key	for	storing	all	courses	if	no
subject	is	given.	If	there	is	a	subject,	we	build	the	key	dynamically
with	'subject_{}_courses'.format(subject.id).

It	is	important	to	note	that	you	cannot	use	a	cached	QuerySet	to
build	other	QuerySets,	since	what	you	cached	are	actually	the
results	of	the	QuerySet.	So	you	cannot	do	the	following:

courses	=	cache.get('all_courses')

courses.filter(subject=subject)

Instead,	you	have	to	create	the	base	QuerySet
Course.objects.annotate(total_modules=Count('modules')),	which	is	not	going	to
be	executed	until	it	is	forced,	and	use	it	to	further	restrict	the
QuerySet	with	all_courses.filter(subject=subject)	in	case	the	data	was	not
found	in	the	cache.

Caching	template	fragments
Caching	template	fragments	is	a	higher-level	approach.	You	need	to
load	the	cache	template	tags	in	your	template	using	{%	load	cache	%}.
Then,	you	will	be	able	to	use	the	{%	cache	%}	template	tag	to	cache
specific	template	fragments.	You	will	usually	use	the	template	tag	as
follows:

{%	cache	300	fragment_name	%}

				...

{%	endcache	%}

The	{%	cache	%}	tag	has	two	required	arguments:	the	timeout,	in
seconds,	and	a	name	for	the	fragment.	If	you	need	to	cache	content
depending	on	dynamic	data,	you	can	do	so	by	passing	additional
arguments	to	the	{%	cache	%}	template	tag	to	uniquely	identify	the
fragment.

Edit	the	/students/course/detail.html	of	the	students	application.	Add	the
following	code	at	the	top	of	it,	just	after	the	{%	extends	%}	tag:

{%	load	cache	%}

Then,	replace	the	following	lines:

{%	for	content	in	module.contents.all	%}

		{%	with	item=content.item	%}

				<h2>{{	item.title	}}</h2>

				{{	item.render	}}

		{%	endwith	%}

{%	endfor	%}

Replace	them	with	the	following	ones:

{%	cache	600	module_contents	module	%}

		{%	for	content	in	module.contents.all	%}

				{%	with	item=content.item	%}

						<h2>{{	item.title	}}</h2>

						{{	item.render	}}

				{%	endwith	%}

		{%	endfor	%}

{%	endcache	%}

We	cache	this	template	fragment	using	the	name	module_contents	and
passing	the	current	Module	object	to	it.	Thus,	we	uniquely	identify	the
fragment.	This	is	important	to	avoid	caching	a	module's	contents
and	serving	the	wrong	content	when	a	different	module	is
requested.

If	the	USE_I18N	setting	is	set	to	True,	the	per-site	middleware	cache	will	respect
the	active	language.	If	you	use	the	{%	cache	%}	template	tag	you	have	to	use	one
of	the	translation-specific	variables	available	in	templates	to	achieve	the
same	result,	such	as	{%	cache	600	name	request.LANGUAGE_CODE	%}.

Caching	views
You	can	cache	the	output	of	individual	views	using	the	cache_page
decorator	located	at	django.views.decorators.cache.	The	decorator
requires	a	timeout	argument	(in	seconds).

Let's	use	it	in	our	views.	Edit	the	urls.py	file	of	the	students	application
and	add	the	following	import:

from	django.views.decorators.cache	import	cache_page

Then,	apply	the	cache_page	decorator	to	the	student_course_detail	and
student_course_detail_module	URL	patterns,	as	follows:

path('course/<pk>/',

					cache_page(60	*	15)(views.StudentCourseDetailView.as_view()),

					name='student_course_detail'),

path('course/<pk>/<module_id>/',

					cache_page(60	*	15)(views.StudentCourseDetailView.as_view()),

					name='student_course_detail_module'),

Now,	the	result	for	the	StudentCourseDetailView	is	cached	for	15	minutes.

The	per-view	cache	uses	the	URL	to	build	the	cache	key.	Multiple	URLs
pointing	to	the	same	view	will	be	cached	separately.

Using	the	per-site	cache
This	is	the	highest-level	cache.	It	allows	you	to	cache	your	entire
site.

To	allow	the	per-site	cache,	edit	the	settings.py	file	of	your	project
and	add	the	UpdateCacheMiddleware	and	FetchFromCacheMiddleware	classes	to	the
MIDDLEWARE	setting,	as	follows:

MIDDLEWARE	=	[

				'django.middleware.security.SecurityMiddleware',

				'django.contrib.sessions.middleware.SessionMiddleware',

				'django.middleware.cache.UpdateCacheMiddleware',

				'django.middleware.common.CommonMiddleware',

				'django.middleware.cache.FetchFromCacheMiddleware',

				#	...

]

Remember	that	middlewares	are	executed	in	the	given	order	during
the	request	phase,	and	in	reverse	order	during	the	response	phase.
UpdateCacheMiddleware	is	placed	before	CommonMiddleware	because	it	runs
during	response	time,	when	middlewares	are	executed	in	reverse
order.	FetchFromCacheMiddleware	is	placed	after	CommonMiddleware
intentionally	because	it	needs	to	access	request	data	set	by	the
latter.

Then,	add	the	following	settings	to	the	settings.py	file:

CACHE_MIDDLEWARE_ALIAS	=	'default'

CACHE_MIDDLEWARE_SECONDS	=	60	*	15		#	15	minutes

CACHE_MIDDLEWARE_KEY_PREFIX	=	'educa'

In	these	settings,	we	use	the	default	cache	for	our	cache	middleware
and	we	set	the	global	cache	timeout	to	15	minutes.	We	also	specify	a

prefix	for	all	cache	keys	to	avoid	collisions	in	case	we	use	the	same
Memcached	backend	for	multiple	projects.	Our	site	will	now	cache
and	return	cached	content	for	all	GET	requests.

We	have	done	this	to	test	the	per-site	cache	functionality.	However,
the	per-site	cache	is	not	suitable	for	us,	since	the	course
management	views	need	to	show	updated	data	to	instantly	reflect
any	changes.	The	best	approach	to	follow	in	our	project	is	to	cache
the	templates	or	views	that	are	used	to	display	course	contents	to
students.

We	have	seen	an	overview	of	the	methods	provided	by	Django	to
cache	data.	You	should	define	your	cache	strategy	wisely	and
prioritize	the	most	expensive	QuerySets	or	calculations.

Summary
In	this	chapter,	we	created	public	views	for	the	courses	and	you
have	built	a	system	for	students	to	register	and	enroll	in	courses.
We	installed	Memcached	and	implemented	different	cache	levels.

In	the	next	chapter,	we	will	build	a	RESTful	API	for	your	project.

Building	an	API
In	the	previous	chapter,	you	built	a	system	of	student	registration
and	enrollment	in	courses.	You	created	views	to	display	course
contents	and	learned	how	to	use	Django's	cache	framework.	In	this
chapter,	you	will	learn	how	to	do	the	following:

Build	a	RESTful	API

Handle	authentication	and	permissions	for	API	views

Create	API	view	sets	and	routers

Building	a	RESTful	API
You	might	want	to	create	an	interface	for	other	services	to	interact
with	your	web	application.	By	building	an	API,	you	can	allow	third
parties	to	consume	information	and	operate	with	your	application
programmatically.

There	are	several	ways	you	can	structure	your	API	but	following
REST	principles	is	encouraged.	The	REST	architecture	comes	from
Representational	State	Transfer.	RESTful	APIs	are	resource-
based.	Your	models	represent	resources	and	HTTP	methods	such	as
GET,	POST,	PUT,	or	DELETE	are	used	to	retrieve,	create,	update,	or	delete
objects.	HTTP	response	codes	are	also	used	in	this	context.
Different	HTTP	response	codes	are	returned	to	indicate	the	result	of
the	HTTP	request,	for	example,	2XX	response	codes	for	success,	4XX
for	errors,	and	so	on.

The	most	common	formats	to	exchange	data	in	RESTful	APIs	are
JSON	and	XML.	We	will	build	a	REST	API	with	JSON	serialization
for	our	project.	Our	API	will	provide	the	following	functionality:

Retrieve	subjects

Retrieve	available	courses

Retrieve	course	contents

Enroll	in	a	course

We	can	build	an	API	from	scratch	with	Django	by	creating	custom
views.	However,	there	are	several	third-party	modules	that	simplify
creating	an	API	for	your	project,	the	most	popular	among	them

being	Django	REST	framework.

Installing	Django	REST
framework
Django	REST	framework	allows	you	to	easily	build	REST	APIs	for
your	project.	You	can	find	all	information	about	REST	framework	at
https://www.django-rest-framework.org/.

Open	the	shell	and	install	the	framework	with	the	following
command:

pip	install	djangorestframework==3.8.2

Edit	the	settings.py	file	of	the	educa	project	and	add	rest_framework	to	the
INSTALLED_APPS	setting	to	activate	the	application,	as	follows:

INSTALLED_APPS	=	[

				#	...

				'rest_framework',

]

Then,	add	the	following	code	to	the	settings.py	file:

REST_FRAMEWORK	=	{

				'DEFAULT_PERMISSION_CLASSES':		

'rest_framework.permissions.DjangoModelPermissionsOrAnonReadOnly'

]

}

You	can	provide	a	specific	configuration	for	your	API	using	the
REST_FRAMEWORK	setting.	REST	framework	offers	a	wide	range	of	settings
to	configure	default	behaviors.	The	DEFAULT_PERMISSION_CLASSES	setting
specifies	the	default	permissions	to	read,	create,	update,	or	delete

https://www.django-rest-framework.org/

objects.	We	set	DjangoModelPermissionsOrAnonReadOnly	as	the	only	default
permission	class.	This	class	relies	on	Django's	permissions	system
to	allow	users	to	create,	update,	or	delete	objects,	while	providing
read-only	access	for	anonymous	users.	You	will	learn	more	about
permissions	later	in	the	Adding	permissions	to	views	section.

For	a	complete	list	of	available	settings	for	REST	framework,	you
can	visit	https://www.django-rest-framework.org/api-guide/settings/.

https://www.django-rest-framework.org/api-guide/settings/

Defining	serializers
After	setting	up	REST	framework,	we	need	to	specify	how	our	data
will	be	serialized.	Output	data	has	to	be	serialized	in	a	specific
format,	and	input	data	will	be	de-serialized	for	processing.	The
framework	provides	the	following	classes	to	build	serializers	for
single	objects:

Serializer:	Provides	serialization	for	normal	Python	class

instances

ModelSerializer:	Provides	serialization	for	model	instances

HyperlinkedModelSerializer:	The	same	as	ModelSerializer,	but	it

represents	object	relationships	with	links	rather	than

primary	keys

Let's	build	our	first	serializer.	Create	the	following	file	structure
inside	the	courses	application	directory:

api/

				__init__.py

				serializers.py

We	will	build	all	the	API	functionality	inside	the	api	directory	to
keep	everything	well	organized.	Edit	the	serializers.py	file	and	add	the
following	code:

from	rest_framework	import	serializers

from	..models	import	Subject

class	SubjectSerializer(serializers.ModelSerializer):

				class	Meta:

								model	=	Subject

								fields	=	['id',	'title',	'slug']

This	is	the	serializer	for	the	Subject	model.	Serializers	are	defined	in	a
similar	fashion	to	Django's	Form	and	ModelForm	classes.	The	Meta	class
allows	you	to	specify	the	model	to	serialize	and	the	fields	to	be
included	for	serialization.	All	model	fields	will	be	included	if	you
don't	set	a	fields	attribute.

Let's	try	our	serializer.	Open	the	command	line	and	start	the	Django
shell	with	the	following	command:

python	manage.py	shell

Run	the	following	code:

>>>	from	courses.models	import	Subject

>>>	from	courses.api.serializers	import	SubjectSerializer

>>>	subject	=	Subject.objects.latest('id')

>>>	serializer	=	SubjectSerializer(subject)

>>>	serializer.data

{'id':	4,	'title':	'Programming',	'slug':	'programming'}

In	this	example,	we	get	a	Subject	object,	create	an	instance	of
SubjectSerializer,	and	access	the	serialized	data.		You	can	see	that	the
model	data	is	translated	into	Python	native	data	types.

Understanding	parsers	and
renderers
The	serialized	data	has	to	be	rendered	in	a	specific	format	before
you	return	it	in	an	HTTP	response.	Likewise,	when	you	get	an
HTTP	request,	you	have	to	parse	the	incoming	data	and	de-serialize
it	before	you	can	operate	with	it.	REST	framework	includes
renderers	and	parsers	to	handle	that.

Let's	see	how	to	parse	incoming	data.	Execute	the	following	code	in
the	Python	shell:

>>>	from	io	import	BytesIO

>>>	from	rest_framework.parsers	import	JSONParser

>>>	data	=	b'{"id":4,"title":"Programming","slug":"programming"}'

>>>	JSONParser().parse(BytesIO(data))

{'id':	4,	'title':	'Programming',	'slug':	'programming'}

Given	a	JSON	string	input,	you	can	use	the	JSONParser	class	provided
by	REST	framework	to	convert	it	to	a	Python	object.	

REST	framework	also	includes	Renderer	classes	that	allow	you	to
format	API	responses.	The	framework	determines	which	renderer
to	use	through	content	negotiation.	It	inspects	the	request's	Accept
header	to	determine	the	expected	content	type	for	the	response.
Optionally,	the	renderer	is	determined	by	the	format	suffix	of	the
URL.	For	example,	accessing	will	trigger	the	JSONRenderer	in	order	to
return	a	JSON	response.

Go	back	to	the	shell	and	execute	the	following	code	to	render	the
serializer	object	from	the	previous	serializer	example:

>>>	from	rest_framework.renderers	import	JSONRenderer

>>>	JSONRenderer().render(serializer.data)

You	will	see	the	following	output:

b'{"id":4,"title":"Programming","slug":"programming"}'

We	use	the	JSONRenderer	to	render	the	serialized	data	into	JSON.	By
default,	REST	framework	uses	two	different	renderers:	JSONRenderer
and	BrowsableAPIRenderer.	The	latter	provides	a	web	interface	to	easily
browse	your	API.	You	can	change	the	default	renderer	classes	with
the	DEFAULT_RENDERER_CLASSES	option	of	the	REST_FRAMEWORK	setting.

You	can	find	more	information	about	renderers	and	parsers	at	https:
//www.django-rest-framework.org/api-guide/renderers/	and	https://www.django-rest-f
ramework.org/api-guide/parsers/,	respectively.

https://www.django-rest-framework.org/api-guide/renderers/
https://www.django-rest-framework.org/api-guide/parsers/

Building	list	and	detail	views
REST	framework	comes	with	a	set	of	generic	views	and	mixins	that
you	can	use	to	build	your	API	views.	These	provide	functionality	to
retrieve,	create,	update,	or	delete	model	objects.	You	can	see	all
generic	mixins	and	views	provided	by	REST	framework	at	https://www.
django-rest-framework.org/api-guide/generic-views/.

Let's	create	list	and	detail	views	to	retrieve	Subject	objects.	Create	a
new	file	inside	the	courses/api/	directory	and	name	it	views.py.	Add	the
following	code	to	it:

from	rest_framework	import	generics

from	..models	import	Subject

from	.serializers	import	SubjectSerializer

class	SubjectListView(generics.ListAPIView):

				queryset	=	Subject.objects.all()

				serializer_class	=	SubjectSerializer

class	SubjectDetailView(generics.RetrieveAPIView):

				queryset	=	Subject.objects.all()

				serializer_class	=	SubjectSerializer

In	this	code,	we	are	using	the	generic	ListAPIView	and	RetrieveAPIView
views	of	REST	framework.	We	include	a	pk	URL	parameter	for	the
detail	view	to	retrieve	the	object	for	the	given	primary	key.	Both
views	have	the	following	attributes:

queryset:	The	base	QuerySet	to	use	to	retrieve	objects

serializer_class:	The	class	to	serialize	objects

Let's	add	URL	patterns	for	our	views.	Create	a	new	file	inside	the

https://www.django-rest-framework.org/api-guide/generic-views/

courses/api/	directory,	name	it	urls.py,	and	make	it	look	as	follows:

from	django.urls	import	path

from	.	import	views

app_name	=	'courses'

urlpatterns	=	[

				path('subjects/',

									views.SubjectListView.as_view(),

									name='subject_list'),

				path('subjects/<pk>/',

									views.SubjectDetailView.as_view(),

									name='subject_detail'),

]

Edit	the	main	urls.py	file	of	the	educa	project	and	include	the	API
patterns	as	follows:

urlpatterns	=	[

				#	...

				path('api/',	include('courses.api.urls',	namespace='api')),

]

We	use	the	api	namespace	for	our	API	URLs.	Ensure	that	your
server	is	running	with	the	command	python	manage.py	runserver.	Open
the	shell	and	retrieve	the	URL	http://127.0.0.1:8000/api/subjects/	with	curl
as	follows:

curl	http://127.0.0.1:8000/api/subjects/

You	will	get	a	response	similar	to	the	following	one:

[

				{"id":1,"title":"Mathematics","slug":"mathematics"},

				{"id":2,"title":"Music","slug":"music"},

				{"id":3,"title":"Physics","slug":"physics"},

				{"id":4,"title":"Programming","slug":"programming"}

]

The	HTTP	response	contains	a	list	of	Subject	objects	in	JSON	format.
If	your	operating	system	doesn't	come	with	curl	installed,	you	can
download	it	from	https://curl.haxx.se/dlwiz/.	Instead	of	curl,	you	can
also	use	any	other	tool	to	send	custom	HTTP	requests,	such	as	a
browser	extension,	such	as	Postman,	which	you	can	get	at	https://www.
getpostman.com/.

Open	http://127.0.0.1:8000/api/subjects/	in	your	browser.	You	will	see
REST	framework's	browsable	API	as	follows:

https://curl.haxx.se/dlwiz/
https://www.getpostman.com/

This	HTML	interface	is	provided	by	the	BrowsableAPIRenderer	renderer.
It	displays	the	result	headers	and	content	and	allows	you	to	perform

requests.	You	can	also	access	the	API	detail	view	for	a	Subject	object
by	including	its	ID	in	the	URL.	Open	http://127.0.0.1:8000/api/subjects/1/
in	your	browser.	You	will	see	a	single	Subject	object	rendered	in
JSON	format.

Creating	nested	serializers
We	are	going	to	create	a	serializer	for	the	Course	model.	Edit	the
api/serializers.py	file	of	the	courses	application	and	add	the	following
code	to	it:

from	..models	import	Course

class	CourseSerializer(serializers.ModelSerializer):

				class	Meta:

								model	=	Course

								fields	=	['id',	'subject',	'title',	'slug',	'overview',

																		'created',	'owner',	'modules']

Let's	take	a	look	at	how	a	Course	object	is	serialized.	Open	the	shell,
run	python	manage.py	shell,	and	run	the	following	code:

>>>	from	rest_framework.renderers	import	JSONRenderer

>>>	from	courses.models	import	Course

>>>	from	courses.api.serializers	import	CourseSerializer

>>>	course	=	Course.objects.latest('id')

>>>	serializer	=	CourseSerializer(course)

>>>	JSONRenderer().render(serializer.data)

You	will	get	a	JSON	object	with	the	fields	we	included	in
CourseSerializer.	You	can	see	that	the	related	objects	of	the	modules
manager	are	serialized	as	a	list	of	primary	keys,	as	follows:

"modules":	[6,	7,	9,	10]

We	want	to	include	more	information	about	each	module,	so	we
need	to	serialize	Module	objects	and	nest	them.	Modify	the	previous
code	of	the	api/serializers.py	file	of	the	courses	application	to	make	it
look	as	follows:

from	rest_framework	import	serializers

from	..models	import	Module

class	ModuleSerializer(serializers.ModelSerializer):

				class	Meta:

								model	=	Module

								fields	=	['order',	'title',	'description']

class	CourseSerializer(serializers.ModelSerializer):

				modules	=	ModuleSerializer(many=True,	read_only=True)

				class	Meta:

								model	=	Course

								fields	=	['id',	'subject',	'title',	'slug',	'overview',

																		'created',	'owner',	'modules']

We	define	ModuleSerializer	to	provide	serialization	for	the	Module	model.
Then	we	add	a	modules	attribute	to	CourseSerializer	to	nest	the
ModuleSerializer	serializer.	We	set	many=True	to	indicate	that	we	are
serializing	multiple	objects.	The	read_only	parameter	indicates	that
this	field	is	read-only	and	should	not	be	included	in	any	input	to
create	or	update	objects.

Open	the	shell	and	create	an	instance	of	CourseSerializer	again.	Render
the	serializer's	data	attribute	with	JSONRenderer.	This	time,	the	listed
modules	are	being	serialized	with	the	nested	ModuleSerializer
serializer,	as	follows:

"modules":	[

				{

								"order":	0,

								"title":	"Introduction	to	overview",

								"description":	"A	brief	overview	about	the	Web	Framework."

				},

				{

								"order":	1,

								"title":	"Configuring	Django",

								"description":	"How	to	install	Django."

				},

				...

]

You	can	read	more	about	serializers	at	https://www.django-rest-framework.o

https://www.django-rest-framework.org/api-guide/serializers/

rg/api-guide/serializers/.

http://www.django-rest-framework.org/api-guide/serializers/

Building	custom	views
REST	framework	provides	an	APIView	class,	which	builds	API
functionality	on	top	of	Django's	View	class.	The	APIView	class	differs
from	View	in	using	REST	framework's	custom	Request	and	Response
objects	and	handling	APIException	exceptions	to	return	the	appropriate
HTTP	responses.	It	also	has	a	built-in	authentication	and
authorization	system	to	manage	access	to	views.

We	are	going	to	create	a	view	for	users	to	enroll	in	courses.	Edit	the
api/views.py	file	of	the	courses	application	and	add	the	following	code	to
it:

from	django.shortcuts	import	get_object_or_404

from	rest_framework.views	import	APIView

from	rest_framework.response	import	Response

from	..models	import	Course

class	CourseEnrollView(APIView):

				def	post(self,	request,	pk,	format=None):

								course	=	get_object_or_404(Course,	pk=pk)

								course.students.add(request.user)

								return	Response({'enrolled':	True})

The	CourseEnrollView	view	handles	user	enrollment	in	courses.	The
preceding	code	is	as	follows:

1.	 We	create	a	custom	view	that	subclasses	APIView.

2.	 We	define	a	post()	method	for	POST	actions.	No	other	HTTP

method	will	be	allowed	for	this	view.

3.	 We	expect	a	pk	URL	parameter	containing	the	ID	of	a	course.

We	retrieve	the	course	by	the	given	pk	parameter	and	raise	a

404	exception	if	it's	not	found.

4.	 We	add	the	current	user	to	the	students	many-to-many

relationship	of	the	Course	object	and	return	a	successful

response.

Edit	the	api/urls.py	file	and	add	the	following	URL	pattern	for	the
CourseEnrollView	view:

path('courses/<pk>/enroll/',

					views.CourseEnrollView.as_view(),

					name='course_enroll'),

Theoretically,	we	could	now	perform	a	POST	request	to	enroll	the
current	user	in	a	course.	However,	we	need	to	be	able	to	identify	the
user	and	prevent	unauthenticated	users	from	accessing	this	view.
Let's	see	how	API	authentication	and	permissions	work.

Handling	authentication
REST	framework	provides	authentication	classes	to	identify	the
user	performing	the	request.	If	authentication	is	successful,	the
framework	sets	the	authenticated	User	object	in	request.user.	If	no	user
is	authenticated,	an	instance	of	Django's	AnonymousUser	is	set	instead.

REST	framework	provides	the	following	authentication	backends:

BasicAuthentication:	This	is	HTTP	basic	authentication.	The	user

and	password	are	sent	by	the	client	in	the	Authorization	HTTP

header	encoded	with	Base64.	You	can	learn	more	about	it	at	

https://en.wikipedia.org/wiki/Basic_access_authentication.

TokenAuthentication:	This	is	token-based	authentication.	A	Token

model	is	used	to	store	user	tokens.	Users	include	the	token

in	the	Authorization	HTTP	header	for	authentication.

SessionAuthentication:	This	one	uses	Django's	session	backend

for	authentication.	This	backend	is	useful	to	perform

authenticated	AJAX	requests	to	the	API	from	your	website's

frontend.

RemoteUserAuthentication:	This	allows	you	to	delegate

authentication	to	your	web	server,	which	sets	a	REMOTE_USER

environment	variable.

You	can	build	a	custom	authentication	backend	by	subclassing	the
BaseAuthentication	class	provided	by	REST	framework	and	overriding
the	authenticate()	method.

https://en.wikipedia.org/wiki/Basic_access_authentication

You	can	set	authentication	on	a	per-view	basis,	or	set	it	globally
with	the	DEFAULT_AUTHENTICATION_CLASSES	setting.

Authentication	only	identifies	the	user	performing	the	request.	It	won't	allow
or	deny	access	to	views.	You	have	to	use	permissions	to	restrict	access	to
views.

You	can	find	all	the	information	about	authentication	at	https://www.dj
ango-rest-framework.org/api-guide/authentication/.

Let's	add	BasicAuthentication	to	our	view.	Edit	the	api/views.py	file	of	the
courses	application	and	add	an	authentication_classes	attribute	to
CourseEnrollView	as	follows:

from	rest_framework.authentication	import	BasicAuthentication

class	CourseEnrollView(APIView):

				authentication_classes	=	(BasicAuthentication,)

				#	...

Users	will	be	identified	by	the	credentials	set	in	the	Authorization
header	of	the	HTTP	request.

https://www.django-rest-framework.org/api-guide/authentication/

Adding	permissions	to	views
REST	framework	includes	a	permission	system	to	restrict	access	to
views.	Some	of	the	built-in	permissions	of	REST	framework	are:

AllowAny:	Unrestricted	access,	regardless	of	if	a	user	is

authenticated	or	not.

IsAuthenticated:	Allows	access	to	authenticated	users	only.

IsAuthenticatedOrReadOnly:	Complete	access	to	authenticated

users.	Anonymous	users	are	only	allowed	to	execute	read

methods	such	as	GET,	HEAD,	or	OPTIONS.

DjangoModelPermissions:	Permissions	tied	to	django.contrib.auth.	The

view	requires	a	queryset	attribute.	Only	authenticated	users

with	model	permissions	assigned	are	granted	permission.

DjangoObjectPermissions:	Django	permissions	on	a	per-object

basis.

If	users	are	denied	permission,	they	will	usually	get	one	of	the
following	HTTP	error	codes:

HTTP	401:	Unauthorized

HTTP	403:	Permission	denied

You	can	read	more	information	about	permissions	at	https://www.django
-rest-framework.org/api-guide/permissions/.

https://www.django-rest-framework.org/api-guide/permissions/

Edit	the	api/views.py	file	of	the	courses	application	and	add	
a	permission_classes	attribute	to	CourseEnrollView	as	follows:

from	rest_framework.authentication	import	BasicAuthentication

from	rest_framework.permissions	import	IsAuthenticated

class	CourseEnrollView(APIView):

				authentication_classes	=	(BasicAuthentication,)

				permission_classes	=	(IsAuthenticated,)

				#	...

We	include	the	IsAuthenticated	permission.	This	will	prevent
anonymous	users	from	accessing	the	view.	Now	we	can	perform	a
POST	request	to	our	new	API	method.

Make	sure	the	development	server	is	running.	Open	the	shell	and
run	the	following	command:

curl	-i	-X	POST	http://127.0.0.1:8000/api/courses/1/enroll/

You	will	get	the	following	response:

HTTP/1.1	401	Unauthorized

...

{"detail":	"Authentication	credentials	were	not	provided."}

We	get	a	401	HTTP	code	as	expected,	since	we	are	not	authenticated.
Let's	use	basic	authentication	with	one	of	our	users.	Run	the
following	command,	replacing	student:password	with	the	credentials	of
an	existing	user:

curl	-i	-X	POST	-u	student:password	

http://127.0.0.1:8000/api/courses/1/enroll/

	You	will	get	the	following	response:

HTTP/1.1	200	OK

...

{"enrolled":	true}

You	can	access	the	administration	site	and	check	that	the	user	is
now	enrolled	in	the	course.

Creating	view	sets	and	routers
ViewSets	allow	you	to	define	the	interactions	of	your	API	and	let	REST
framework	build	the	URLs	dynamically	with	a	Router	object.	By	using
view	sets,	you	can	avoid	repeating	logic	for	multiple	views.	View
sets	include	actions	for	the	typical	create,	retrieve,	update,	delete
operations,	which	are	list(),	create(),	retrieve(),	update(),	partial_update(),
and	destroy().

Let's	create	a	view	set	for	the	Course	model.	Edit	the	api/views.py	file
and	add	the	following	code	to	it:

from	rest_framework	import	viewsets

from	.serializers	import	CourseSerializer

class	CourseViewSet(viewsets.ReadOnlyModelViewSet):

				queryset	=	Course.objects.all()

				serializer_class	=	CourseSerializer

We	subclass	ReadOnlyModelViewSet,	which	provides	the	read-only	actions
list()	and	retrieve()	to	both	list	objects	or	retrieve	a	single	object.	Edit
the	api/urls.py	file	and	create	a	router	for	our	view	set	as	follows:

from	django.urls	import	path,	include

from	rest_framework	import	routers

from	.	import	views

router	=	routers.DefaultRouter()

router.register('courses',	views.CourseViewSet)

urlpatterns	=	[

				#	...

				path('',	include(router.urls)),

]

We	create	a	DefaultRouter	object	and	register	our	view	set	with	the

courses	prefix.	The	router	takes	charge	of	generating	URLs
automatically	for	our	view	set.

Open	http://127.0.0.1:8000/api/	in	your	browser.	You	will	see	that	the
router	lists	all	view	sets	in	its	base	URL,	as	shown	in	the	following
screenshot:

You	can	access	http://127.0.0.1:8000/api/courses/	to	retrieve	the	list	of
courses.

You	can	learn	more	about	view	sets	at	https://www.django-rest-framework.or
g/api-guide/viewsets/.	You	can	also	find	more	information	about	routers
at	https://www.django-rest-framework.org/api-guide/routers/.

https://www.django-rest-framework.org/api-guide/viewsets/
https://www.django-rest-framework.org/api-guide/routers/

Adding	additional	actions	to
view	sets
You	can	add	extra	actions	to	view	sets.	Let's	change	our	previous
CourseEnrollView	view	into	a	custom	view	set	action.	Edit	the	api/views.py
file	and	modify	the	CourseViewSet	class	to	look	as	follows:

from	rest_framework.decorators	import	detail_route

class	CourseViewSet(viewsets.ReadOnlyModelViewSet):

				queryset	=	Course.objects.all()

				serializer_class	=	CourseSerializer

				@detail_route(methods=['post'],

																		authentication_classes=[BasicAuthentication],

																		permission_classes=[IsAuthenticated])

				def	enroll(self,	request,	*args,	**kwargs):

								course	=	self.get_object()

								course.students.add(request.user)

								return	Response({'enrolled':	True})

We	add	a	custom	enroll()	method	that	represents	an	additional
action	for	this	view	set.	The	preceding	code	is	as	follows:

1.	 We	use	the	detail_route	decorator	of	the	framework	to	specify

that	this	is	an	action	to	be	performed	on	a	single	object.

2.	 The	decorator	allows	us	to	add	custom	attributes	for	the

action.	We	specify	that	only	the	post	method	is	allowed	for

this	view	and	set	the	authentication	and	permission	classes.

3.	 We	use	self.get_object()	to	retrieve	the	Course	object.

4.	 We	add	the	current	user	to	the	students	many-to-many

relationship	and	return	a	custom	success	response.

Edit	the	api/urls.py	file	and	remove	the	following	URL,	since	we	don't
need	it	anymore:

path('courses/<pk>/enroll/',

					views.CourseEnrollView.as_view(),

					name='course_enroll'),

Then	edit	the	api/views.py	file	and	remove	the	CourseEnrollView	class.

The	URL	to	enroll	in	courses	is	now	automatically	generated	by	the
router.	The	URL	remains	the	same,	since	it's	built	dynamically
using	our	action	name	enroll.

Creating	custom	permissions
We	want	students	to	be	able	to	access	the	contents	of	the	courses
they	are	enrolled	in.	Only	students	enrolled	in	a	course	should	be
able	to	access	its	contents.	The	best	way	to	do	this	is	with	a	custom
permission	class.	Django	provides	a	BasePermission	class	that	allows
you	to	define	the	following	methods:

has_permission():	View-level	permission	check

has_object_permission():	Instance-level	permission	check

These	methods	should	return	True	to	grant	access	or	False	otherwise.
Create	a	new	file	inside	the	courses/api/	directory	and	name	it
permissions.py.	Add	the	following	code	to	it:

from	rest_framework.permissions	import	BasePermission

class	IsEnrolled(BasePermission):

				def	has_object_permission(self,	request,	view,	obj):

								return	obj.students.filter(id=request.user.id).exists()

We	subclass	the	BasePermission	class	and	override	the
has_object_permission().	We	check	that	the	user	performing	the	request
is	present	in	the	students	relationship	of	the	Course	object.	We	are
going	to	use	the	IsEnrolled	permission	next.

Serializing	course	contents
We	need	to	serialize	course	contents.	The	Content	model	includes	a
generic	foreign	key	that	allows	us	to	associate	objects	of	different
content	models.	Yet,	we	have	added	a	common	render()	method	for
all	content	models	in	the	previous	chapter.	We	can	use	this	method
to	provide	rendered	contents	to	our	API.

Edit	the	api/serializers.py	file	of	the	courses	application	and	add	the
following	code	to	it:

from	..models	import	Content

class	ItemRelatedField(serializers.RelatedField):

				def	to_representation(self,	value):

								return	value.render()

class	ContentSerializer(serializers.ModelSerializer):

				item	=	ItemRelatedField(read_only=True)

				class	Meta:

								model	=	Content

								fields	=	['order',	'item']

In	this	code,	we	define	a	custom	field	by	subclassing	the	RelatedField
serializer	field	provided	by	REST	framework	and	overriding	the
to_representation()	method.	We	define	the	ContentSerializer	serializer	for
the	Content	model	and	use	the	custom	field	for	the	item	generic	foreign
key.

We	need	an	alternate	serializer	for	the	Module	model	that	includes	its
contents,	and	an	extended	Course	serializer	as	well.	Edit	the
api/serializers.py	file	and	add	the	following	code	to	it:

class	ModuleWithContentsSerializer(serializers.ModelSerializer):

				contents	=	ContentSerializer(many=True)

				class	Meta:

								model	=	Module

								fields	=	['order',	'title',	'description',	'contents']

class	CourseWithContentsSerializer(serializers.ModelSerializer):

				modules	=	ModuleWithContentsSerializer(many=True)

				class	Meta:

								model	=	Course

								fields	=	['id',	'subject',	'title',	'slug',

																		'overview',	'created',	'owner',	'modules']

Let's	create	a	view	that	mimics	the	behavior	of	the	retrieve()	action,
but	it	includes	the	course	contents.	Edit	the	api/views.py	file	and	add
the	following	method	to	the	CourseViewSet	class:

from	.permissions	import	IsEnrolled

from	.serializers	import	CourseWithContentsSerializer

class	CourseViewSet(viewsets.ReadOnlyModelViewSet):

				#	...

				@detail_route(methods=['get'],

																		serializer_class=CourseWithContentsSerializer,

																		authentication_classes=[BasicAuthentication],

																		permission_classes=[IsAuthenticated,

																																						IsEnrolled])

				def	contents(self,	request,	*args,	**kwargs):

								return	self.retrieve(request,	*args,	**kwargs)

The	description	of	this	method	is	as	follows:

We	use	the	detail_route	decorator	to	specify	that	this	action	is

performed	on	a	single	object.

We	specify	that	only	the	GET	method	is	allowed	for	this

action.

We	use	the	new	CourseWithContentsSerializer	serializer	class	that

includes	rendered	course	contents.

We	use	both	the	IsAuthenticated	and	our	custom	IsEnrolled

permissions.	By	doing	so,	we	make	sure	that	only	users

enrolled	in	the	course	are	able	to	access	its	contents.

We	use	the	existing	retrieve()	action	to	return	the	Course	object.

Open	http://127.0.0.1:8000/api/courses/1/contents/	in	your	browser.	If	you
access	the	view	with	the	right	credentials,	you	will	see	that	each
module	of	the	course	includes	the	rendered	HTML	for	course
contents,	as	follows:

{

				"order":	0,

				"title":	"Introduction	to	Django",

				"description":	"Brief	introduction	to	the	Django	Web	Framework.",

				"contents":	[

								{

												"order":	0,

												"item":	"<p>Meet	Django.	Django	is	a	high-level	

												Python	Web	framework	

												...</p>"

								},

								{

												"order":	1,

												"item":	"\n<iframe	width=\"480\"	height=\"360\"		

												src=\"http://www.youtube.com/embed/bgV39DlmZ2U?

												wmode=opaque\"	

												frameborder=\"0\"	allowfullscreen></iframe>\n"

								}

]

}

You	have	built	a	simple	API	that	allows	other	services	to	access	the
course	application	programmatically.	REST	framework	also	allows
you	to	handle	creating	and	editing	objects	with	the	ModelViewSet	view
set.	We	have	covered	the	main	aspects	of	Django	REST	framework,
but	you	will	find	further	information	about	its	features	in	its
extensive	documentation	at	https://www.django-rest-framework.org/.

https://www.django-rest-framework.org/

Summary
In	this	chapter,	you	created	a	RESTful	API	for	other	services	to
interact	with	your	web	application.

The	next	chapter	will	teach	you	how	to	build	a	production
environment	using	uWSGI	and	NGINX.	You	will	also	learn	how	to
implement	a	custom	middleware	and	create	custom	management
commands.

Going	Live
In	the	previous	chapter,	you	created	a	RESTful	API	for	your	project.
In	this	chapter,	we	will	learn	how	to	create	a	production
environment	for	our	project	by	covering	the	following	topics:

Configuring	a	production	environment

Creating	a	custom	middleware

Implementing	custom	management	commands

Creating	a	production
environment
It's	time	to	deploy	your	Django	project	in	a	production
environment.	We	are	going	to	follow	these	steps	to	get	our	project
live:

1.	 Configure	project	settings	for	a	production	environment

2.	 Use	a	PostgreSQL	database

3.	 Set	up	a	web	server	with	uWSGI	and	NGINX

4.	 Serve	static	assets

5.	 Secure	our	site	with	SSL

Managing	settings	for	multiple
environments
In	real-world	projects	you	will	have	to	deal	with	multiple
environments.	You	will	have	at	least	a	local	and	a	production
environment,	but	you	could	have	other	environments	as	well,	such
as	testing	or	pre-production	environments.	Some	project	settings
will	be	common	to	all	environments,	but	others	will	have	to	be
overridden	per	environment.	Let's	set	up	project	settings	for
multiple	environments	while	keeping	everything	neatly	organized.

Create	a	settings/	directory	next	to	the	settings.py	file	of	the	educa
project.	Rename	the	settings.py	file	to	base.py	and	move	it	into	the
new	settings/	directory.	Create	the	following	additional	files	inside
the	setting/	folder	so	that	the	new	directory	looks	as	follows:

settings/

				__init__.py

				base.py

				local.py

				pro.py

These	files	are	as	follows:

base.py:	The	base	settings	file	that	contains	common	settings

(previously	settings.py)

local.py:	Custom	settings	for	your	local	environment

pro.py:	Custom	settings	for	the	production	environment

Edit	the	settings/base.py	file	and	replace	the	following	line:

BASE_DIR	=	os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

With	the	following	one:

BASE_DIR	=	

os.path.dirname(os.path.dirname(os.path.abspath(os.path.join(__file__,	

os.pardir))))

We	have	moved	our	settings	files	to	a	directory	one	level	lower,	so
we	need	BASE_DIR	to	point	to	the	parent	directory	to	be	correct.	We
achieve	this	by	pointing	to	the	parent	directory	with	os.pardir.

Edit	the	settings/local.py	file	and	add	the	following	lines	of	code:

from	.base	import	*

DEBUG	=	True

DATABASES	=	{

				'default':	{

								'ENGINE':	'django.db.backends.sqlite3',

								'NAME':	os.path.join(BASE_DIR,	'db.sqlite3'),

				}

}

This	is	the	settings	file	for	our	local	environment.	We	import	all
settings	defined	in	the	base.py	file	and	we	only	define	specific	settings
for	this	environment.	We	have	copied	the	DEBUG	and	DATABASES	settings
from	the	base.py	file,	since	these	will	be	set	per	environment.	You	can
remove	the	DATABASES	and	DEBUG	settings	from	the	base.py	settings	file.

Edit	the	settings/pro.py	file	and	make	it	look	as	follows:

from	.base	import	*

DEBUG	=	False

ADMINS	=	(

				('Antonio	M',	'email@mydomain.com'),

)

ALLOWED_HOSTS	=	['*']

DATABASES	=	{

				'default':	{

				}

}

These	are	the	settings	for	the	production	environment.	Let's	take	a
closer	look	at	each	of	them:

DEBUG:	Setting	DEBUG	to	False	should	be	mandatory	for	any

production	environment.	Failing	to	do	so	will	result	in

traceback	information	and	sensitive	configuration	data

exposed	to	everyone.

ADMINS:	When	DEBUG	is	False	and	a	view	raises	an	exception,	all

information	will	be	sent	by	email	to	the	people	listed	in	the

ADMINS	setting.	Make	sure	to	replace	the	name/email	tuple

with	your	own	information.

ALLOWED_HOSTS:	Django	will	only	allow	the	hosts	included	in	this

list	to	serve	the	application.	This	is	a	security	measure.	We

include	the	asterisk	symbol	*	to	refer	to	all	hostnames.	We

will	limit	the	hostnames	that	can	be	used	for	serving	the

application	later.

DATABASES:	We	just	keep	this	setting	empty.	We	are	going	to

cover	database	setup	for	production	hereafter.

When	handling	multiple	environments,	create	a	base	settings	file	and	a
settings	file	for	each	environment.	Environment	settings	files	should	inherit
the	common	settings	and	override	environment-specific	settings.

We	have	placed	the	project	settings	in	a	different	location	than	the
default	settings.py	file.	You	will	not	be	able	to	execute	any	commands

with	the	manage.py	tool	unless	you	specify	the	settings	module	to	use.
You	will	need	to	add	a	--settings	flag	when	you	run	management
commands	from	the	shell	or	set	a	DJANGO_SETTINGS_MODULE	environment
variable.

Open	the	shell	and	run	the	following	command:

export	DJANGO_SETTINGS_MODULE=educa.settings.pro

This	will	set	the	DJANGO_SETTINGS_MODULE	environment	variable	for	the
current	shell	session.	If	you	want	to	avoid	executing	this	command
for	each	new	shell,	add	this	command	to	your	shell's	configuration
in	the	.bashrc	or	.bash_profile	files.	If	you	don't	set	this	variable	you	will
have	to	run	management	commands,	including	the	--settings	flag,	as
follows:

python	manage.py	migrate	--settings=educa.settings.pro

You	have	successfully	organized	settings	for	handling	multiple
environments.

Using	PostgreSQL
Throughout	this	book,	we	have	mostly	used	the	SQLite	database.
SQLite	is	simple	and	quick	to	set	up,	but	for	a	production
environment	you	will	need	a	more	powerful	database,	such	as
PostgreSQL,	MySQL,	or	Oracle.	You	already	learned	how	to	install
PostgreSQL	and	set	up	a	PostgreSQL	database	in	Chapter
3,	Extending	Your	Blog	Application.	If	you	need	to	install
PostgreSQL,	you	can	read	the	Installing	PostgreSQL	section	of	Chapt
er	3,	Extending	Your	Blog	Application.

Let's	create	a	PostgreSQL	user.	Open	the	shell	and	run	the	following
commands	to	create	a	database	user:

su	postgres

createuser	-dP	educa

You	will	be	prompted	for	a	password	and	permissions	you	want	to
give	to	this	user.	Enter	the	desired	password	and	permissions	and
then	create	a	new	database	with	the	following	command:

createdb	-E	utf8	-U	educa	educa

Then	edit	the	settings/pro.py	file	and	modify	the	DATABASES	setting	to
make	it	look	as	follows:

DATABASES	=	{

			'default':	{

							'ENGINE':	'django.db.backends.postgresql',

							'NAME':	'educa',

							'USER':	'educa',

							'PASSWORD':	'*****',

			}

}

Replace	the	preceding	data	with	the	database	name	and	credentials
for	the	user	you	created.	The	new	database	is	empty.	Run	the
following	command	to	apply	all	database	migrations:

python	manage.py	migrate

Finally,	create	a	superuser	with	the	following	command:

python	manage.py	createsuperuser

Checking	your	project
Django	includes	the	check	management	command	for	checking	your
project	anytime.	This	command	inspects	the	apps	installed	in	your
Django	project	and	outputs	any	errors	or	warnings.	If	you	include
the	--deploy	option,	additional	checks	only	relevant	for	production
use	will	be	triggered.	Open	the	shell	and	run	the	following
command	to	perform	a	check:

python	manage.py	check	--deploy

You	will	see	an	output	with	no	errors	but	several	warnings.	This
means	the	check	was	successful,	but	you	should	go	through	the
warnings	to	see	if	there	is	anything	more	you	can	do	to	make	your
project	safe	for	production.	We	are	not	going	to	go	deeper	into	this,
but	keep	in	mind	that	you	should	check	your	project	before
production	use	to	look	for	any	relevant	issues.

Serving	Django	through	WSGI
Django's	primary	deployment	platform	is	WSGI.	WSGI	stands	for
Web	Server	Gateway	Interface	and	it	is	the	standard	for
serving	Python	applications	on	the	web.

When	you	generate	a	new	project	using	the	startproject	command,
Django	creates	a	wsgi.py	file	inside	your	project	directory.	This	file
contains	a	WSGI	application	callable,	which	is	an	access	point	to
your	application.	WSGI	is	used	for	both	running	your	project	with
the	Django	development	server,	and	deploying	your	application
with	the	server	of	your	choice	in	a	production	environment.

You	can	learn	more	about	WSGI	at	https://wsgi.readthedocs.io/en/latest/.

https://wsgi.readthedocs.io/en/latest/

Installing	uWSGI
Throughout	this	book,	you	have	been	using	the	Django
development	server	to	run	projects	in	your	local	environment.
However,	you	need	a	real	web	server	for	deploying	your	application
in	a	production	environment.

uWSGI	is	an	extremely	fast	Python	application	server.	It
communicates	with	your	Python	application	using	the	WSGI
specification.	uWSGI	translates	web	requests	into	a	format	that
your	Django	project	can	process.

Install	uWSGI	using	the	following	command:

pip	install	uwsgi==2.0.17

In	order	to	build	uWSGI,	you	will	need	a	C	compiler,	such	as	gcc	or
clang.	In	a	Linux	environment	you	can	install	it	with	the
command	apt-get	install	build-essential.

If	you	are	using	macOS	X,	you	can	install	uWSGI	with	the
Homebrew	package	manager	using	the	command	brew	install	uwsgi.	If
you	want	to	install	uWSGI	on	Windows,	you	will	need	Cygwin
https://www.cygwin.com.	However,	it's	desirable	to	use	uWSGI	in	UNIX-
based	environments.

You	can	read	uWSGI's	documentation	at	https://uwsgi-docs.readthedocs.io
/en/latest/.

https://www.cygwin.com
https://uwsgi-docs.readthedocs.io/en/latest/

Configuring	uWSGI
You	can	run	uWSGI	from	the	command	line.	Open	the	shell	and	run
the	following	command	from	the	educa	project	directory:

sudo	uwsgi	--module=educa.wsgi:application	\

--env=DJANGO_SETTINGS_MODULE=educa.settings.pro	\

--master	--pidfile=/tmp/project-master.pid	\

--http=127.0.0.1:8000	\

--uid=1000	\

--virtualenv=/home/env/educa/

You	might	have	to	prepend	sudo	to	this	command	if	you	don't	have
the	required	permissions.

With	this	command,	we	run	uWSGI	on	our	localhost	with	the
following	options:

We	use	the	educa.wsgi:application	WSGI	callable.

We	load	the	settings	for	the	production	environment.

We	use	our	virtual	environment.	Replace	the	path	in	the

virtualenv	option	with	your	actual	virtual	environment

directory.	If	you	are	not	using	a	virtual	environment,	you

can	skip	this	option.

If	you	are	not	running	the	command	within	the	project	directory,
include	the	option	--chdir=/path/to/educa/	with	the	path	to	your	project.

Open	http://127.0.0.1:8000/	in	your	browser.	You	should	see	the
generated	HTML	without	any	CSS	style	sheets	or	images	being

loaded.	This	makes	sense	since	we	didn't	configure	uWSGI	to	serve
static	files.

uWSGI	allows	you	to	define	a	custom	configuration	in	a	.ini	file.
This	is	more	convenient	than	passing	options	through	the
command	line.

Create	the	following	file	structure	inside	the	main	educa/	directory:

config/

				uwsgi.ini

Edit	the	uwsgi.ini	file	and	add	the	following	code	to	it:

[uwsgi]

#	variables

projectname	=	educa

base	=	/home/projects/educa

#	configuration

master	=	true

virtualenv	=	/home/env/%(projectname)

pythonpath	=	%(base)

chdir	=	%(base)

env	=	DJANGO_SETTINGS_MODULE=%(projectname).settings.pro

module	=	educa.wsgi:application

socket	=	/tmp/%(projectname).sock

In	the	.ini	file	we	define	the	following	variables:

projectname:	The	name	of	our	Django	project,	which	is	educa.

base:	The	absolute	path	to	the	educa	project.	Replace	it	with	the

absolute	path	to	your	project.

These	are	custom	variables	that	we	will	use	in	the	uWSGI	options.
You	can	define	any	other	variables	you	like	as	long	as	the	name	is
different	than	uWSGI	options.

We	set	the	following	options:

master:	Enable	master	process.

virtualenv:	The	path	to	your	virtual	environment.	Replace	this

path	with	the	appropriate	path.

pythonpath:	The	paths	to	add	to	your	Python	path.

chdir:	The	path	to	your	project	directory,	so	that	uWSGI

changes	to	that	directory	before	loading	the	application.

env:	Environment	variables.	We	include	the

DJANGO_SETTINGS_MODULE	variable	pointing	to	the	settings	for	the

production	environment.

module:	The	WSGI	module	to	use.	We	set	this	to	the	application

callable	contained	in	the	wsgi	module	of	our	project.

socket:	The	UNIX/TCP	socket	to	bind	the	server.

The	socket	option	is	intended	for	communication	with	some	third-
party	router,	such	as	NGINX,	while	the	http	option	is	for	uWSGI	to
accept	incoming	HTTP	requests	and	route	them	by	itself.	We	are
going	to	run	uWSGI	using	a	socket,	since	we	are	going	to	configure
NGINX	as	our	web	server,	and	communicate	with	uWSGI	through
the	socket.

You	can	find	the	list	of	available	uWSGI	options	at	https://uwsgi-docs.re
adthedocs.io/en/latest/Options.html.

Now	you	can	run	uWSGI	with	your	custom	configuration	using	this
command:

uwsgi	--ini	config/uwsgi.ini

https://uwsgi-docs.readthedocs.io/en/latest/Options.html

You	will	not	be	able	to	access	your	uWSGI	instance	from	your
browser	now,	since	it's	running	through	a	socket.	Let's	complete	the
production	environment.

Installing	NGINX
When	you	are	serving	a	website,	you	have	to	serve	dynamic	content,
but	you	also	need	to	serve	static	files,	such	as	CSS,	JavaScript	files,
and	images.	While	uWSGI	is	capable	of	serving	static	files,	it	adds
an	unnecessary	overhead	to	HTTP	requests	and	therefore,	it	is
encouraged	to	set	up	a	web	server,	such	as	NGINX	in	front	of	it.

NGINX	is	a	web	server	focused	on	high	concurrency,	performance,
and	low	memory	usage.	NGINX	also	acts	as	a	reverse	proxy,
receiving	HTTP	requests,	and	routing	them	to	different	backends.
Generally,	you	will	use	a	web	server,	such	as	NGINX	in	front,	for
serving	static	files	efficiently	and	quickly,	and	you	will	forward
dynamic	requests	to	uWSGI	workers.	By	using	NGINX,	you	can	also
apply	rules	and	benefit	from	its	reverse	proxy	capabilities.

Install	NGINX	with	the	following	command:

sudo	apt-get	install	nginx

If	you	are	using	macOS	X,	you	can	install	NGINX	using	the
command	brew	install	nginx.	You	can	find	NGINX	binaries	for
Windows	at	https://nginx.org/en/download.html.

https://nginx.org/en/download.html

The	production	environment
The	following	diagram	shows	how	our	final	production
environment	will	look:

The	following	will	happen	when	the	client	browser	launches	an
HTTP	request:

1.	 NGINX	receives	the	HTTP	request.

2.	 If	a	static	file	is	requested,	NGINX	serves	the	static	file

directly.	If	a	dynamic	page	is	requested,	NGINX	delegates

the	request	to	uWSGI	through	a	socket.

3.	 uWSGI	passes	the	request	to	Django	for	processing.	The

resulting	HTTP	response	is	passed	back	to	NGINX,	which	in

turn	passes	it	back	to	the	client	browser.

Configuring	NGINX
Create	a	new	file	inside	the	config/	directory	and	name	it	nginx.conf.
Add	the	following	code	to	it:

#	the	upstream	component	nginx	needs	to	connect	to

upstream	educa	{

				server	unix:///tmp/educa.sock;

}

server	{

				listen						80;

				server_name		www.educaproject.com	educaproject.com;

				location	/	{

								include					/etc/nginx/uwsgi_params;

								uwsgi_pass		educa;

				}

}

This	is	the	basic	configuration	for	NGINX.	We	set	up	an	upstream
named	educa,	which	points	to	the	socket	created	by	uWSGI.	We	use
the	server	directive	and	add	the	following	configuration:

We	tell	NGINX	to	listen	on	port	80.

We	set	the	server	name	to	both	www.educaproject.com	and

educaproject.com.	NGINX	will	serve	incoming	requests	for	both

domains.

We	specify	that	everything	under	the	/	path	has	to	be	routed

to	the	educa	socket	(uWSGI).	We	also	include	the	default

uWSGI	configuration	params	that	come	with	NGINX.

You	can	find	NGINX	documentation	at	https://nginx.org/en/docs/.

The	primary	NGINX	configuration	file	is	located	at
/etc/nginx/nginx.conf.	It	includes	any	configuration	files	found
under	/etc/nginx/sites-enabled/.	To	make	NGINX	load	your	custom
configuration	file,	open	the	shell	and	create	a	symbolic	link	as
follows:

sudo	ln	-s	/home/projects/educa/config/nginx.conf	/etc/nginx/sites-

enabled/educa.conf

Replace	/home/projects/educa/	with	your	project's	absolute	path.	Then
open	a	shell	and	run	uWSGI	if	you	are	not	running	it	yet:

uwsgi	--ini	config/uwsgi.ini

Open	a	second	shell	and	run	NGINX	with	the	following	command:

service	nginx	start

Since	we	are	using	a	sample	domain	name,	we	need	to	redirect	it	to
our	local	host.	Edit	your	/etc/hosts	file	and	add	the	following	lines	to
it:

127.0.0.1	educaproject.com

127.0.0.1	www.educaproject.com

By	doing	so,	we	are	routing	both	hostnames	to	our	local	server.	In	a
production	server	you	won't	need	to	do	this,	since	you	will	have	a
fixed	IP	address	and	you	will	point	your	hostname	to	your	server	in
your	domain's	DNS	configuration.

Open	http://educaproject.com/	in	your	browser.	You	should	be	able	to
see	your	site,	still	without	any	static	assets	being	loaded.	Our
production	environment	is	almost	ready.

https://nginx.org/en/docs/
http://nginx.org/en/docs/

Now	you	can	restrict	the	hosts	that	can	serve	your	Django	project.
Edit	the	production	settings	file	settings/pro.py	of	your	project	and
change	the	ALLOWED_HOSTS	setting	as	follows:

ALLOWED_HOSTS	=	['educaproject.com',	'www.educaproject.com']

Django	will	now	only	serve	your	application	if	it's	running	under
any	of	these	hostnames.	You	can	read	more	about	the	allowed
setting	at	https://docs.djangoproject.com/en/2.0/ref/settings/#allowed-hosts.

https://docs.djangoproject.com/en/2.0/ref/settings/#allowed-hosts

Serving	static	and	media
assets
NGINX	is	very	good	at	serving	static	content.	For	best	performance
we	will	use	NGINX	to	serve	the	static	files	in	our	production
environment.	We	will	set	up	NGINX	to	serve	both	static	files	of	our
application	and	media	files	uploaded	for	course	contents.

Edit	the	settings/base.py	file	and	add	the	following	code	to	it:

STATIC_ROOT	=	os.path.join(BASE_DIR,	'static/')

We	need	to	export	static	assets	with	Django.	The	collectstatic
command	copies	static	files	from	all	applications	and	stores	them	in
the	STATIC_ROOT	directory.	Open	the	shell	and	run	the	following
command:

python	manage.py	collectstatic

You	will	see	this	output:

160	static	files	copied	to	'/educa/static'.

Now	edit	the	config/nginx.conf	file	and	add	the	following	code	inside
the	server	directive:

location	/static/	{

				alias	/home/projects/educa/static/;

}

location	/media/	{

				alias	/home/projects/educa/media/;

}

Remember	to	replace	the	/home/projects/educa/	path	with	the	absolute
path	to	your	project	directory.	These	directives	tell	NGINX	to	serve
static	assets	located	under	/static/	and	/media/	paths	directly.	These
paths	are	as	follows:

/static/:		This	path	matches	the	one	set	in	the	STATIC_URL	setting

and	its	target	path	corresponds	to	the	value	of	the

STATIC_ROOT	setting.	We	use	it	to	serve	the	static	files	of	our

application.

/media/:	This	path	matches	the	one	set	in	the	MEDIA_URL	setting

and	its	target	path	corresponds	to	the	value	of	the	MEDIA_ROOT

setting.	We	use	it	to	serve	the	media	files	uploaded	to	the

course	contents.

Reload	NGINX's	configuration	with	the	following	command	to	keep
track	of	the	new	paths:

service	nginx	reload

Open	http://educaproject.com/	in	your	browser.	You	should	be	able	to
see	your	site	correctly	loading	static	resources	such	as	CSS	style
sheets	and	images.	NGINX	is	now	serving	the	static	files	directly
instead	of	forwarding	static	files'	requests	to	uWSGI.

Great!	You	have	successfully	configured	NGINX	for	serving	static
files.

Securing	connections	with	SSL
The	Secure	Sockets	Layer	protocol	(SSL),	is	becoming	the	norm
for	serving	websites	through	a	secure	connection.	It's	strongly
encouraged	that	you	serve	your	websites	under	HTTPS.	We	are
going	to	configure	an	SSL	certificate	in	NGINX	to	serve	our
site	securely.

Creating	an	SSL	certificate
Create	a	new	directory	inside	the	educa	project	directory	and	name	it
ssl.	Then	generate	an	SSL	certificate	from	the	command	line	with
the	following	command:

sudo	openssl	req	-x509	-nodes	-days	365	-newkey	rsa:2048	-keyout	

ssl/educa.key	-out	ssl/educa.crt

We	are	generating	a	private	key	and	a	2048-bit	SSL	certificate	valid
for	one	year.	You	will	be	asked	to	enter	data	as	follows:

Country	Name	(2	letter	code)	[AU]:

State	or	Province	Name	(full	name)	[Some-State]:

Locality	Name	(eg,	city)	[]:

Organization	Name	(eg,	company)	[Internet	Widgits	Pty	Ltd]:

Organizational	Unit	Name	(eg,	section)	[]:

Common	Name	(e.g.	server	FQDN	or	YOUR	name)	[]:	educaproject.com

Email	Address	[]:	email@domain.com

You	can	fill	in	the	requested	data	with	your	own	information.	The
most	important	field	is	the	Common	Name.	You	have	to	specify	the
domain	name	for	the	certificate.	We	use	educaproject.com.

This	will	generate,	inside	the	ssl/	directory,	an	educa.key	private	key
file	and	an	educa.crt	file,	which	is	the	actual	certificate.

Configuring	NGINX	to	use	SSL
Edit	the	nginx.conf	file	and	edit	the	server	directive	to	include	SSL	as
follows:

server	{

			listen															80;

			listen															443	ssl;

			ssl_certificate						/home/projects/educa/ssl/educa.crt;

			ssl_certificate_key		/home/projects/educa/ssl/educa.key;

			server_name										www.educaproject.com	educaproject.com;

			#	...

}

With	the	preceding	code,	our	server	now	listens	both	to	HTTP
through	port	80	and	HTTPS	through	port	443.	We	indicate	the	path	to
the	SSL	certificate	with	ssl_certificate	and	the	certificate	key	with
ssl_certificate_key.

Restart	NGINX	with	the	following	command:

sudo	service	nginx	restart

NGINX	will	load	the	new	configuration.	Open	https://educaproject.com/
with	your	browser.	You	should	see	a	warning	message	similar	to	the
following	one:

The	message	might	be	different	depending	on	your	browser.	It
alerts	you	that	your	site	is	not	using	a	trusted	certificate:	the
browser	cannot	verify	the	identity	of	your	site.	This	is	because	we
signed	our	own	certificate	instead	of	obtaining	one	from	a	trusted
Certification	Authority	(CA).	When	you	own	a	real	domain,	you
can	apply	for	a	trusted	CA	to	issue	an	SSL	certificate	for	it,	so	that
browsers	can	verify	its	identity.

If	you	want	to	obtain	a	trusted	certificate	for	a	real	domain,	you	can
refer	to	the	Let's	Encrypt	project	created	by	the	Linux	Foundation.
It	is	a	collaborative	project	that	aims	to	simplify	obtaining	and
renewing	trusted	SSL	certificates	for	free.	You	can	find	more
information	at	https://letsencrypt.org.

Click	on	the	Add	Exception	button	to	let	your	browser	know	that

https://letsencrypt.org

you	trust	this	certificate.	You	will	see	that	the	browser	displays	a
lock	icon	next	to	the	URL	as	follows:

If	you	click	the	lock	icon,	SSL	certificate	details	will	be	displayed.

Configuring	our	project	for	SSL
Django	comes	with	specific	settings	for	SSL	support.	Edit	the
settings/pro.py	settings	file	and	add	the	following	settings	to	it:

SECURE_SSL_REDIRECT	=	True

CSRF_COOKIE_SECURE	=	True

These	settings	are	as	follows:

SECURE_SSL_REDIRECT:	Whether	HTTP	requests	have	to	be

redirected	to	HTTPS

CSRF_COOKIE_SECURE:	Has	to	be	set	for	establishing	a	secure	cookie

for	the	cross-site	request	forgery	protection

Congratulations!	You	have	configured	a	production	environment
that	will	offer	great	performance	for	serving	your	project.

Creating	a	custom	middleware
You	already	know	the	MIDDLEWARE	setting,	which	contains	the
middlewares	for	your	project.	You	can	think	of	it	as	a	low-level
plugin	system,	allowing	you	to	implement	hooks	that	get	executed
in	the	request/response	process.	Each	middleware	is	responsible	for
some	specific	action	that	will	be	executed	for	all	HTTP	requests	or
responses.

Avoid	adding	expensive	processing	to	middlewares,	since	they	are	executed
in	every	single	request.

When	an	HTTP	request	is	received,	middlewares	are	executed	in
order	of	appearance	in	the	MIDDLEWARE	setting.	When	an	HTTP
response	has	been	generated	by	Django,	the	response	passes
through	all	middlewares	back	in	reverse	order.

A	middleware	can	be	written	as	a	function	as	follows:

def	my_middleware(get_response):

				def	middleware(request):

								#	Code	executed	for	each	request	before

								#	the	view	(and	later	middleware)	are	called.

								response	=	get_response(request)

								#	Code	executed	for	each	request/response	after

								#	the	view	is	called.

								return	response

				return	middleware

A	middleware	factory	is	a	callable	that	takes	a	get_response	callable
and	returns	a	middleware.	A	middleware	is	a	callable	that	takes	a

request	and	returns	a	response,	just	like	a	view.	The	get_response
callable	might	be	the	next	middleware	in	the	chain	or	the	actual
view	in	case	of	the	last	listed	middleware.

If	any	middleware	returns	a	response	without	calling	its	get_response
callable,	it	short-circuits	the	process,	no	further	middlewares	get
executed	(also	not	the	view),	and	the	response	returns	through	the
same	layers	that	the	request	passed	in	through.

The	order	of	middlewares	in	the	MIDDLEWARE	setting	is	very	important
because	a	middleware	can	depend	on	data	set	in	the	request	by
other	middlewares	that	have	been	executed	previously.

When	adding	a	new	middleware	to	the	MIDDLEWARE	setting,	make	sure	to	place	it
in	the	right	position.	Middlewares	are	executed	in	order	of	appearance	in	the
setting	during	the	request	phase,	and	in	reverse	order	for	responses.

You	can	find	more	information	about	middleware	at
https://docs.djangoproject.com/en/2.0/topics/http/middleware/.

https://docs.djangoproject.com/en/2.0/topics/http/middleware/

Creating	a	subdomain
middleware
We	are	going	to	create	a	custom	middleware	to	allow	courses	to	be
accessible	through	a	custom	subdomain.	Each	course	detail	URL,
which	looks	like	https://educaproject.com/course/django/,	will	also	be
accessible	through	the	subdomain	that	makes	use	of	the	course	slug,
such	as	https://django.educaproject.com/.	Users	will	be	able	to	use	the
subdomain	as	a	shortcut	to	access	the	course	details.	Any	requests
to	subdomains	will	be	redirected	to	each	corresponding	course
detail	URL.

Middlewares	can	reside	anywhere	within	your	project.	However,	it's
recommended	to	create	a	middleware.py	file	in	your	application
directory.

Create	a	new	file	inside	the	courses	application	directory	and	name	it
middleware.py.	Add	the	following	code	to	it:

from	django.urls	import	reverse

from	django.shortcuts	import	get_object_or_404,	redirect

from	.models	import	Course

def	subdomain_course_middleware(get_response):

				"""

				Provides	subdomains	for	courses

				"""

				def	middleware(request):

								host_parts	=	request.get_host().split('.')

								if	len(host_parts)	>	2	and	host_parts[0]	!=	'www':

												#	get	course	for	the	given	subdomain

												course	=	get_object_or_404(Course,	slug=host_parts[0])

												course_url	=	reverse('course_detail',

																																	args=[course.slug])

												#	redirect	current	request	to	the	course_detail	view

												url	=	'{}://{}{}'.format(request.scheme,

																																					'.'.join(host_parts[1:]),

																																					course_url)

												return	redirect(url)

								response	=	get_response(request)

								return	response

				return	middleware

When	an	HTTP	request	is	received,	we	perform	the	following	tasks:

1.	 We	get	the	hostname	that	is	being	used	in	the	request	and

divide	it	into	parts.	For	example,	if	the	user	is	accessing

mycourse.educaproject.com	we	generate	the	list	['mycourse',

'educaproject',	'com'].

2.	 We	check	if	the	hostname	includes	a	subdomain	by	checking

whether	the	split	generated	more	than	two	elements.	If	the

hostname	includes	a	subdomain,	and	this	is	not	www	we	try	to

get	the	course	with	the	slug	provided	in	the	subdomain.

3.	 If	a	course	is	not	found,	we	raise	an	HTTP	404	exception.

Otherwise,	we	redirect	the	browser	to	the	course	detail	URL.

Edit	the	settings.py	file	of	the	project	and	add
'courses.middleware.SubdomainCourseMiddleware'	at	the	bottom	of	the
MIDDLEWARE	list	as	follows:

MIDDLEWARE	=	[

				#	...

				'courses.middleware.subdomain_course_middleware',

]

Our	middleware	will	now	be	executed	in	every	request.

Remember	that	the	hostnames	allowed	to	serve	our	Django	project
are	specified	in	the	ALLOWED_HOSTS	setting.	Let's	change	this	setting	so
that	any	possible	subdomain	of	educaproject.com	is	allowed	to	serve	our

application.

Edit	the	settings/pro.py	file	and	modify	the	ALLOWED_HOSTS	setting	as
follows:

ALLOWED_HOSTS	=	['.educaproject.com']

A	value	that	begins	with	a	period	is	used	as	a	subdomain	wildcard:
'.educaproject.com'	will	match	educaproject.com	and	any	subdomain	for	this
domain,	for	example	course.educaproject.com	and	django.educaproject.com.

Serving	multiple	subdomains
with	NGINX
We	need	NGINX	to	be	able	to	serve	our	site	with	any	possible
subdomain.	Edit	the	config/nginx.conf	file	and	replace	this	line:

server_name		www.educaproject.com	educaproject.com;

With	the	following	one:

server_name		*.educaproject.com	educaproject.com;

By	using	the	asterisk,	this	rule	applies	to	all	subdomains	of
educaproject.com.	In	order	to	test	our	middleware	locally,	we	need	to
add	any	subdomains	we	want	to	test	to	/etc/hosts.	For	testing	the
middleware	with	a	Course	object	with	the	slug	django,	add	the	following
line	to	your	/etc/hosts	file:

127.0.0.1		django.educaproject.com

Then	open	https://django.educaproject.com/	in	your	browser.	The
middleware	will	find	the	course	by	the	subdomain	and	redirect	your
browser	to	https://educaproject.com/course/django/.

https://django.educaproject.com/
https://educaproject.com/course/django/

Implementing	custom
management	commands
Django	allows	your	applications	to	register	custom	management
commands	for	the	manage.py	utility.	For	example,	we	used	the
management	commands	makemessages	and	compilemessages	in	Chapter
9,	Extending	Your	Shop	to	create	and	compile	translation	files.

A	management	command	consists	of	a	Python	module	containing	a
Command	class	that	inherits	from	django.core.management.base.BaseCommand	or
one	of	its	subclasses.	You	can	create	simple	commands	or	make
them	take	positional	and	optional	arguments	as	input.

Django	looks	for	management	commands	in	the	management/commands/
directory	for	each	active	application	in	the	INSTALLED_APPS	setting.	Each
module	found	is	registered	as	a	management	command	named	after
it.

You	can	learn	more	about	custom	management	commands	at	https:/
/docs.djangoproject.com/en/2.0/howto/custom-management-commands/.

We	are	going	to	create	a	custom	management	command	to	remind
students	to	enroll	at	least	in	one	course.	The	command	will	send	an
email	reminder	to	users	that	have	been	registered	for	longer	than	a
specified	period	that	aren't	enrolled	in	any	course	yet.

Create	the	following	file	structure	inside	the	students	application
directory:

management/

				__init__.py

				commands/

https://docs.djangoproject.com/en/2.0/howto/custom-management-commands/

								__init__.py

								enroll_reminder.py

Edit	the	enroll_reminder.py	file	and	add	the	following	code	to	it:

import	datetime

from	django.conf	import	settings

from	django.core.management.base	import	BaseCommand

from	django.core.mail	import	send_mass_mail

from	django.contrib.auth.models	import	User

from	django.db.models	import	Count

class	Command(BaseCommand):

				help	=	'Sends	an	e-mail	reminder	to	users	registered	more	\

											than	N	days	that	are	not	enrolled	into	any	courses	yet'

				def	add_arguments(self,	parser):

								parser.add_argument('--days',	dest='days',	type=int)

				def	handle(self,	*args,	**options):

								emails	=	[]

								subject	=	'Enroll	in	a	course'

								date_joined	=	datetime.date.today()	-	\

								datetime.timedelta(days=options['days'])

								users	=	User.objects.annotate(course_count=Count('courses_joined'))\

								.filter(course_count=0,	date_joined__lte=date_joined)

								for	user	in	users:

												message	=	'Dear	{},\n\n	We	noticed	that	you	didn't\

												enroll	in	any	courses	yet.	What	are	you	waiting\									

												for?'.format(user.first_name)

												emails.append((subject,

																											message,

																											settings.DEFAULT_FROM_EMAIL,

																											[user.email]))

								send_mass_mail(emails)

								self.stdout.write('Sent	{}	reminders'.format(len(emails)))

This	is	our	enroll_reminder	command.	The	preceding	code	is	as	follows:

The	Command	class	inherits	from	BaseCommand.

We	include	a	help	attribute.	This	attribute	provides	a	short

description	of	the	command	that	is	printed	if	you	run	the

command	python	manage.py	help	enroll_reminder.

We	use	the	add_arguments()	method	to	add	the	--days	named

argument.	This	argument	is	used	to	specify	the	minimum

number	of	days	a	user	has	to	be	registered,	without	having

enrolled	in	any	course,	in	order	to	receive	the	reminder.

The	handle()	command	contains	the	actual	command.	We	get

the	days	attribute	parsed	from	the	command	line.	We	retrieve

the	users	that	have	been	registered	for	more	than	the

specified	days,	which	are	not	enrolled	in	any	courses	yet.	We

achieve	this	by	annotating	the	QuerySet	with	the	total

number	of	courses	each	user	is	enrolled	in.	We	generate	the

reminder	email	for	each	user	and	append	it	to	the	emails	list.

Finally,	we	send	the	emails	using	the	send_mass_mail()	function,

which	is	optimized	to	open	a	single	SMTP	connection	for

sending	all	emails,	instead	of	opening	one	connection	per

email	sent.

You	have	created	your	first	management	command.	Open	the	shell
and	run	your	command:

python	manage.py	enroll_reminder	--days=20

If	you	don't	have	a	local	SMTP	server	running,	you	can	take	a	look
at	Chapter	2,	Enhancing	Your	Blog	with	Advanced	Features	where	we
configured	SMTP	settings	for	our	first	Django	project.	Alternatively,
you	can	add	the	following	setting	to	the	settings.py	file	to	make
Django	output	emails	to	the	standard	output	during	development:

EMAIL_BACKEND	=	'django.core.mail.backends.console.EmailBackend'

Let's	schedule	our	management	command	so	that	the	server	runs	it
every	day	at	8	a.m.	If	you	are	using	a	UNIX-based	system	such	as

Linux	or	macOS	X,	open	the	shell	and	run	crontab	-e	to	edit	your
crontab.	Add	the	following	line	to	it:

0	8	*	*	*	python	/path/to/educa/manage.py	enroll_reminder	--days=20	--

settings=educa.settings.pro

If	you	are	not	familiar	with	cron	you	can	find	an	introduction	to
cron	at		http://www.unixgeeks.org/security/newbie/unix/cron-1.html.

If	you	are	using	Windows,	you	can	schedule	tasks	using	the	Task
Scheduler.	You	can	find	more	information	about	it	at	https://msdn.micro
soft.com/en-us/library/windows/desktop/aa383614(v=vs.85).aspx.

Another	option	for	executing	actions	periodically	is	to	create	tasks
and	schedule	them	with	Celery.	Remember	that	we	used	Celery	in	Ch
apter	7,	Building	an	Online	Shop	to	execute	asynchronous	tasks.
Instead	of	creating	management	commands	and	scheduling	them
with	cron,	you	can	create	asynchronous	tasks	and	execute	them
with	the	Celery	beat	scheduler.	You	can	learn	more	about
scheduling	periodic	tasks	with	Celery	at	https://celery.readthedocs.io/en/l
atest/userguide/periodic-tasks.html.

Use	management	commands	for	standalone	scripts	that	you	want	to
schedule	with	cron	or	the	Windows	scheduler	control	panel.

Django	also	includes	a	utility	to	call	management	commands	using
Python.	You	can	run	management	commands	from	your	code	as
follows:

from	django.core	import	management

management.call_command('enroll_reminder',	days=20)

Congratulations!	You	can	now	create	custom	management
commands	for	your	applications	and	schedule	them	when	needed.

http://www.unixgeeks.org/security/newbie/unix/cron-1.html
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383614(v=vs.85).aspx
https://celery.readthedocs.io/en/latest/userguide/periodic-tasks.html

Summary
In	this	chapter,	you	configured	a	production	environment	using
uWSGI	and	NGINX.	You	have	also	implemented	a	custom
middleware	and	you	have	learned	how	to	create	custom
management	commands.

You	have	reached	the	end	of	this	book.	Congratulations!	You	have
learned	the	skills	required	to	build	successful	web	applications	with
Django.	This	book	has	guided	you	through	the	process	of
developing	real-life	projects	and	integrating	Django	with	other
technologies.	Now	you	are	ready	to	create	your	own	Django	project,
whether	it	is	a	simple	prototype	or	a	large-scale	web	application.

Good	luck	with	your	next	Django	adventure!

Other	Books	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books
by	Packt:

Python	Programming	Blueprints
Daniel	Furtado,	Marcus	Pennington

ISBN:	978-1-78646-816-1

Learn	object-oriented	and	functional	programming	concepts

while	developing	projects

The	dos	and	don'ts	of	storing	passwords	in	a	database

Develop	a	fully	functional	website	using	the	popular	Django

framework

Use	the	Beautiful	Soup	library	to	perform	web	scrapping

Get	started	with	cloud	computing	by	building	microservice

and	serverless	applications	in	AWS

Develop	scalable	and	cohesive	microservices	using	the

Nameko	framework

https://www.amazon.com/Python-Programming-Blueprints-leveraging-frameworks/dp/1786468166/ref=sr_1_2?s=books&ie=UTF8&qid=1526980209&sr=1-2&keywords=django+packt

Create	service	dependencies	for	Redis	and	PostgreSQL

Django	RESTful	Web	Services
Gastón	C.	Hillar

ISBN:	978-1-78883-392-9

The	best	way	to	build	a	RESTful	Web	Service	or	API	with

Django	and	the	Django	REST	Framework

Develop	complex	RESTful	APIs	from	scratch	with	Django

and	the	Django	REST	Framework

Work	with	either	SQL	or	NoSQL	data	sources

Design	RESTful	Web	Services	based	on	application

requirements

Use	third-party	packages	and	extensions	to	perform

common	tasks

Create	automated	tests	for	RESTful	web	services

Debug,	test,	and	profile	RESTful	web	services	with	Django

and	the	Django	REST	Framework

Leave	a	review	-	let	other
readers	know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a
review	on	the	site	that	you	bought	it	from.	If	you	purchased	the
book	from	Amazon,	please	leave	us	an	honest	review	on	this	book's
Amazon	page.	This	is	vital	so	that	other	potential	readers	can	see
and	use	your	unbiased	opinion	to	make	purchasing	decisions,	we
can	understand	what	our	customers	think	about	our	products,	and
our	authors	can	see	your	feedback	on	the	title	that	they	have	worked
with	Packt	to	create.	It	will	only	take	a	few	minutes	of	your	time,	but
is	valuable	to	other	potential	customers,	our	authors,	and	Packt.
Thank	you!

	Title Page
	Copyright and Credits
	Django 2 by Example

	Dedication
	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	About the reviewers
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used

	Get in touch
	Reviews

	Building a Blog Application
	Installing Django
	Creating an isolated Python environment
	Installing Django with pip

	Creating your first project
	Running the development server
	Project settings
	Projects and applications
	Creating an application

	Designing the blog data schema
	Activating your application
	Creating and applying migrations

	Creating an administration site for your models
	Creating a superuser
	The Django administration site
	Adding your models to the administration site
	Customizing the way models are displayed

	Working with QuerySet and managers
	Creating objects
	Updating objects
	Retrieving objects
	Using the filter() method
	Using exclude()
	Using order_by()

	Deleting objects
	When QuerySets are evaluated
	Creating model managers

	Building list and detail views
	Creating list and detail views
	Adding URL patterns for your views
	Canonical URLs for models

	Creating templates for your views
	Adding pagination
	Using class-based views
	Summary

	Enhancing Your Blog with Advanced Features
	Sharing posts by email
	Creating forms with Django
	Handling forms in views
	Sending emails with Django
	Rendering forms in templates

	Creating a comment system
	Creating forms from models
	Handling ModelForms in views
	Adding comments to the post detail template

	Adding the tagging functionality
	Retrieving posts by similarity
	Summary

	Extending Your Blog Application
	Creating custom template tags and filters
	Creating custom template tags
	Creating custom template filters

	Adding a sitemap to your site
	Creating feeds for your blog posts
	Adding full-text search to your blog
	Installing PostgreSQL
	Simple search lookups
	Searching against multiple fields
	Building a search view
	Stemming and ranking results
	Weighting queries
	Searching with trigram similarity
	Other full-text search engines

	Summary

	Building a Social Website
	Creating a social website project
	Starting your social website project

	Using the Django authentication framework
	Creating a login view
	Using Django authentication views
	Login and logout views
	Changing password views
	Resetting password views

	User registration and user profiles
	User registration
	Extending the user model
	Using a custom user model

	Using the messages framework

	Building a custom authentication backend
	Adding social authentication to your site
	Authentication using Facebook
	Authentication using Twitter
	Authentication using Google

	Summary

	Sharing Content in Your Website
	Creating an image bookmarking website
	Building the image model
	Creating many-to-many relationships
	Registering the image model in the administration site

	Posting content from other websites
	Cleaning form fields
	Overriding the save() method of a ModelForm
	Building a bookmarklet with jQuery

	Creating a detail view for images
	Creating image thumbnails using sorl-thumbnail
	Adding AJAX actions with jQuery
	Loading jQuery
	Cross-Site Request Forgery in AJAX requests
	Performing AJAX requests with jQuery

	Creating custom decorators for your views
	Adding AJAX pagination to your list views
	Summary

	Tracking User Actions
	Building a follower system
	Creating many-to-many relationships with an intermediary model
	Creating list and detail views for user profiles
	Building an AJAX view to follow users

	Building a generic activity stream application
	Using the contenttypes framework
	Adding generic relations to your models
	Avoiding duplicate actions in the activity stream
	Adding user actions to the activity stream
	Displaying the activity stream
	Optimizing QuerySets that involve related objects
	Using select_related()
	Using prefetch_related()

	Creating templates for actions

	Using signals for denormalizing counts
	Working with signals
	Application configuration classes

	Using Redis for storing item views
	Installing Redis
	Using Redis with Python
	Storing item views in Redis
	Storing a ranking in Redis
	Next steps with Redis

	Summary

	Building an Online Shop
	Creating an online shop project
	Creating product catalog models
	Registering catalog models on the admin site
	Building catalog views
	Creating catalog templates

	Building a shopping cart
	Using Django sessions
	Session settings
	Session expiration
	Storing shopping carts in sessions
	Creating shopping cart views
	Adding items to the cart
	Building a template to display the cart
	Adding products to the cart
	Updating product quantities in the cart

	Creating a context processor for the current cart
	Context processors
	Setting the cart into the request context

	Registering customer orders
	Creating order models
	Including order models in the administration site
	Creating customer orders

	Launching asynchronous tasks with Celery
	Installing Celery
	Installing RabbitMQ
	Adding Celery to your project
	Adding asynchronous tasks to your application
	Monitoring Celery

	Summary

	Managing Payments and Orders
	Integrating a payment gateway
	Creating a Braintree sandbox account
	Installing the Braintree Python module
	Integrating the payment gateway
	Integrating Braintree using Hosted Fields

	Testing payments
	Going live

	Exporting orders to CSV files
	Adding custom actions to the administration site

	Extending the admin site with custom views
	Generating PDF invoices dynamically
	Installing WeasyPrint
	Creating a PDF template
	Rendering PDF files
	Sending PDF files by email

	Summary

	Extending Your Shop
	Creating a coupon system
	Building the coupon models
	Applying a coupon to the shopping cart
	Applying coupons to orders

	Adding internationalization and localization
	Internationalization with Django
	Internationalization and localization settings
	Internationalization management commands
	How to add translations to a Django project
	How Django determines the current language

	Preparing our project for internationalization
	Translating Python code
	Standard translations
	Lazy translations
	Translations including variables
	Plural forms in translations
	Translating your own code

	Translating templates
	The {% trans %} template tag
	The {% blocktrans %} template tag
	Translating the shop templates

	Using the Rosetta translation interface
	Fuzzy translations
	URL patterns for internationalization
	Adding a language prefix to URL patterns
	Translating URL patterns

	Allowing users to switch language
	Translating models with django-parler
	Installing django-parler
	Translating model fields
	Integrating translations in the administration site
	Creating migrations for model translations
	Adapting views for translations

	Format localization
	Using django-localflavor to validate form fields

	Building a recommendation engine
	Recommending products based on previous purchases

	Summary

	Building an E-Learning Platform
	Setting up the e-learning project
	Building the course models
	Registering the models in the administration site
	Using fixtures to provide initial data for models

	Creating models for diverse content
	Using model inheritance
	Abstract models
	Multi-table model inheritance
	Proxy models

	Creating the content models
	Creating custom model fields
	Adding ordering to module and content objects

	Creating a CMS
	Adding an authentication system
	Creating the authentication templates
	Creating class-based views
	Using mixins for class-based views
	Working with groups and permissions
	Restricting access to class-based views

	Managing course modules and content
	Using formsets for course modules
	Adding content to course modules
	Managing modules and contents
	Reordering modules and contents
	Using mixins from django-braces

	Summary

	Rendering and Caching Content
	Displaying courses
	Adding student registration
	Creating a student registration view
	Enrolling in courses

	Accessing the course contents
	Rendering different types of content

	Using the cache framework
	Available cache backends
	Installing Memcached
	Cache settings
	Adding Memcached to your project
	Monitoring Memcached

	Cache levels
	Using the low-level cache API
	Caching based on dynamic data

	Caching template fragments
	Caching views
	Using the per-site cache

	Summary

	Building an API
	Building a RESTful API
	Installing Django REST framework
	Defining serializers
	Understanding parsers and renderers
	Building list and detail views
	Creating nested serializers
	Building custom views
	Handling authentication
	Adding permissions to views
	Creating view sets and routers
	Adding additional actions to view sets
	Creating custom permissions
	Serializing course contents

	Summary

	Going Live
	Creating a production environment
	Managing settings for multiple environments
	Using PostgreSQL
	Checking your project
	Serving Django through WSGI
	Installing uWSGI
	Configuring uWSGI
	Installing NGINX
	The production environment
	Configuring NGINX
	Serving static and media assets
	Securing connections with SSL
	Creating an SSL certificate
	Configuring NGINX to use SSL
	Configuring our project for SSL

	Creating a custom middleware
	Creating a subdomain middleware
	Serving multiple subdomains with NGINX

	Implementing custom management commands
	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

