
$ 44.99 US
£ 27.99 UK

Prices do not include
local sales tax or VAT
where applicable

Packt Publishing

Birmingham - Mumbai

www.packtpub.com

Google Web Toolkit

Google Web Toolkit (GWT) is an open-source Java software development framework that
makes writing AJAX applications like Google Maps and Gmail easy for developers who
don’t speak browser quirks as a second language.

It concentrates on the serious side of AJAX: creating powerful, productive applications
for browser platforms. Google Web Toolkit shows you how to create reliable user inter-
faces that enhance the user experience.

What you will learn from this book
• Set up a GWT development environment in Eclipse
• Create, test, debug, and deploy GWT applications
• Develop custom widgets—examples include a calendar and a weather

forecast widget
• Internationalize your GWT applications
• Create complex interfaces using grids, moveable elements, and more
• Integrate GWT with Rico, Moo.fx, and Script.aculo.us to create even more

attractive UIs using JSNI

Who this book is written for
The book is aimed at programmers who want to use GWT to create interfaces for
their professional web applications. Readers will need experience writing non-trivial
applications using Java. Experience with developing web interfaces is useful, but
knowledge of JavaScript and DHTML is not required… GWT takes care of that!

P
rabhakar C

haganti
G

oogle W
eb Toolkit

F r o m T e c h n o l o g i e s t o S o l u t i o n s

Google Web Toolkit

GWT Java AJAX Programming

A practical guide to Google Web Toolkit for creating
AJAX applications with Java

Prabhakar Chaganti

Google Web Toolkit

GWT Java AJAX Programming

A practical guide to Google Web Toolkit for creating
AJAX applications with Java

Prabhakar Chaganti

 BIRMINGHAM - MUMBAI

Google Web Toolkit
GWT Java Ajax Programming

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2007

Production Reference: 1150207

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847191-00-7

www.packtpub.com

Cover Image by www.visionwt.com

Credits

Author

Prabhakar Chaganti

Reviewers

Luca Masini

Travis S. Schmidt

Development Editor

David Barnes

Assistant Development Editor

Nikhil Bangera

Technical Editors

Rashmi Phadnis

Ved Prakash Jha

Editorial Manager

Dipali Chittar

Project Manager

Patricia Weir

Project Coordinator

Suneet Amrute

Indexer

Bhushan Pangaonkar

Proofreader

Chris Smith

Layouts and Illustrations

Shantanu Zagade

Cover Designer

Shantanu Zagade

About the Author

Prabhakar Chaganti is an enterprise software architect and open-source
evangelist working for a cutting-edge software company in the suburbs of Atlanta.
His interests include Linux, Ruby, Python, Java, and Virtualization. He recently won
the community choice award for the most innovative virtual appliance in the 2006
VMW—this award is the Ultimate Global Virtual Appliance Challenge.

This book has gained immense support from various people.
The staff at Packt Publishing were very helpful in providing key
assistance to me and ably and enthusiastically led me through the
various phases of this project. I would like to thank the technical
reviewers for their comments, which have helped make this a much
better book. The vibrant community around the GWT mailing list
was very helpful whenever I needed clarifications on some of the
more arcane corners of GWT.

I would like to thank my wife Nitika for her support and constant
encouragement while I was writing this book. She effortlessly played
the roles of both mom and dad while I was wrestling with GWT!
Thanks and love to my two daughters Anika and Anya for putting
up with daddy being stuck to his laptop for long periods of time
instead of playing with them.

About the Reviewers

Luca Masini was born in Florence in 1971. He is a senior software engineer and
web architect. He has been heavily involved from the first days in the Java world as
a consultant for the major Italian banks and firms, developing integration software,
and as technical leader in many of the flagship projects. He worked for adoption of
Sun's J2EE standard in an envinroment where COBOL was the leading language,
and then he shifted his eyes toward open source, in particular IoC containers, ORM
tools, and UI frameworks. As such he adopted early products like Spring, Hibernate,
and Struts, giving customers a technlogical advantage. During last year he fell in love
with GWT (of course !!) and he had to master a new project all done with Oracle's
ADF Faces and JDeveloper as Visual IDE.

I want to thank my son Jacopo for being my lovely son and my wife
for being the best wife a man can dream.

Travis S. Schmidt (BS, MBA) is currently employed as an Applications
Developer at the University of Iowa Hygienic Laboratory. He has several years of
experience in designing and developing web-based clients and recently deployed
a system utilizing the Google Web Toolkit.

I would like to thank my loving family: Rebecca, Jacqueline, and
Alexander, for the their unwavering support.

Table of Contents
Preface	 1
Chapter 1: Getting Started	 7

Introduction to GWT	 7
Basic Download	 8

Time for Action—Downloading GWT	 8
Exploring the GWT Samples	 12

Time for Action—Getting into KitchenSink	 12
GWT License	 16
Summary	 16

Chapter 2: Creating a New GWT Application	 17
Generating a New Application	 17

Time for Action—Using the ApplicationCreator	 18
Generating a New Application with Eclipse Support	 22

Time for Action—Modifying HelloGWT	 22
Creating a Random Quote AJAX Application	 25

Time for Action—Modifying Auto-Generated Applications	 25
Running the Application in Hosted Mode	 29

Time for Action—Executing the HelloGWT-Shell Script	 30
Running the Application in Web Mode	 31

Time for Action—Compile the Application	 31
Summary	 34

Chapter 3: Creating Services	 35
Creating a Service Definition Interface	 35

Time for Action—Creating a Prime Number Service	 36
Creating an Asynchronous Service Definition Interface	 37

Time for Action—Utilizing the AJAX Support	 37

Table of Contents

[ii]

Creating a Service Implementation	 38
Time for Action—Implement Our Service	 38

Consuming the Service	 42
Time for Action—Creating the Client	 42

Summary	 45
Chapter 4: Interactive Forms	 47

Sample Application	 47
Live Search	 48

Time for Action—Search as you Type!	 48
Password Strength Checker	 55

Time for Action—Creating the Checker	 55
Auto Form Fill	 62

Time for Action—Creating a Dynamic Form	 62
Sortable Tables	 71

Time for Action—Sorting Table Rows	 72
Dynamic Lists	 79

Time for Action—Filtering Search Criteria	 80
Flickr-Style Editable Labels	 89

Time for Action—A Custom Editable Label	 90
Summary	 96

Chapter 5: Responsive Complex Interfaces	 97
Pageable Tables	 97

Time for Action—Interfacing a Dataset	 98
Editable Tree Nodes	 105

Time for Action—Modifying the Node	 105
Log Spy	 109

Time for Action—Updating a Log File	 109
Sticky Notes	 116

Time for Action—Playing with Sticky Notes	 116
Jigsaw Puzzle	 120

Time for Action—Let's Create a Puzzle!	 120
Summary	 126

Chapter 6: Browser Effects with JSNI and JavaScript Libraries	 127
What is JSNI?	 127
Moo.Fx	 128

Time for Action—Using JSNI	 129
Rico Rounded Corners	 136

Time for Action—Supporting the Labels	 136
Rico Color Selector	 140

Time for Action—Wrapping the Color Methods	 140

Table of Contents

[iii]

Script.aculo.us Effects	 145
Time for Action—Applying Effects	 146

Summary	 152
Chapter 7: Custom Widgets	 153

Calendar Widget	 153
Time for Action—Creating a Calendar	 154

Weather Widget	 168
Time for Action—Creating a Weather Information Service	 168

Summary	 185
Chapter 8: Unit Tests	 187

Test a GWT Page	 187
Time for Action—Creating a Unit Test	 187

Test an Asynchronous Service	 191
Time for Action—Testing the Asynchronous Service	 191

Test a GWT Page with an Asynchronous Service	 194
Time for Action—Combining the Two	 194

Create and Run a Test Suite	 197
Time for Action—Deploying a Test Suite	 197

Summary	 199
Chapter 9: I18N and XML	 201

Internationalization (I18N)	 201
Time for Action—Using the I18N Support	 201

Creating XML Documents	 207
Time for Action—Creating an XML Document	 208

Parse XML Documents	 212
Time for Action—Parsing XML on the Client	 213

Summary	 216
Chapter 10: Deployment	 217

Manual Deployment in Tomcat	 217
Time for Action—Deploying a GWT Application	 217

Automated Deployment Using Ant	 222
Time for Action—Creating the Ant Build File	 222

Deployment from Eclipse	 225
Time for Action—Running Ant from Eclipse	 225

Summary	 228
Appendix A: Running the Samples	 229
Index	 231

Preface
The client-server architecture has undergone a vast change over a short period of
time. Earlier, each application had a different client software, with the software
serving as the UI. This software had to be installed individually on every client,
and needed to be updated every time we made changes to the application. We
moved from that to the web era and deploying applications on the Internet, and
then Internet enabled us to use the omnipresent web browser for accessing our
applications from anywhere. This was a sea change, but we still had issues of
performance and applications not having the same feel or responsiveness as desktop
applications. Enter AJAX, and now we can build web pages that can rival a desktop
application in responsiveness and nifty looks. AJAX underpins the current trend in
developing applications for the Internet known as Web 2.0. In order to build Ajaxified
applications you need to know HTML, XML, and JavaScript at the very least.

The Google Web Toolkit (GWT) makes it even easier to design an AJAX application
using just the Java programming language. It is an open-source Java development
framework and its best feature is that we don't have to worry too much about
incompatibilities between web browsers and platforms. In GWT, we write the code
in Java and then GWT converts it into browser-compliant JavaScript and HTML.
This helps a lot, because we can stop worrying about modular programming. It
provides a programming framework that is similar to that used by developers
building Java applications using one of the GUI toolkits such as Swing, AWT, or
SWT. GWT provides all the common user-interface widgets, listeners to react to
events happening in the widgets, and ways to combine them into more complex
widgets to do things that the GWT team may never have envisioned! Moreover,
it makes reusing chunks of program easy. This greatly reduces the number of
different technologies that you will need to master. If you know Java, then you can
use your favorite IDE (we use Eclipse in this book) to write and debug an AJAX
GWT application in Java. Yes, that means you can actually put breakpoints in your
code and debug seamlessly from the client side to the server side. You can deploy
your applications in any servlet container, create and run unit tests, and essentially
develop GWT applications like any Java application. So start reading this book, fire
up Eclipse, and enter the wonderful world of AJAX and GWT programming!

Preface

[�]

In this book, we will start with downloading and installing GWT and walk through
the creation, testing, debugging, and deployment of GWT applications. We will be
creating a lot of highly interactive and fun user interfaces. We will also customize
widgets and use JSNI to integrate GWT with other libraries such as Rico and Moo.
fx. We will also learn to create our own custom widgets, and create a calendar and
a weather widget. We will explore the I18N and XML support in GWT, create unit
tests, and finally learn how to deploy GWT applications to a servlet container such
as Tomcat. This book uses a typical task-based pattern, where we first show how to
implement a task and then explain its working.

What This Book Covers
Chapter 1 introduces GWT, the download and installation of GWT, and running its
sample application.

Chapter 2 deals with creation of a new GWT application from scratch, and using the
Eclipse IDE with GWT projects, creating a new AJAX Random Quotes application,
and running the new application.

Chapter 3 deals with an introduction to and overview of GWT asynchronous services,
and creating a prime number service and a geocoder service.

Chapter 4 deals with using GWT to build simple interactive user interfaces. The
samples included in this chapter are live search, auto fillable forms, sortable tables,
dynamic lists, and a flickr-style editable label.

Chapter 5 introduces some of the more advanced features of GWT to build more
complex user interfaces. The samples included in this chapter are pageable tables,
editable tree nodes, a simple log spy, sticky notes, and a jigsaw puzzle.

Chapter 6 includes an introduction to JavaScript Native Interface (JSNI) and using it
to wrap third-party Javascript libraries like Moo.fx and Rico. It also includes using
the gwt-widgets project and its support for the Script.aculo.us effects.

Chapter 7 deals with creating custom GWT widgets. The samples included in this
chapter are a calendar widget and a weather widget.

Chapter 8 concerns itself with creating and running unit tests for GWT services
and applications.

Chapter 9 sees us using Internationalization (I18N) and client-side XML support
in GWT.

Chapter 10 includes the deployment of GWT applications using both Ant and Eclipse.

Preface

[�]

What You Need for This Book
GWT needs Java SDK installed. It can be downloaded from the following site:
http://java.sun.com/javase/downloads/. The safest version is to use with GWT
is Java 1.4.2, as they are completely compatible with each other. Different versions of
GWT are available for different operating systems, so you can use your favorite OS
without any hassles.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows:
"The GWT_HOME directory contains a samples folder with seven applications."

A block of code will be set as follows:

 public interface PrimesService extends RemoteService
 {
 public boolean isPrimeNumber(int numberToVerify);
 }

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

 calendarPanel.add(calendarGrid);
 calendarPanel.add(todayButton);

Any command-line input and output is written as follows:

applicationCreator.cmd -out <directory location>\GWTBook\HelloGWT
 com.packtpub.gwtbook.HelloGWT.client.HelloGWT

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"Click on the Click me button and you will get this window with your message."

Warnings or important notes appear in a box like this.

Preface

[�]

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to use them.

Preface

[�]

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata are added to the list of existing errata. The existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Getting Started
The Google Web Toolkit (GWT) is a revolutionary way to build Asynchronous
JavaScript and XML (AJAX) applications that are comparable in responsiveness and
look and feel to desktop applications.

In this chapter, we will look at:

An introduction to GWT
Downloading GWT
Exploring the GWT samples
The GWT License

Introduction to GWT
AJAX applications are great for creating web applications that are highly interactive
and provide a great user experience, while being comparable to desktop applications
in functionality, without the hassle of downloading or installing anything.

AJAX applications combine XML data interchange along with HTML and CSS for
styling the interface, the XMLHttpRequest object for asynchronous communication
with the server application, and JavaScript for dynamic interaction with the
provided data. This enables one to build applications that are part of the Web 2.0
revolution—web applications that rival a desktop application in responsiveness.
We can build web pages using AJAX to communicate with the server in the
background, without reloading the page. We can even replace different sections of
the displayed web page without refreshing the page. AJAX, finally enables us to take
the traditional desktop-oriented applications, such as word processors, spreadsheets,
and drawing programs, and serve them to users via the Web.

•

•

•

•

Getting Started

[�]

The GWT provides a Java-based development environment that enables you to build
AJAX applications using the Java language. It encapsulates the XMLHttpRequest
object API, and minimizes the cross-browser issues. So, you can quickly and
efficiently build AJAX applications without worrying too much about tailoring
your code to work in various browsers. It allows you to leverage the Standard
Widget Toolkit (SWT) or Swing style programming by providing a framework
that enables you to combine widgets into user interfaces. This is a great way to
improve productivity and shorten your development time lines, by leveraging
your knowledge of the Java programming language and your familiarity with the
event-based interface development framework.

GWT provides a set of ready-to-use user interface widgets that you can immediately
utilize to create new applications. It also provides a simple way to create innovative
widgets by combining the existing ones. You can use the Eclipse IDE to create,
debug, and unit-test your AJAX applications. You can build RPC services to
provide certain functionalities that can be accessed asynchronously from your
web applications easily using the GWT RPC framework. GWT enables you to
integrate easily with servers written in other languages, so you can quickly enhance
your applications to provide a much better user experience by utilizing the
AJAX framework.

By the end of this book you will:

Learn how GWT works
Create effective AJAX applications quickly
Create custom reusable widgets for your applications
Create back-end RPC services that can be easily used from your
AJAX applications

Basic Download
We are going to download GWT and its prerequisites, install them to the hard disk,
and then run one of the sample applications shipped with the GWT distribution to
ensure that it works correctly.

Time for Action—Downloading GWT
In order to use the GWT, you will need to have Java SDK installed. If you do
not already have the Java SDK, you can download the latest version from
http://java.sun.com/javase/downloads/. Install the SDK using the instructions
provided by the download for your platform.

•

•

•

•

Chapter 1

[�]

Java 1.4.2 is the safest version of Java to use with GWT, as it is completely
compatible with this version, and you can be sure that your application
code will compile correctly. GWT also works with the two newer
versions of the Java platform—1.5 and 1.6; however, you will not be able
to use any of the newer features of the Java language introduced in these
versions in your GWT application code

Now, you are ready to download GWT:

1.	 GWT is available for Windows XP/2000, Linux, and Mac OS X platforms
from the GWT download page (http://code.google.com/webtoolkit/
download.html). This download includes the GWT compiler, hosted web
browser, GWT class libraries, and several sample applications.
Please read the Terms and Conditions of usage before downloading it. The
latest version available is 1.3 RC 1, released December 12, 2006. Select the
file for your platform. Here is a sample window showing the versions
available for GWT:

2.	 Unzip the downloaded GWT distribution to your hard disk. It will create a
directory named gwt-windows-xxx on Windows and gwt-linux-xxx on
Linux, where xxx is the version number of the downloaded distribution.
We will refer to the directory that contains the unzipped distribution as
GWT_HOME. The GWT_HOME directory contains a samples folder with
seven applications.

Getting Started

[10]

3.	 In order to ensure that the GWT is correctly installed, run the Hello sample
application for your platform by executing the startup script for your
platform (the executable scripts for Windows have the extension .cmd and
the ones for Linux have the extension .sh).

Execute the Hello-shell script for your platform. Here is a screenshot of the
Hello application running successfully in the hosted GWT browser:

Click on the Click me button and you will get a dialog box as follows:

What Just Happened?
The GWT_HOME directory contains all the scripts, files, and libraries needed for GWT
development, which are as follows:

doc: This directory contains the API documentation for the various GWT
classes. The API documentation is provided in two formats—the Google
custom format and the familiar javadoc format.
samples: A directory that contains the sample applications.

•

•

Chapter 1

[11]

gwt-*.jar: These are the Java libraries that contain the GWT classes.
index.html: This file is used as Readme for the GWT. It also provides a
starting point for the GWT documentation along with pointers to other
sources of information.
gwt-ll.dll and swt-win32-3235.dll: These are Windows' shared libraries
(Windows only).
libgwt-11.so, libswt-gtk-3235.so, libswt-mozilla17-profile-
gcc3-gtk-3235.so, libswt-mozilla17-profile-gtk-3235.so, libswt-
mozilla-gcc3-gtk-3235.so, libswt-mozilla-gtk-3235.so, and libswt-
pi-gtk-3235.so: These are Linux shared libraries (Linux only).
applicationCreator: This is a Script file for creating a new application.
junitCreator: This is a Script file for creating a new JUnit test.
projectCreator: This is a Script file for creating a new project.
i18nCreator: This is a Script file for creating internationalization scripts.

When you executed Hello-shell.cmd, you started up the GWT development shell
and provided the Hello.html file as a parameter to it. The development shell then
launched a special hosted web browser and displayed the Hello.html file in it.
The hosted web browser is an embedded SWT web browser that has hooks into the
Java Virtual Machine (JVM). This makes it possible to debug the Java code for the
application, using a Java development environment such as Eclipse.

Here is a screenshot of the development shell that starts up first:

•

•

•

•

•

•

•

•

Getting Started

[12]

There's More!
You can customize several of the options provided to the GWT development shell
on startup. Run the development shell, from a command prompt, in the GWT_HOME
directory to see the various options available:
@java -cp "gwt-user.jar;gwt-dev-windows.jar" com.google.gwt.dev.
 GWTShell –help

You will see a screen similar to this one:

If you want to try out different settings, such as a different port numbers, you can
modify the Hello-shell.cmd file to use these options.

The Linux version of GWT contains 32-bit SWT library bindings that are used by the
hosted web browser. In order to run the samples or use the GWT hosted browser on
a 64-bit platform such as AMD64, you need to do the following:

Use a 32-bit JDK with 32-bit binary compatibility enabled.
Set the environment variable LD_LIBRARY_PATH to the Mozilla directory in
your GWT distribution, before starting the GWT shell.

Exploring the GWT Samples
Google provides a set of sample applications with the GWT distribution, which
demonstrate several of its features. This task will explain how to run one of these
samples—the KitchenSink application.

Time for Action—Getting into KitchenSink
There are seven sample applications provided with the GWT distribution—Hello,
DynaTable, I18N, JSON, KitchenSink, SimpleXML, and Mail, each of which
demonstrates a set of GWT features. In this task, we will explore the KitchenSink
sample application, as it demonstrates all of the user-interface widgets that are
provided with GWT. So, let's get into KitchenSink:

•
•

Chapter 1

[13]

1.	 Run the KitchenSink application for your platform by executing the
KitchenSink-shell script in the GWT_HOME/samples/KitchenSink
directory. Here is the KitchenSink application:

2.	 Click on the Compile/Browse button. The KitchenSink application will be
automatically compiled and the system browser for your platform will start
up and display the KitchenSink application.

3.	 Explore the application by clicking on each of the widget names in the
navigation tree on the left. The frame on the right will display the selected
widget and its variations. We will be using most of these widgets to build
AJAX applications in later tasks.

4.	 You can add the KitchenSink sample as an Eclipse project to your
workspace and browse the Java source code that is eventually compiled
into HTML and JavaScript by the GWT compiler. We can use the
projectCreator file helper script provided by GWT to generate the Eclipse
project files for the KitchenSink application.

Getting Started

[14]

5.	 Navigate to your GWT_HOME directory and run the following command in a
command prompt.

 projectCreator.cmd –eclipse –ignore –out samples\KitchenSink

This will create the Eclipse platform project files, which can be imported
into your Eclipse workspace. We will learn more about this script in the next
chapter, when we create a new application from scratch.

6.	 Import the samples/KitchenSink/.project file into your Eclipse
workspace. You can follow the above steps for each of the sample projects to
generate their Eclipse project files, and then import them into your workspace.
Here is an Eclipse workspace displaying the KitchenSink.java file:

If you know how to program in Java, you can build an AJAX application using GWT,
without any exposure to the complexities of either the XMLHttpRequest object API or
the variations in the various browser implementations of the XMLHttpRequest
object API.

Chapter 1

[15]

What Just Happened?
The GWT development shell starts up, and runs the hosted web browser with the
KitchenSink application running in it. The shell contains an embedded version
of the Tomcat servlet container that listens on port 8888. When you run in the
web mode, the application is compiled into HTML and JavaScript from Java. The
compiled application is stored in the KitchenSink/www directory, and this directory
itself is registered as a web application with Tomcat. This is how Tomcat is able to
serve up the application to requesting web browsers.

As long as the development shell is running, you can even use other external
web browsers to connect to the KitchenSink application by using the URL
http://localhost:8888/com.google.gwt.sample.kitchensink.KitchenSink/
KitchenSink.html.

However, when we use an external browser to connect to the development shell,
we cannot use breakpoints, and thus lose the debug capabilities provided when we
run the application using the hosted browser. In order to access the application from
another computer, ensure that you use either a DNS-resolvable machine name or the
machine's IP address instead of localhost.

GWT consists of four main components that are layered together to provide the
framework for writing AJAX applications using the toolkit:

GWT Java-to-JavaScript Compiler: You use the GWT compiler to compile
your GWT applications to JavaScript. The application can then be deployed
to a web container. This is referred to as running in web mode. When you
click on the Compile/Browse button, the Java code for the KitchenSink
project is compiled by the Java-to-JavaScript compiler into pure HTML
and JavaScript. The resulting artifacts are copied automatically to the
KitchenSink/www folder.
GWT Hosted Web Browser: This enables you to run and execute your GWT
applications as Java in the Java Virtual Machine (JVM) without compiling
to JavaScript first. This is referred to as running in hosted mode. GWT
accomplishes this by embedding a special SWT browser control that
contains hooks into the JVM. This special browser utilizes an Internet
Explorer control on Windows or a Mozilla control on Linux. When you
run the KitchenSink sample, the embedded SWT browser is what you see
displaying the application.

•

•

Getting Started

[16]

JRE emulation library: This contains JavaScript implementations of most
of the widely used classes of the java.lang and java.util packages from
the Java standard class library. Only some of the commonly used classes
from these two packages are supported. None of the other Java packages
in the JDK are currently part of this emulation library. These are the only
classes that can be used by you for the client side of the AJAX application.
You are of course free to use the entire Java class library for the server-side
implementation. The Java code in the KitchenSink project is compiled into
JavaScript using this emulation library.
GWT Web UI class library: This provides a set of custom interfaces and
classes that enable you to create various widgets such as buttons, text boxes,
images, and text. GWT ships with most of the widgets commonly used in
web applications. This is the class library that provides the Java widgets that
are used in the KitchenSink application.

GWT License
Check if the GWT license is appropriate for you. These are the main features that you
need to keep in mind:

The GWT is open source and provided under an Apache Open Source
License 2.0—http://www.apache.org/licenses/.
The third-party libraries and products that are bundled with the
GWT distribution are provided under licensing detailed on this
page—http://code.google.com/webtoolkit/terms.html#licenses.
You can use GWT for building any kind of applications (commercial or
non commercial).
The application and the code for the application belong to the application's
developer and Google does not have any rights to it.

You can use GWT to build any application you want and distribute the application
under any license. You can also distribute the Java, HTML, JavaScript, and any other
content generated by the GWT, along with the GWT tools that were used to generate
that content, as long as you follow the terms of the Apache License.

Summary
In this chapter, we learned about the basic components of GWT. We saw how to
download and install GWT, and explored the GWT sample application. Finally, we
discussed the licensing terms for GWT.

In the next chapter, we will learn how to create a new GWT application from scratch.

•

•

•

•

•

•

Creating a New
GWT Application

In this chapter, we will use the GWT tools to generate a skeleton project structure
and files, with and without Eclipse support. We will then create our first AJAX
application (a random quote application) by modifying the generated application to
add functionality and finally run the application in both hosted and web mode.

The tasks that we will address are:

Generating a new application
Generating a new application with Eclipse support
Creating a random quote AJAX application
Running the application in hosted mode
Running the application in web mode

Generating a New Application
We will generate a new GWT application by using one of the GWT scripts. These
helper scripts provided by GWT create the skeleton of a GWT project with the basic
folder structure and initial project files, so that we can get started in creating our new
application as quickly as possible.

•

•

•

•

•

Creating a New GWT Application

[18]

Time for Action—Using the ApplicationCreator
The GWT distribution contains a command-line script named applicationCreator
that can be used to create a skeleton GWT project with all the necessary scaffolding.
To create a new application, follow the steps given below:

1.	 Create a new directory named GWTBook. We will refer to this directory
location as GWT_EXAMPLES_DIR. This folder will contain all the projects that
will be created while performing the various tasks in this book.

2.	 Now create a subdirectory and name it HelloGWT. This directory will
contain the code and the files for the new project that we are going to create
in this chapter.

3.	 Run the GWT_HOME\applicationCreator by providing the following
parameters in the command prompt:

 applicationCreator.cmd -out <directory location>\GWTBook\HelloGWT
 com.packtpub.gwtbook.HelloGWT.client.HelloGWT

The -out parameter specifies that all the artifacts be generated in the
directory named HelloGWT. The fully qualified class name provided as the
last parameter is used as the name of the class that is generated by the
applicationCreator script and marked as the EntryPoint class for this
application (we will cover the EntryPoint class in the next section).

The above step will create the folder structure and generate several files in the
GWT_EXAMPLES_DIR\HelloGWT directory as shown in the following screenshot:

What Just Happened?
The applicationCreator script invokes the ApplicationCreator class in
gwt‑dev‑xxx.jar, which in turn creates the folder structure and generates the
application files. This makes it very easy to get started on a new project as the
whole structure for the project is automatically created for you. All you need to do
is start filling in the application with your code to provide the desired functionality.
A uniform way of creating projects also ensures adherence to a standard directory
structure, which makes it easier for you when you are working on different
GWT projects.

Chapter 2

[19]

Here are all the files and folders that were automatically created under the
GWT_EXAMPLES_DIR\HelloGWT directory when we ran the applicationCreator
command:

src

HelloGWT-compile.cmd

HelloGWT-shell.cmd

src: This folder contains all the generated source and configuration files for the
applications, contained in the familiar Java package structure, with the root package
being com.packtpub.gwtbook.hellogwt. This package name was deduced by
applicationCreator from the fully qualified class name that we provided as a
parameter to it. The generated files under this directory are:

com\packtpub\gwtbook\hellogwt\HelloGWT.gwt.xml: This is the project
module—an XML file that holds the entire configuration needed by a GWT
project. The inherits tag specifies modules inherited by this module. In
this simple case, we are inheriting only the functionality provided by the
User module, which is built into the GWT. On more complex projects,
module inheritance provides a nice way to reuse pieces of functionality.
The EntryPoint refers to the class that will be instantiated by the GWT
framework when the module is loaded. This is the class name provided
to the applicationCreator command, when we created the project. The
following code can be found in this file:

 <module>
 <!-- Inherit the core Web Toolkit stuff.-->
 <inherits name="com.google.gwt.user.User"/>
 <!-- Specify the app entry point class. -->
 <entry-point class=
 "com.packtpub.gwtbook.hellogwt.client.HelloGWT"/>
 </module>

com\packtpub\gwtbook\hellogwt\client\HelloGWT.java: This is
the entry point for our application. It extends the EntryPoint class, and
when the HelloGWT module is loaded by the GWT framework, this class
is instantiated and its onModuleLoad() method is automatically called. In
this generated class, the onModuleLoad() method creates a button and a
label, and then adds them to the page. It also adds a click listener for the
button. We will be modifying the code in HellowGWT.java to create a new
application later in this chapter. The current code in this file is as follows:

 package com.packtpub.gwtbook.hellogwt.client;
 import com.google.gwt.core.client.EntryPoint;
 import com.google.gwt.user.client.ui.Button;

•

•

•

•

•

Creating a New GWT Application

[20]

 import com.google.gwt.user.client.ui.ClickListener;
 import com.google.gwt.user.client.ui.Label;
 import com.google.gwt.user.client.ui.RootPanel;
 import com.google.gwt.user.client.ui.Widget;
 /** Entry point classes define <code>onModuleLoad()</code>. */
 public class HelloGWT implements EntryPoint
 {
 /** This is the entry point method. */
 public void onModuleLoad()
 {
 final Button button = new Button("Click me");
 final Label label = new Label();
 button.addClickListener(new ClickListener()
 {
 public void onClick(Widget sender)
 {
 if (label.getText().equals(""))
 label.setText("Hello World!");
 else
 label.setText("");
 }
 }
 //Assume that the host HTML has elements defined whose
 //IDs are "slot1", "slot2". In a real app, you probably
 //would not want to hard-code IDs. Instead, you could,
 //for example, search for all elements with a
 //particular CSS class and replace them with widgets.
 RootPanel.get("slot1").add(button);
 RootPanel.get("slot2").add(label);
 }

com\packtpub\gwtbook\hellogwt\public\HelloGWT.html: This is a
generated HTML page that loads the HelloGWT application and is referred to
as the host page, as this is the web page that hosts the HelloGWT application.
Even though this HTML file is deceptively simple, there are some points that
you need to be aware of:

Firstly, it contains a meta tag that points to the HelloGWT
module directory. This tag is the connection between the
HTML page and the HelloGWT application. The following
code represents this connection:

 <meta name='gwt:module'
 content='com.packtpub.gwtbook.hellogwt.HelloGWT'>

•

°

Chapter 2

[21]

Secondly, the script tag imports code from the gwt.js
file. This file contains the code (shown below) required to
bootstrap the GWT framework. It uses the configuration in
the HelloGWT.gwt.xml file, and then dynamically loads the
JavaScript created by compiling the HelloGWT.java file to
present the application. The gwt.js file does not exist when
we generate the skeleton project. It is generated by the GWT
framework when we run the application in hosted mode or
when we compile the application.

 <script language="JavaScript" src="gwt.js"></script>

HelloGWT-compile.cmd: This file contains a command script for compiling
the application into HTML and JavaScript.
HelloGWT-shell.cmd: This file contains a command script for running the
application in the hosted mode.

There is a well-defined relationship between these generated files. The HelloGWT.
html file is the host page that loads the gwt.js file.

There's More!
The applicationCreator provides options to control several parameters for a
new application. You can see these options by executing it from the following
command line:

applicationCreator.cmd -help

className is the only required parameter for the applicationCreator.
All the other parameters are optional. Here are some different ways to run
applicationCreator:

Create a new application without the Eclipse debug support:
 applicationCreator.cmd -out C:\GWTBook\Test1
 com.packtpub.gwtbook.Test1.client.Test1

°

•

•

•

Creating a New GWT Application

[22]

Create a new application with the Eclipse debug support:
 applicationCreator.cmd –eclipse -out C:\GWTBook\Test1
 com.packtpub.gwtbook.Test1.client.Test1

Create a new application with the Eclipse debug support that overwrites any
previously generated classes with the same name:

 applicationCreator.cmd –eclipse –overwrite -out C:\GWTBook\Test1
 com.packtpub.gwtbook.Test1.client.Test1

Google recommends the following package naming convention for the source code
for a GWT application. This will separate your project code by its functionality.

client: This holds all the client-related application code. This code can only
use the Java classes from the java.util and java.lang packages that are
provided by the GWT's JRE Emulation library.
public: This contains all the static web resources that are needed by the
application, such as the HTML files, stylesheets, and image files. This
directory includes the host page, which is the HTML file that contains the
AJAX application (HelloGWT.html in the above case).
server: This contains server-side code. These classes can use any Java class
and any Java library to provide the functionality.

The modules for the application, such as HelloGWT.gwt.xml must be placed in the
root package directory as a peer to the client, public, and server packages.

Generating a New Application with
Eclipse Support
GWT comes out of the box with support for debugging GWT applications in the
Eclipse IDE. This is a tremendously useful and time-saving feature. In this section,
we are going to learn how to create new applications with the Eclipse IDE support.

Time for Action—Modifying HelloGWT
The HelloGWT application that we have created in the previous task works fine
and we can make modifications to it, and run it easily. However, we are not taking
advantage of one of GWT's biggest benefits—Eclipse IDE support that enhances the
entire development experience. We will now recreate the same HelloGWT application,
this time as an Eclipse project. It would have been nice if we could take the project
that we created in the previous task and add Eclipse support for it. However, GWT
does not support this at present. To do this, follow the steps given on the next page:

•

•

•

•

•

Chapter 2

[23]

1.	 GWT provides a projectCreator script that creates Eclipse project files. Run
the script with the parameters and you will see a screen as shown below:

 projectCreator.cmd -out E:\GWTBook\HelloGWT -eclipse HelloGWT

2.	 Now run the applicationCreator again with the parameters given below
to create the HelloGWT project as an Eclipse project:

 applicationCreator.cmd -out E:\GWTBook\HelloGWT -eclipse He�������lloGWT
 -overwrite com.packtpub.gwtbook.hellogwt.client.HelloGWT

The -overwrite parameter will overwrite the files and folders in the
HelloGWT directory. So, if you have made any changes that you would like
to keep, please make sure you copy it to a different directory. You will see a
screen as shown below:

3.	 Import the newly created HelloGWT project into Eclipse. Navigate to the
Existing projects into Workspace screen in Eclipse through the File | Import
menu. Select the HelloGWT directory as the root folder, and click on the
Finish button to import the project into your Eclipse workspace. Now you
can edit, debug, and run your application, all from inside the Eclipse IDE!

Creating a New GWT Application

[24]

4.	 Here are all the folders and files created after we have completed this task:

What Just Happened?
The projectCreator script invokes the ProjectCreator class in the
gwt‑dev‑xxx.jar, which in turn creates the Eclipse project files. These files
are then modified by applicationCreator to add the name of the project
and classpath information for the project.

Here are the Eclipse-specific files created by running the projectCreator command:

.classpath: Eclipse file for setting up the project classpath information

.project: Eclipse project file with project name and builder information
HelloGWT.launch: Eclipse configuration for launching the project from
the Run and Debug Eclipse menus

There's More!
Here is a screenshot that displays the various options available for running the
projectCreator when you run it from a command line with a –help option:

projectCreator.cmd -help

•

•

•

Chapter 2

[25]

Creating a Random Quote AJAX
Application
In this section, we will create our first AJAX application, which will display a
random quote on the web page. This example application will familiarize us with the
various pieces and modules in a GWT application, and lays the foundation for the
rest of the book.

Time for Action—Modifying Auto-Generated
Applications
We will create the above-mentioned application by modifying the auto-generated
application from the previous task. The skeleton project structure that has been
automatically created gives us a head start and demonstrates how quickly we can
become productive using the GWT framework and tools.

The random quote is selected from a list of quotes stored on the server. Every second
our application will retrieve the random quote provided by the server, and display it
on the web page in true AJAX style—without refreshing the page.

1.	 Create a new Java file named RandomQuoteService.java in the
com.packtpub.gwtbook.hellogwt.client package. Define a
RandomQuoteService interface with one method to retrieve the quote:

 public interface RandomQuoteService extends RemoteService
 {
 public String getQuote();
 }

2.	 Create a new Java file named RandomQuoteServiceAsync.java in
the com.packtpub.gwtbook.hellogwt.client package. Define a
RandomQuoteServiceAsync interface:

 public interface RandomQuoteServiceAsync
 {
 public void getQuote(AsyncCallback callback);
 }

3.	 Create a new Java file named RandomQuoteServiceImpl.java in
the com.packtpub.gwtbook.hellogwt.server package. Define a
RandomQuoteServiceImpl class that extends RemoteService and
implements the previously created RandomQuoteService interface. Add
functionality to this class to return a random quote when the getQuote()
method is called by a client.

Creating a New GWT Application

[26]

 public class RandomQuoteServiceImpl extends
 RemoteServiceServlet implements RandomQuoteService
 {
 private Random randomizer = new Random();
 private static final long serialVersionUID=
 -1502084255979334403L;
 private static List quotes = new ArrayList();
 static
 {
 quotes.add("No great thing is created suddenly
 — Epictetus");
 quotes.add("Well done is better than well said
 — Ben Franklin");
 quotes.add("No wind favors he who has no destined port
 —Montaigne");
 quotes.add("Sometimes even to live is an act of courage
 — Seneca");
 quotes.add("Know thyself — Socrates");
 }
 public String getQuote()
 return (String) quotes.get(randomizer.nextInt(4));
 }

That's all we have to do for implementing functionality on the server. Now,
we will modify the client to access the functionality we added to the server.

4.	 Modify HelloGWT.java to remove the existing label and button and
add a label for displaying the retrieved quote. Add functionality in the
onModuleload() to create a timer that goes off every second, and invokes the
RandomQuoteService to retrieve a quote and display it in the label created in
the previous step.

 public void onModuleLoad()
 {
 final Label quoteText = new Label();
 //create the service
 final RandomQuoteServiceAsync quoteService =
 (RandomQuoteServiceAsync)GWT.create
 (RandomQuoteService.class);
 //Specify the URL at which our service implementation is
 //running.
 ServiceDefTarget endpoint = (ServiceDefTarget)quoteService;
 endpoint.setServiceEntryPoint("/");
 Timer timer = new Timer()
 {
 public void run()
 {

Chapter 2

[27]

 //create an async callback to handle the result.
 AsyncCallback callback = new AsyncCallback()
 {
 public void onSuccess(Object result)
 {
 //display the retrieved quote in the label
 quoteText.setText((String) result);
 }
 public void onFailure(Throwable caught)
 {
 //display the error text if we cant get quote
 quoteText.setText("Failed to get a quote.");
 }
 };
 //Make the call.
 quoteService.getQuote(callback);
 }
 };
 //Schedule the timer to run once every second
 timer.scheduleRepeating(1000);
 RootPanel.get().add(quoteText);
 }

We now have the client application accessing the server to retrieve the quote.
5.	 Modify the HelloGWT.html to add a paragraph describing our AJAX

application.
 <p>
 This is an AJAX application that retrieves a random quote from
 the Random Quote service every second. The data is retrieved
 and the quote updated without refreshing the page !
 </p>

6.	 Let's make the label look nicer by adding a CSS for the label. Create a new
file named HelloGWT.css in the com.packtpub.gwtbook.hellogwt.public
package and add the following style class declaration to it:

 quoteLabel
 {
 color: white;
 display: block;
 width: 450px;
 padding: 2px 4px;
 text-decoration: none;
 text-align: center;
 font-family: Arial, Helvetica, sans-serif;
 font-weight: bold;

Creating a New GWT Application

[28]

 border: 1px solid;
 border-color: black;
 background-color: #704968;
 text-decoration: none;
 }

7.	 Modify the label to use this style in the HelloGWT.java file:
 quoteText.setStyleName("quoteLabel");

8.	 Add a reference to this stylesheet in the HelloGWT.html so the page can find
the styles defined in the stylesheet.

 <link rel="stylesheet" href="HelloGWT.css">

9.	 The last thing we have to do is register our RandomQuoteServiceImpl servlet
class in the HelloGWT module so that the client can find it. Add the following
line to HelloGWT.gwt.xml:

 <servlet path="/" class="com.packtpub.gwtbook.hellogwt.server.
 RandomQuoteServiceImpl"/>

This servlet reference will be registered by the GWT framework with the
embedded Tomcat servlet container, so that when you run it in the hosted
mode, the context path "/" is mapped so that all requests to it are served by
the RandomQuoteServiceImpl servlet.

Here are the folders and files in the HelloGWT project after completing all the
above modifications:

Chapter 2

[29]

Our first AJAX application is now ready and we were able to create it entirely in Java
without writing any HTML code!

What Just Happened?
The RandomQuoteService interface that we created is the client-side definition of
our service. We also defined RandomQuoteServiceAsync, which is the client-side
definition of the asynchronous version of our service. It provides a callback object
that enables the asynchronous communication between the server and the client. The
RandomQuoteServiceImpl is a servlet that implements this interface and provides
the functionality for retrieving a random quote via RPC. We will look into creating
services in detail in Chapter 3.

HelloGWT.java creates the user interface—just a label in this case—instantiates the
RandomQuote service, and starts a timer that is scheduled to fire every second. Every
time the timer fires, we communicate asynchronously with the RandomQuoteService
to retrieve a quote, and update the label with the quote. The RootPanel is a
GWT wrapper for the body of the HTML page. We attach our label to it so it can
be displayed.

We modified the look and feel of the label by using a cascading stylesheet, and
assigning the name of a style to the label in HelloGWT.java. We will learn more
about using stylesheets and styles to beautify GWT in Chapter 6.

The user interface in this application is very simple. Hence we added the label
straight to the RootPanel. However, in almost any non trivial user interface, we
will need to position the widgets and lay them out more accurately. We can easily
accomplish this by utilizing the various layout and panel classes in the GWT UI
framework. We will learn how to use these classes in Chapters 4 and 5.

Running the Application in Hosted Mode
GWT provides a great way to test your application without deploying it but by
running the application in a hosted mode. In this section, we will learn how to run
the HelloGWT application in hosted mode.

Creating a New GWT Application

[30]

Time for Action—Executing the
HelloGWT-Shell Script
You can run the HelloGWT application in hosted mode by executing the
HelloGWT-shell script. You can do this in three different ways:

Executing the command script from the shell:
Open a command prompt and navigate to the HelloGWT directory. Run
HelloGWT-shell.cmd to start the HelloGWT application in hosted mode.
Executing the command script from inside Eclipse:
Double-click on the HelloGWT-shell.cmd file in the Eclipse Package
Explorer or navigator view. This will execute the file and will start up the
HelloGWT application in hosted mode.
Running the HelloGWT.launcher from Eclipse:
In Eclipse, navigate to the Run screen by clicking on the Run | Run link.
Expand the Java Application node. Select the HelloGWT directory. Click on
the Run link to launch the HelloGWT application in hosted mode.

You will see the following screen if the application runs properly:

•

•

•

Chapter 2

[31]

What Just Happened?
The command script executes the GWT development shell by providing it with the
application class name as a parameter. The Eclipse launcher mimics the command
script by creating a launch configuration that executes the GWT development
shell from within the Eclipse environment. The launched GWT development shell
loads the specified application in an embedded browser window, which displays
the application. In hosted mode, the Java code in the project is not compiled into
JavaScript. The application code is being run in the Java Virtual Machine as
compiled bytecode.

Running the Application in Web Mode
In the previous section, we learned how to run GWT applications in hosted mode
without deploying them. That is a great way to test and debug your application.
However, when your application is running in a production environment, it will be
deployed to a servlet container such as Tomcat. This task explains how to compile
the HelloGWT application so that it can then be deployed to any servlet container. In
GWT terms, this is referred to as running in the web mode.

Time for Action—Compile the Application
In order to run the HelloGWT application in web mode we need to do the following:

1.	 Compile the HelloGWT application first, by running the
HelloGWT‑compile script.

 HelloGWT-compile.cmd

2.	 The above step will create a www folder in the HelloGWT directory. Navigate
to the www/com.packtpub.gwt.HelloGWT.HelloGWT directory.

Creating a New GWT Application

[32]

3.	 Open the HelloGWT.html file in your web browser.
Everything needed to run the HelloGWT client application is contained in the
www folder. You can deploy the contents of the folder to any servlet container
and serve up the HelloGWT application. Here are the contents of the folder
after completing the above steps:

What Just Happened?
The HelloGWT-compile script invokes the GWT compiler and compiles all the
Java source code in the com.packtpub.gwt.hellogwt.client package into
HTML and JavaScript and copies it to the www\com.packtpub.gwt.hellogwt.
HelloGWT directory. This directory name is automatically created by GWT, by
removing the client portion from the fully qualified class name provided to
applicationCreator previously. This folder contains a ready-to-deploy version of
the HelloGWT client application. It contains:

HelloGWT.html: The host page that functions as the main HTML page for the
HelloGWT application.
gwt.js: A generated JavaScript file that contains bootstrap code for loading
and initializing the GWT framework.
History.html: An HTML file that provides history management support.

•

•

•

Chapter 2

[33]

xxx-cache.html and xxx-cache.xml: One HTML and XML file per
supported browser are generated. These contain the JavaScript code
generated by the compilation of the source Java files in the com.packtpub.
gwtbook.hellogwt.client and com.packtpub.gwtbook.hellogwt.server
packages. For instance, in this case, on Windows, the compilation produced
these files:

 0B0ADCCCE2B7E0273AD2CA032DE172D1.cache.html
 0B0ADCCCE2B7E0273AD2CA032DE172D1.cache.xml
 224EDC91CDCFD8793FCA1F211B325349.cache.html
 224EDC91CDCFD8793FCA1F211B325349.cache.xml
 546B5855190E25A30111DE5E5E2005C5.cache.html
 546B5855190E25A30111DE5E5E2005C5.cache.xml
 D802D3CBDE35D3663D973E88022BC653.cache.html
 D802D3CBDE35D3663D973E88022BC653.cache.xml

Each set of HTML and XML files represents one supported browser:
 0B0ADCCCE2B7E0273AD2CA032DE172D1 - Safari
 224EDC91CDCFD8793FCA1F211B325349 – Mozilla or Firefox
 546B5855190E25A30111DE5E5E2005C5 – Internet Explorer
 D802D3CBDE35D3663D973E88022BC653 - Opera

The file names are created by generating Globally Unique Identifiers
(GUIDs) and using the GUID as part of the name. These file names will be
different on different computers, and will also be different every time you do
a clean recompile of the application on your computer. There is also a master
HTML file generated (com.packtpub.gwtbook.hellogwt.HelloGWT.
nocache.html) that selects the right HTML file from the above files and
loads it, depending on the browser that is running the application.

The www folder does not contain the code from the com.packtpub.gwtbook.
hellogwt.server package. This server code needs to be compiled and deployed in
a servlet container so that the client application can communicate with the random
quote service. We will learn about deploying to external servlet containers in
Chapter 10. In normal development mode, we will use the hosted mode for testing,
which runs the server code inside the embedded Tomcat servlet container in the
GWT development shell. This makes it very easy to run and debug the server code
from inside the same Eclipse environment as the client application code. This is
another feature of GWT, which makes it an extremely productive environment for
developing AJAX applications.

In the web mode, our client Java code has been compiled into JavaScript unlike in
the hosted mode. Also, you will notice that the HelloGWT.gwt.xml is not in this
directory. The configuration details from this module are included in the generated
HTML and XML files above.

•

Creating a New GWT Application

[34]

Thankfully, all this work is automatically done for us by the GWT framework when
we run the HelloGWT-compile script. We can focus on the functionality provided
by our AJAX applications and leave the browser-independent code generation and
lower level XmlHttpRequest API to GWT.

We will learn how to deploy GWT applications to web servers and servlet containers
in Chapter 10.

There's More!
You can also compile the HelloGWT application from the GWT development shell in
hosted mode. Run the HelloGWT-shell command script to run the application in
hosted mode. Click on the Compile/Browse button in the GWT development shell
window. This will compile the application and launch the application in a separate
web-browser window.

All this dynamic JavaScript magic means that when you try to view the source for
the application from the web browser, you will always see the HTML from the
host page. This can be disconcerting when you are trying to debug problems. But
the fantastic Eclipse support in GWT means that you can debug issues from the
comfort of a graphical debugger by setting breakpoints and stepping through the
entire application one line at a time! We will learn more about debugging of GWT
applications in Chapter 8.

Summary
In this chapter we generated a new GWT application using the provided helper
scripts like applicationCreator. We then generated the Eclipse support files for the
project. We also created a new random quote AJAX application. We saw how to run
this new application in both the hosted and web modes.

In the next chapter, we are going to learn how to create GWT services that will
enable us to provide asynchronous functionality that can be accessed via AJAX from
the GWT application web pages.

Creating Services
In this chapter, we will learn how to create services, which is the GWT term for
providing server-side functionality. The term service, as used in the GWT context
does not bear any relation to a web service. It refers to the code that the client
invokes on the server side in order to access the functionality provided by the
server. Most of the applications that we develop will require access to a server to
retrieve some data or information, and then display it to the user in an intuitive and
non-intrusive way using AJAX. The best way in a GWT application to accomplish
this is through a service.

In this chapter we will go through the necessary steps for creating services. We will
first create the various artifacts required for creating a simple Prime Number service
that verifies if the provided number is a prime number. The application is trivial but
the concepts apply to any GWT service that you will create. We are also going to
create a simple client that will consume the Prime Number service.

The tasks that we will address are:

Creating a service definition interface
Creating an asynchronous service definition interface
Creating a service implementation
Consuming the service

The first three tasks need to be done for every GWT service that you create.

Creating a Service Definition Interface
A service definition interface acts as a contract between the client and the server.
This interface will be implemented by the actual service that we build later on in this
chapter. It defines the functionality that is to be provided by the service, and lays
down the ground rules for clients wanting to consume the functionality provided by
this service.

•
•
•
•

Creating Services

[36]

Time for Action—Creating a Prime Number
Service
We will create the definition for our Prime Number service. We will also create a
new project called Samples to contain the code we create in this chapter and the rest
of the book.

1.	 Create a new Eclipse GWT project named Samples using the
projectCreator and applicationCreator. Specify the name of the
application class as com.packtpub.gwtbook.samples.client.Samples.

2.	 Import the newly created project into the Eclipse IDE.
3.	 Create a new Java file named PrimesService.java in the com.packtpub.

gwtbook.samples.client package. Define a PrimesService interface with
one method that verifies if a number is a prime number. It takes an integer as
a parameter and returns a Boolean value upon verification:

 public interface PrimesService extends RemoteService
 {
 public boolean isPrimeNumber(int numberToVerify);
 }

What Just Happened?
The PrimesService is a service definition interface. It specifies the supported
method, and the parameters that should be passed to it, in order for the service to
return a response. The term RPC in the GWT context refers to a mechanism for easily
passing Java objects between a client and the server via the HTTP protocol. The GWT
framework does this automatically for us, as long as we use only the supported types
for our method parameters and return values. Currently, the following Java types
and objects are supported by GWT:

Primitive types—character, byte, short, integer, long, Boolean, float,
and double
Primitive type wrapper classes—character, byte, short, integer, long, Boolean,
float, and double
String
Date
Arrays of any of these serializable types
Custom classes implementing the isSerializable interface, and whose
non‑transient fields are one of the above supported types

•

•

•

•

•

•

Chapter 3

[37]

You can also use collections of the supported object types as method parameters and
return types. However, in order to use them, you need to explicitly mention the type
of objects they are expected to contain by utilizing a special Javadoc annotation @
gwt.typeArgs. For instance, here is how we would define a service method that
takes a list of integers as input parameters, and returns a list of strings:

public interface MyRPCService extends RemoteService
{
 /*
 * @gwt.typeArgs numbers <java.lang.Integer>
 * @gwt.typeArgs <java.lang.String>
 */
 List myServiceMethod(List numbers);
}

The first annotation indicates that this method accepts only a parameter that is a
list of integer objects, and the second annotation indicates that the return parameter
from this method is a list of string objects.

Creating an Asynchronous Service
Definition Interface
The interface created in the previous task is a synchronous one. In order to take
advantage of the AJAX support in GWT, we will need to create the asynchronous
version of this interface, which will be used for making remote calls in the
background to the server.

Time for Action—Utilizing the AJAX Support
In this section, we will create an asynchronous version of the service
definition interface.

Create a new Java file named PrimesServiceAsync.java in the com.packtpub.
gwtbook.samples.client package. Define a PrimesServiceAsync interface:

public interface PrimesServiceAsync
{
 public void isPrimeNumber(inr numberToVerify, AsyncCallbackcallback);
}

Creating Services

[38]

What Just Happened?
The asynchronous version of our service definition interface must have the same
methods as the synchronous interface, except for the requirement that all of its
methods must have an AsyncCallback object as a parameter, and the methods
may not return anything. The callback object acts as the binding between the client
and the server. Once an asynchronous call is made by the client, the notification,
when the call completes its processing on the server side is made through this
callback object. Essentially this makes the AJAX magic happen! You do not have to
do anything special for all this magic to happen, other than making sure that you
provide this asynchronous interface for your service definition. The GWT framework
will automatically take care of all the communication between the client and the
server. A client application that is using this service will invoke the service through
this method, passing it a callback object and will automatically be notified of either
success through a callback to the onSuccess() method in the client application
or failure through a callback to the onFailure() method in the client application.
The current release of GWT only supports making an asynchronous call back to the
server. Even though the service definition interface is synchronous, that does not
mean that you can use it to make a synchronous call to the server. So any service that
you build using GWT can currently only be accessed asynchronously via AJAX.

Creating a Service Implementation
We have so far created the interfaces that define the functionality of our Prime
Number service. In this section, we are going to start implementing and filling out
the service class and create the actual implementation of the Prime Number service.

Time for Action—Implement Our Service
We are going to create the implementation of the Prime Number service. It checks to
see if the provided number is a prime number by ensuring that it is only divisible by
one and itself. The verification result is returned as a Boolean value.

Create a new Java file, named PrimesServiceImpl.java in the com.packtpub.
gwtbook.samples.server package. Define a PrimesServiceImpl class that extends
RemoteServiceServlet and implements the previously created PrimesService
interface. Add functionality to this class to verify if the provided number is a
prime number.

public class PrimesServiceImpl extends RemoteServiceServlet
 implements PrimesService
{
 private static final long serialVersionUID = -8620968747002510678L;

Chapter 3

[39]

 public boolean isPrimeNumber(int numberToVerify)
 {
 boolean isPrime = true;
 int limit = (int) Math.sqrt (numberToVerify);
 for (int i = 2; i <= limit; i++)
 {
 if(numberToVerify % i == 0)
 {
 isPrime = false;
 break;
 }
 }
 return isPrime;
 }
}

What Just Happened?
Since this is the implementation of the Prime Number service, this class needs to
implement the service definition interface, and add functionality to the implemented
methods. This task and the previous tasks delineate the steps that are always
required in order to create a GWT service. Creating and using RPC services is a
critical step on the path to unlocking the power of GWT and for using it efficiently
and effectively. The basic architecture of a GWT application consists of a client-side
user interface that is rendered in a web browser and interacts with the server-side
functionality implemented as an RPC service to asynchronously retrieve data and
information without refreshing the page. The service in a GWT application wraps the
server-side model of an application, and thus usually maps to the role of a model in
the MVC architecture.

Creating Services

[40]

Let us look at the relationships between the various classes and interfaces that we
are creating for a service. Every time we create an RPC service we utilize some GWT
framework classes, and create some new classes and interfaces. Here are the classes
and interfaces that are created after completion of the above task:

PrimesService: Our service definition interface. It defines the methods in
our service and extends the RemoteService marker interface that indicates
that this is a GWT RPC service. This is the synchronous definition and the
server-side implementation must implement this interface.
PrimesServiceAsync: The asynchronous definition of our interface. It
must have the same methods as the synchronous interface, except for the
requirement that all of its methods must have an AsyncCallback object
as a parameter and the methods may not return anything. The naming
convention recommended for this interface is to suffix the name of our
synchronous interface with the word Async.
PrimesServiceImpl: This is the server-side implementation of our service.
This must extend RemoteServiceServlet and implement our synchronous
interface—PrimesService.

GWT framework classes used by us to create the PrimesService:

RemoteService: A marker interface that should be implemented by all the
RPC services.

RemoteServiceServlet: The PrimesServiceImpl service implementation
class extends this class and adds the required functionality. This class
provides support for serializing and deserializing requests, and ensures that
the requests invoke the right method in the PrimesServiceImpl class.

•

•

•

•

•

Chapter 3

[41]

Here is a diagram depicting the relationship between the various classes and
interfaces that were involved in creating the Prime Number service.

Our service implementation extends the RemoteServiceServlet, which inherits
from the HttpServlet class. The RemoteServiceServlet takes care of automatically
deserializing incoming requests and serializing the outgoing responses. GWT
probably opted to use the servlet-based approach because it is simple and is well
known and used in the Java community. It also makes it easy to move our service
implementation between any servlet containers, and opens the door to a wide
variety of integration possibilities between GWT and other frameworks. This has
been used by several members of the GWT community to implement integration
between GWT and other frameworks such as Struts and Spring. The RPC wire
format used by GWT is loosely based on the JavaScript Object Notation (JSON). This
protocol is proprietary to GWT and it is currently undocumented. However, the
RemoteServiceServlet provides two methods—onAfterResponseSerialized()
and onBeforeRequestDeserialized(), which you can override to inspect and print
out the serialized request and response.

The basic pattern and architecture for creating any GWT service is always the same
and consists of these basic steps:

1.	 Create a service definition interface.
2.	 Create an asynchronous version of the service definition interface.

Creating Services

[42]

3.	 Create the service implementation class. In the service implementation class
we access the functionality provided by the external service and convert the
results to match our requirements.

In the next section, we will create a simple client that consumes this new service. We
will learn about deploying this service to external servlet containers such as Tomcat
in Chapter 10. The concepts from this example are applicable to every GWT service
that we create. We will create at least these two interfaces and an implementation
class for every service that we create. This will help us to provide server functionality
that can be accessed in an asynchronous way by a GWT client. The service that we
have created above is independent of the GWT client application, and can be used by
multiple applications. We only need to ensure that we register the service correctly in
a servlet container, so that it can be accessed by our client applications.

Consuming the Service
We have completed implementing the Prime Number service. Now we are going to
create a simple client that can consume the PrimesService. This will help us test the
functionality of the service to ensure that it does things that it is supposed to do.

Time for Action—Creating the Client
We will create a simple client that will connect to the Prime Number service and
check if a given number is a prime number. We will add a text box for typing in
the number to check, and a button that will invoke the service when clicked. It will
display the results of the call in an alert dialog.

1.	 Create the client in a new file named PrimesClient.java in the com.
packtpub.gwtbook.samples.client package that extends the
EntryPoint class.

 public class PrimesClient implements EntryPoint
 {
 }

2.	 Add an onModuleLoad() method to this new class, and create a text box.
 public void onModuleLoad()
 {
 final TextBox primeNumber = new TextBox();
 }

Chapter 3

[43]

3.	 Instantiate the PrimesService and store it in a variable in the
onModuleLoad()method.

 final PrimesServiceAsync primesService =
 (PrimesServiceAsync) GWT
 GWT.create(PrimesService.class);
 ServiceDefTarget endpoint = (ServiceDefTarget) primesService;
 endpoint.setServiceEntryPoint(GWT.getModuleBaseURL()+"primes");

4.	 Create a new button, and add an event handler to listen for clicks on the
button. In the handler, invoke the PrimesService using the text typed into
the text box as the input parameter to the service. Display the result in an
alert dialog.

 final Button checkPrime=new Button("Is this a prime number?",
 new ClickListener())
 {
 public void onClick(Widget sender)
 {
 AsyncCallback callback = new AsyncCallback()
 {
 public void onSuccess(Object result)
 {
 if(((Boolean) result).booleanValue())
 {
 Window.alert("Yes, "+ primeNumber.getText()
 + "' is a prime number.");
 }
 else
 {
 Window.alert("No, "+ primeNumber.getText()
 + "' is not a prime number.");
 }
 }
 public void onFailure(Throwable caught)
 {
 Window.alert("Error while calling the Primes
 Service.");
 }
 };
 primesService.isPrimeNumber(Integer
 parseInt(primeNumber.getText()), callback);
 }
 });

Creating Services

[44]

5.	 Add the following entry to the application's module.xml file in order for the
client to find this service.

 <servlet path="/primes" class=
 "com.packtpub.gwtbook.samples.server.PrimesServiceImpl"/>

Here is the client. Type in a number, and click the button to check if the number is a
prime number.

Chapter 3

[45]

The response is displayed in an alert dialog as shown below:

What Just Happened?
The Prime Number service client invokes the service, by passing in the required
parameter to the PrimesService. We make an entry for the service in the module.
xml file so that the GWT framework can initialize things correctly and the client can
find the service. We have followed a common pattern for creating simple clients that
consume GWT services:

1.	 Create a class that implements the EntryPoint class.
2.	 Override the onModuleLoad() method to add the desired

user-interface widgets.
3.	 Add an event handler to one of the user interface widgets to invoke the

service when the handler is triggered.
4.	 In the event handler, handle the callbacks for success and failure of the call

to the service method, and take some action with the results of the call.
5.	 Add an entry to the GWT application module.xml for the service to

be consumed.

We will use this common pattern along with some variations when creating sample
applications throughout this book.

Summary
In this chapter we took a look at creating the various classes and interfaces that are
required as part of creating a new Prime Number GWT service. We also created a
client that can consume the prime number service.

In the next chapter, we are going to create interactive web user interfaces
using GWT.

Interactive Forms
In this chapter, we will learn different ways of creating interactive forms, which
utilize GWT and AJAX to provide a much smoother user experience when using
web‑based user interfaces. This chapter along with the next two chapters is going to
provide the foundation for our exploration of GWT.

The tasks that we will address are:

1.	 Live search
2.	 Password strength checker
3.	 Auto fill forms
4.	 Sortable tables
5.	 Dynamic lists
6.	 Flickr-style editable labels

Sample Application
We are going to incorporate all of the sample applications that we are creating in this
book into the Samples GWT application that we created in the previous chapter. We
will be doing this in a style that is similar to the KitchenSink application that we
explored in Chapter 1. In order to do this, we will follow the steps given below:

The user interface for the application will be created in a class that extends the
SamplePanel class in the com.packtpub.gwtbook.samples.client package.
This class will then be initialized and added to the list of applications in the
Samples class in the com.packtpub.gwtbook.samples.client package.
Since the Samples class is set up as the entry point class, when GWT starts
up, it will load this class and display all of the sample applications, just like
the KitchenSink.

•

•

Interactive Forms

[48]

The source code for all the samples is available from the download site for the book.
Please see the Appendix for instructions on downloading and running the samples.

Live Search
Live Search is a user interface that actively provides the user with choices matching
the search criteria that the user types in. It is a very popular AJAX pattern that is
used to continuously display all valid results to a user as the user refines the search
query. Since the user's query is constantly synchronized with the displayed results,
it creates a very smooth search experience for the user. It also enables the user to
easily experiment with different search queries very quickly in a highly interactive
fashion. The results from the search are asynchronously retrieved from the server
without any page refreshes or resubmission of search criteria. The Google search
page (http://google.com/) uses this to great effect. It even tells you the number of
search results that match your query as you type!

Instant feedback of the kind provided by the Live Search AJAX pattern could also
be harnessed to pre-fetch results from server and use them for anticipating the user's
actions. This kind of an instantaneous response smoothens the user experience of
the application and significantly improves the application latency. Google Maps
(http://maps.google.com/) are nice examples of using this pattern to pre-fetch the
map data as you are navigating around the map.

Time for Action—Search as you Type!
In this Live Search example, we will create an application that retrieves a list of fruit
names that begin with the letters that you type into the search text. You can refine
your query criteria by reducing or increasing the number of letters that you type, and
the user interface will display the matching result set in real time.

1.	 Create a new Java file named LiveSearchService.java in the com.
packtpub.gwtbook.samples.client package. Define a LiveSearchService
interface with one method to retrieve the search results matching the string
provided as a parameter to the method.

 public interface LiveSearchService extends RemoteService
 {
 public List getCompletionItems(String itemToMatch);
 }

Chapter 4

[49]

2.	 Create the asynchronous version of this service definition interface in a new
Java file named LiveSearchServiceAsync.java in the com.packtpub.
gwtbook.samples.client package:

 public interface LiveSearchServiceAsync
 {
 public void getCompletionItems
 (String itemToMatch, AsyncCallback callback);
 }

3.	 Create the implementation of our live search service in a new Java file named
LiveSearchServiceImpl.java in the com.packtpub.gwtbook.samples.
server package. We will create a string array that holds a list of fruits and
when the service method is invoked we will return a sub-list of fruits from
this array whose names start with the string provided as a parameter.

 public class LiveSearchServiceImpl extends RemoteServiceServlet
 implements LiveSearchService
 {
 private String[] items = new String[]
 {"apple", "peach", "orange", "banana", "plum", "avocado",
 "strawberry", "pear", "watermelon", "pineapple", "grape",
 "blueberry", "cantaloupe"
 };
 public List getCompletionItems(String itemToMatch)
 {
 ArrayList completionList = new ArrayList();
 for (int i = 0; i < items.length; i++)
 {
 if (items[i].startsWith(itemToMatch.toLowerCase()))
 {
 completionList.add(items[i]);
 }
 }
 return completionList;
 }
 }

Interactive Forms

[50]

4.	 Our server-side implementation is complete. Now we will create the user
interface for interacting with the live search service. Create a new Java file
named LiveSearchPanel.java in the com.packtpub.gwtbook.samples.
client.panels package that extends the com.packtpub.gwtbook.samples.
client.panels.SamplePanel class. As mentioned at the beginning of this
chapter, each of the user interfaces created in this book will be added to a
sample application that is similar to the KitchenSink application that is
available as one of the sample projects with the GWT download. That is why
we will create each user interface as a panel that extends the SamplePanel
class, and we will add the created panel to the list of samples panels in the
sample application. Add a text box for typing in the search string, and a
FlexTable that will display the matching items retrieved from the service.
Finally, create an instance of the LiveSearchService that we are going
to invoke.

 public FlexTable liveResultsPanel = new FlexTable();
 public TextBox searchText = new TextBox();
 final LiveSearchServiceAsync
 liveSearchService=(LiveSearchServiceAsync)
 GWT.create(LiveSearchService.class);

5.	 In the constructor for the LiveSearchPanel, create the service target and
set its entry point. Also create a new VerticalPanel that we will use as the
container for the widgets that we are adding to the user interface. Set the CSS
style for the search text box. This style is defined in the Samples.css file, and
is part of the source code distribution package for this book. Please see the
Appendix for details on how to download the source code package.

 ServiceDefTarget endpoint=(ServiceDefTarget) liveSearchService;
 endpoint.setServiceEntryPoint("/Samples/livesearch");
 VerticalPanel workPanel = new VerticalPanel();
 searchText.setStyleName("liveSearch-TextBox");

6.	 In the same constructor, add a listener to the text box that will call the
LiveSearchService asynchronously as the user types in the text box, and
update the pop-up panel continuously with the latest results matching the
current string in the text box. This is the method that starts of all the magic by
calling the service to get a list of completion items.

 searchText.addKeyboardListener(new KeyboardListener()
 {
 public void onKeyPress
 (Widget sender, char keyCode, int modifiers)
 {
 // not implemented
 }

Chapter 4

[51]

 public void onKeyDown
 (Widget sender, char keyCode, int modifiers)
 {
 for (int i = 0; i < liveResultsPanel.getRowCount(); i++)
 {
 liveResultsPanel.removeRow(i);
 }
 }
 public void onKeyUp
 (Widget sender, char keyCode, int modifiers)
 {
 for (int i = 0; i < liveResultsPanel.getRowCount(); i++)
 {
 liveResultsPanel.removeRow(i);
 }
 if (searchText.getText().length() > 0)
 {
 AsyncCallback callback = new AsyncCallback()
 {
 public void onSuccess(Object result)
 {
 ArrayList resultItems = (ArrayList) result;
 int row = 0;
 for(Iterator iter=resultItems.iterator();
 iter.hasNext();)
 {
 liveResultsPanel.setText
 (row++, 0, (String) iter.next());
 }
 }
 public void onFailure(Throwable caught)
 {
 Window.alert("Live search failed because "
 + caught.getMessage());
 }
 };
 liveSearchService.getCompletionItems
 (searchText.getText(),callback);
 }
 }
 });

Interactive Forms

[52]

7.	 Finally, in the constructor, add the search text box and the search results
panel to the work panel. Create a little info panel that displays descriptive
text about this application, so that we can display this text when this sample
is selected in the list of available samples in our Samples application. Add
the info panel and the work panel to a dock panel, and initialize the widget.

 liveResultsPanel.setStyleName("liveSearch-Results");
 HorizontalPanel infoPanel = new HorizontalPanel();
 infoPanel.add(new HTML
 ("<div class='infoProse'>Type the first few letters
 of the name of a fruit in the text box below. A
 list of fruits with names starting with the typed
 letters will be displayed. The list is retrieved
 from the server asynchronously. This is nice AJAX
 pattern for providing user-friendly search
 functionality in an application.</div>"));
 workPanel.add(searchText);
 workPanel.add(liveResultsPanel);
 DockPanel workPane = new DockPanel();
 workPane.add(infoPanel, DockPanel.NORTH);
 workPane.add(workPanel, DockPanel.CENTER);
 workPane.setCellHeight(workPanel, "100%");
 workPane.setCellWidth(workPanel, "100%");
 initWidget(workPane);

8.	 Add the service to the module file for the Samples application—Samples.
gwt.xml in the com.packtpub.gwtbook.samples package. Adding this
path to the module file let us create and set the endpoint information for this
service using this path.

 <servlet path="/livesearch" class=
 "com.packtpub.gwtbook.samples.server.LiveSearchServiceImpl"/>

Chapter 4

[53]

Here is the user interface for the application:

Once you start typing in the first few letters of a fruit name, all the names of the
fruits whose name starts with the string typed in are retrieved and displayed in a
panel below the text box.

Interactive Forms

[54]

What Just Happened?
The user interface for the application displays a text box when you load the
application in the browser. When you type a letter in the box, the onKeyUp() event
will be triggered on the text box and in this event handler we asynchronously call the
getCompletionItems() in the LiveSearchService with the text that is currently in
the text box. The implementation of this method in our service returns a list with all
the matching names. The matching names in this example are retrieved from a map
contained in the service itself, but could just as easily be retrieved from a database,
another application or a web service, depending on your application needs. We add
the items that are present in the list to a FlexTable widget, which is present right
below the text box. A FlexTable allows us to create tables that can be dynamically
expanded. If the text box is empty or if we delete all the text in the box, then we
clear out the list in the table. We use a panel as the container for all of the widgets in
this application.

Panels are containers for widgets in the GWT framework and are used for laying
them out. You can add any widget or even other panels to a panel. This enables us
to build complex user interfaces by combining widgets together by adding them to
panels. The commonly used panels in the GWT framework are:

DockPanel: A panel that lays out the child widgets that are added to it by
docking them or positioning them at the edges, and it allows the last added
widget to take the remaining space.
CellPanel: A panel that lays out its widgets within the cells of a table.
TabPanel: A panel that lays out the child widgets in a tabbed set of pages,
each with a widget.
HorizontalPanel: A panel that lays out all of its child widgets in a single
horizontal column from left to right.
VerticalPanel: A panel that lays out all of its child widgets in a single vertical
column from top to bottom.
FlowPanel: A panel that lays out its widgets from left to right just like text
flowing across a line.
PopupPanel: A panel that displays its child widgets by popping up or
overlaying over other widgets on the page.
StackPanel: A panel that lays out its child widgets by stacking them
vertically from top to bottom. The metaphor used is the same as the user
interface of Microsoft Outlook.

•

•

•

•

•

•

•

•

Chapter 4

[55]

We will be using most of these panels to lay out our user interfaces in this chapter
and the rest of this book. The concepts from this task can be extended and applied to
almost any type of search that you want to provide to your users in your application.
You can even enhance and extend this application to provide further information to
the user such as the number of matching results. The plumbing and tools provided
by GWT make it extremely easy to provide this functionality. One of the best
examples of the live search AJAX pattern and its use is the Google suggest
service. As you type a search query string in a text field, it retrieves and displays
a list of matching results in a continuous fashion. You can see it in action at
http://www.google.com/webhp?complete=1&hl=en.

Password Strength Checker
Visual cues are great way to inform the user of the status of things in the application.
Message boxes and alerts are used much too often for this purpose, but they usually
end up irritating the user. A much smoother and enjoyable user experience is
provided by subtly indicating to the user the status as an application is used. In this
section, we are going to create an application that indicates the strength of a typed
password to the user by the use of colors and checkboxes. We are going to use
check-boxes very differently than their normal usage. This is an example of using
GWT widgets in new and different ways, and mixing and matching them to provide
a great user experience.

Time for Action—Creating the Checker
In the current day and age, passwords are required for almost everything, and
choosing secure passwords is very important. There are numerous criteria suggested
for creating a password that is secure from most common password cracking
exploits. These criteria run the gamut from creating 15 letter passwords with a
certain number of lower case and numeric digits to creating passwords using
random password generators. In our example application, we are going to create
a password strength checker that is very simple, and only checks the number of
letters in the password. A password string that contains less than five letters will
be considered weak, while a password that contains between five and seven letters
will be considered to be of medium strength. Any password containing more than
seven letters will be considered as strong. The criteria were deliberately kept simple
so that we can focus on creating the application without getting all tangled up in the
actual password strength criteria. This will help us to understand the concepts and
then you can extend it to use any password strength criteria that your application
warrants. This example uses a service to get the password strength, but this could
also be done all on the client without needing to use a server.

Interactive Forms

[56]

1.	 Create a new Java file named PasswordStrengthService.java in
the com.packtpub.gwtbook.samples.client package. Define a
PasswordStrengthService interface with one method to retrieve the
strength of a password string provided as a parameter to the method:

 public interface PasswordStrengthService extends RemoteService
 {
 public int checkStrength(String password);
 }

2.	 Create the asynchronous version of this service definition interface in a
new Java file named PasswordStrengthServiceAsync.java in the com.
packtpub.gwtbook.samples.client package :

 public interface PasswordStrengthServiceAsync
 {
 public void checkStrength
 (String password, AsyncCallback callback);
 }

3.	 Create the implementation of our password strength service in a new Java
file named PasswordStrengthServiceImpl.java in the com.packtpub.
gwtbook.samples.server package.

 public class PasswordStrengthServiceImpl extends
 RemoteServiceServlet implements PasswordStrengthService
 {
 private int STRONG = 9;
 private int MEDIUM = 6;
 private int WEAK = 3;
 public int checkStrength(String password)
 {
 if (password.length() <= 4)
 {
 return WEAK;
 }
 else if (password.length() < 8)
 {
 return MEDIUM;
 }else
 {
 return STRONG;
 }
 }
 }

Chapter 4

[57]

4.	 Now let's create the user interface for this application. Create a new Java
file named PasswordStrengthPanel.java in the com.packtpub.gwtbook.
samples.client.panels package that extends the com.packtpub.gwtbook.
samples.client.panels.SamplePanel class. Create a text box for entering
the password string an ArrayList named strengthPanel for holding the
checkboxes that we will use for displaying the strength of the password. Also
create the PasswordStrengthService object.

 public TextBox passwordText = new TextBox();
 final PasswordStrengthServiceAsync pwStrengthService =
 (PasswordStrengthServiceAsync)
 GWT.create(PasswordStrengthService.class);
 public ArrayList strength = new ArrayList();

5.	 Add a private method for clearing all the checkboxes by setting their style to
the default style.

 private void clearStrengthPanel()
 {
 for (Iterator iter = strength.iterator(); iter.hasNext();)
 {
 ((CheckBox) iter.next()).
 setStyleName(getPasswordStrengthStyle(0));
 }
 }

6.	 Add a private method that will return the CSS name, based on the password
strength. This is a nice way for us to dynamically set the style for the
checkbox, based on the strength.

 private String getPasswordStrengthStyle(int passwordStrength)
 {
 if (passwordStrength == 3)
 {
 return "pwStrength-Weak";
 }
 else if (passwordStrength == 6)
 {
 return "pwStrength-Medium";
 }
 else if (passwordStrength == 9)
 {
 return "pwStrength-Strong";
 }

Interactive Forms

[58]

 else
 {
 return "";
 }
 }

7.	 In the constructor for the PasswordStrengthPanel class, create a
HorizontalPanel named strengthPanel, add nine checkboxes to it, and
set its style. As mentioned before the styles that we are using in the sample
applications in this book are available in the file Samples.css, which is
part of the source code distribution for this book. We also add these same
checkboxes to the strength object, so that we can retrieve them later to
set their state. These checkboxes will be used for displaying the password
strength visually. Create a new VerticalPanel that we will use as the
container for the widgets that we are adding to the user interface. Finally,
create the service target and set its entry point.

 HorizontalPanel strengthPanel = new HorizontalPanel();
 strengthPanel.setStyleName("pwStrength-Panel");
 for (int i = 0; i < 9; i++)
 {
 CheckBox singleBox = new CheckBox();
 strengthPanel.add(singleBox);
 strength.add(singleBox);
 }
 VerticalPanel workPanel = new VerticalPanel();
 ServiceDefTarget endpoint=(ServiceDefTarget) pwStrengthService;
 endpoint.setServiceEntryPoint(GWT.getModuleBaseURL() +
 "pwstrength");

8.	 In the same constructor, set the style for the password text box, and add an
event handler to listen for changes to the password box.

 passwordText.setStyleName("pwStrength-Textbox");
 passwordText.addKeyboardListener(new KeyboardListener()
 {
 public void onKeyDown
 (Widget sender, char keyCode, int modifiers)
 {
 }
 public void onKeyPress
 (Widget sender, char keyCode, int modifiers)
 {
 }
 public void onKeyUp(Widget sender, char keyCode,
 int modifiers)
 {

Chapter 4

[59]

 if (passwordText.getText().length() > 0)
 {
 AsyncCallback callback = new AsyncCallback()
 {
 public void onSuccess(Object result)
 {
 clearStrengthPanel();
 int checkedStrength = ((Integer) result).intValue();
 for (int i = 0; i < checkedStrength; i++)
 {
 ((CheckBox) strength.get(i)).setStyleName
 (getPasswordStrengthStyle(checkedStrength));
 }
 }
 public void onFailure(Throwable caught)
 {
 Window.alert("Error calling the password strength
 service." + caught.getMessage());
 }
 };
 pwStrengthService.checkStrength
 (passwordText.getText(), callback);
 }
 else
 {
 clearStrengthPanel();
 }
 }
 });

9.	 Finally, in the constructor, add the password text box and the strength panel
to the work panel. Create a little info panel that displays descriptive text
about this application, so that we can display this text when this sample is
selected in the list of available samples in our Samples application. Add the
info panel and the work panel to a dock panel, and initialize the widget.

 HorizontalPanel infoPanel = new HorizontalPanel();
 infoPanel.add(new HTML(
 "<div class='infoProse'>Start typing a password
 string. The strength of the password will be
 checked and displayed below. Red indicates that the
 password is Weak, Orange indicates a Medium
 strength password and Green indicates a Strong
 password. The algorithm for checking the strength
 is very basic and checks the length of the password
 string.</div>"));
 workPanel.add(passwordText);

Interactive Forms

[60]

 workPanel.add(infoPanel);
 workPanel.add(strengthPanel);
 DockPanel workPane = new DockPanel();
 workPane.add(infoPanel, DockPanel.NORTH);
 workPane.add(workPanel, DockPanel.CENTER);
 workPane.setCellHeight(workPanel, "100%");
 workPane.setCellWidth(workPanel, "100%");
 initWidget(workPane);

10.	 Add the service to the module file for the Samples application—Samples.
gwt.xml in the com.packtpub.gwtbook.samples package.

 <servlet path="/pwstrength" class=
 "com.packtpub.gwtbook.samples.server.
 PasswordStrengthServiceImpl"/>

Here is the user interface for the password strength checking application:

Chapter 4

[61]

Now start typing a password string to check its strength. Here is the password
strength when you type a password string that is less than five characters:

What Just Happened?
The password strength service checks the size of the provided string and returns an
integer value of three, six, or nine based on whether it is weak, medium, or strong.
It makes this determination by using the criteria that if the password string is less
than five characters in length, it is weak, and if it is more than five characters but
not greater than seven characters, it is considered a medium strength password.
Anything over seven characters is considered to be a strong password.

The user interface consists of a text box for entering a password string and a panel
containing nine checkboxes that visually displays the strength of the typed string as
a password. An event handler is registered to listen for keyboard events generated
by the password text box. Whenever the password text changes, which happens
when we type into the field or change a character in the field, we communicate
asynchronously with the password strength service and retrieve the strength of the
given string as a password. The returned strength is displayed to the user in a visual
fashion by the use of colors to symbolize the three different password strengths.

Interactive Forms

[62]

The password strength is displayed in a compound widget that is created by adding
nine checkboxes to a HorizontalPanel. The color of the checkboxes is changed
using CSS depending on the strength of the password string. This process of
combining the basic widgets provided by GWT into more complex widgets to build
user interfaces is a common pattern in building GWT applications. It is possible to
build quite intricate user interfaces in this way by utilizing the power of the GWT
framework. We will see more examples of this as we continue to explore various
GWT applications later in this chapter and also throughout this book.

Auto Form Fill
Forms are ubiquitous on the Web and are widely used for everything from
displaying information from customer profiles to filling out applications online. We
do not like going through all those fields and typing in the information in every time,
especially if we have already done this on that site once before. A very nice way
to speed this up would be to pre-populate the fields with the previously collected
information when a key form field is filled in. This not only saves the customer some
typing, it also is a great usability enhancement that improves the whole customer
experience. In this section, we are going to build a form that will automatically fill
out the various fields when we type in a recognized value in the Customer ID field.

Time for Action—Creating a Dynamic Form
We are going to create an application that makes it easy to fill out the various fields
of a form when a certain value is provided in one of the fields. This is a very common
occurrence in most of the web-based business applications where, for instance,
user information needs to be provided in order to register for a service. In the case
of a new user, this information will need to be filled out by the user, but in the
case of a previous user of the system, this information is already available and can
be accessed and used for filling out all the fields when the user types in a unique
identifier that identifies him or her, an ID of some sort. In this application we are
going to automatically fill out the various fields of the form when a user enters in a
CustomerID that is known to us.

1.	 Create a new Java file named AutoFormFillService.java in the
com.packtpub.gwtbook.samples.client package. Define an
AutoFormFillService interface with one method to retrieve the form
information when provided a key:

 public interface AutoFormFillService extends RemoteService
 {
 public HashMap getFormInfo(String formKey);
 }

Chapter 4

[63]

2.	 Create a new Java file named AutoFormFillServiceAsync.java
in the com.packtpub.gwtbook.samples.client package. Define a
AutoFormFillAsync interface:

 public interface AutoFormFillServiceAsync
 {
 public void getFormInfo
 (String formKey, AsyncCallback callback);
 }

3.	 Create a new Java file named AutoFormFillServiceImpl.java in
the com.packtpub.gwtbook.samples.server package. Define a
AutoFormFillServiceImpl class that extends RemoteServiceServlet and
implements the previously created AutoFormFillService interface. First
we will use a simple HashMap to store the customer information and add
a method to populate the map. In your application you can retrieve this
customer information from any external data source, such as a database.

 private HashMap formInfo = new HashMap();
 private void loadCustomerData()
 {
 HashMap customer1 = new HashMap();
 customer1.put("first name", "Joe");
 customer1.put("last name", "Customer");
 customer1.put("address", "123 peachtree street");
 customer1.put("city", "Atlanta");
 customer1.put("state", "GA");
 customer1.put("zip", "30339");
 customer1.put("phone", "770-123-4567");
 formInfo.put("1111", customer1);
 HashMap customer2 = new HashMap();
 customer2.put("first name", "Jane");
 customer2.put("last name", "Customer");
 customer2.put("address", "456 elm street");
 customer2.put("city", "Miami");
 customer2.put("state", "FL");
 customer2.put("zip", "24156");
 customer2.put("phone", "817-123-4567");
 formInfo.put("2222", customer2);
 HashMap customer3 = new HashMap();
 customer3.put("first name", "Jeff");
 customer3.put("last name", "Customer");
 customer3.put("address", "789 sunset blvd");
 customer3.put("city", "Los Angeles");
 customer3.put("state", "CA");

Interactive Forms

[64]

 customer3.put("zip", "90211");
 customer3.put("phone", "714-478-9802");
 formInfo.put("3333", customer3);
 }

4.	 Add logic to the getFormInfo() to return the form information for a
provided form key. We take the provided key that was entered in the form
by the user, and use that to look up the user information, and return it
asynchronously to the client application.

 public HashMap getFormInfo(String formKey)
 {
 if (formInfo.containsKey(formKey))
 {
 return (HashMap) formInfo.get(formKey);
 }
 else
 {
 return new HashMap();
 }
 }

5.	 Create the user interface for this application in a new Java file named
AutoFormFillPanel.java in the com.packtpub.gwtbook.samples.
client.panels package. Create a text box, and a label for each information
field.

 private TextBox custID = new TextBox();
 private TextBox firstName = new TextBox();
 private TextBox lastName = new TextBox();
 private TextBox address = new TextBox();
 private TextBox zip = new TextBox();
 private TextBox phone = new TextBox();
 private TextBox city = new TextBox();
 private TextBox state = new TextBox();
 private Label custIDLbl = new Label("Customer ID : ");
 private Label firstNameLbl = new Label("First Name : ");
 private Label lastNameLbl = new Label("Last Name : ");
 private Label addressLbl = new Label("Address : ");
 private Label zipLbl = new Label("Zip Code : ");
 private Label phoneLbl = new Label("Phone Number : ");
 private Label cityLbl = new Label("City : ");
 private Label stateLbl = new Label("State : ");
 HorizontalPanel itemPanel = new HorizontalPanel();

Chapter 4

[65]

6.	 Create the service class that we are going to invoke.
 final AutoFormFillServiceAsync autoFormFillService =
 (AutoFormFillServiceAsync) GWT.create
 (AutoFormFillService.class);

7.	 Create private methods for setting and clearing the values of the form fields.
We will use these methods from the event handlers that we will set up in the
constructor.

 private void setValues(HashMap values)
 {
 if (values.size() > 0)
 {
 firstName.setText((String) values.get("first name"));
 lastName.setText((String) values.get("last name"));
 address.setText((String) values.get("address"));
 city.setText((String) values.get("city"));
 state.setText((String) values.get("state"));
 zip.setText((String) values.get("zip"));
 phone.setText((String) values.get("phone"));
 }
 else
 {
 clearValues();
 }
 }
 private void clearValues()
 {
 firstName.setText(" ");
 lastName.setText(" ");
 address.setText(" ");
 city.setText(" ");
 state.setText(" ");
 zip.setText(" ");
 phone.setText(" ");
 }

8.	 Create accessor methods for retrieving the different labels. We will use
these to get the label and set its value when we retrieve information from
the service.

 public Label getAddressLbl()
 {
 return addressLbl;
 }
 public Label getCityLbl()

Interactive Forms

[66]

 {
 return cityLbl;
 }
 public Label getCustIDLbl()
 {
 return custIDLbl;
 }
 public Label getFirstNameLbl()
 {
 return firstNameLbl;
 }
 public Label getLastNameLbl()
 {
 return lastNameLbl;
 }
 public Label getPhoneLbl()
 {
 return phoneLbl;
 }
 public Label getStateLbl()
 {
 return stateLbl;
 }
 public Label getZipLbl()
 {
 return zipLbl;
 }

9.	 Create accessor methods for retrieving the different text boxes. We will use
these to get the text box and set its value when we retrieve information from
the service.

 public TextBox getAddress()
 {
 return address;
 }
 public TextBox getCity()
 {
 return city;
 }
 public TextBox getCustID()
 {
 return custID;
 }
 public TextBox getFirstName()

Chapter 4

[67]

 {
 return firstName;
 }
 public TextBox getLastName()
 {
 return lastName;
 }
 public TextBox getPhone()
 {
 return phone;
 }
 public TextBox getState()
 {
 return state;
 }
 public TextBox getZip()
 {
 return zip;
 }

10.	 In the constructor for AutoFormFillPanel, create a new VerticalPanel that
we will use as the container for the widgets that we are adding to the user
interface. Also, create the service target and set its entry point.

 ServiceDefTarget endpoint = (ServiceDefTarget)
 autoFormFillService;
 endpoint.setServiceEntryPoint("/Samples/autoformfill");

11.	 Also in the constructor, create a HorizontalPanel named itemPanel and
add the widgets for each form field to it. For instance, this is how we add
the customerID field to the itemPanel, set its style, and add this itemPanel
to the workPanel, which is the main container that we have created
earlier to hold the widgets for our user interface. You will create a new
HorizontalPanelfor each form field and add it to the workPanel. Repeat
for each form field that we have.

 HorizontalPanel itemPanel = new HorizontalPanel();
 itemPanel.setStyleName("autoFormItem-Panel");
 custIDLbl.setStyleName("autoFormItem-Label");
 itemPanel.add(custIDLbl);
 custID.setStyleName("autoFormItem-Textbox");
 itemPanel.add(custID);
 workPanel.add(itemPanel);

Interactive Forms

[68]

12.	 In the same constructor, add a keyboard listener to the custID text box and
in the event handler invoke the service to retrieve customer information for
the value typed in customer ID. Set the values of the form fields from the
return value of the service call.

 custID.addKeyboardListener(new KeyboardListener()
 {
 public void onKeyDown(Widget sender,
 char keyCode, int modifiers)
 {
 }
 public void onKeyPress(Widget sender,
 char keyCode, int modifiers)
 {
 }
 public void onKeyUp(Widget sender, char
 keyCode, int modifiers)
 {
 if (custID.getText().length() > 0)
 {
 AsyncCallback callback = new
 AsyncCallback()
 {
 public void onSuccess
 (Object result)
 {
 setValues((HashMap) result);
 }
 };
 autoFormFillService.getFormInfo
 (custID.getText(), callback);
 }
 else
 {
 clearValues();
 }
 }
 public void onFailure(Throwable caught)
 {
 Window.alert("Error while calling the
 Auto Form Fill service."
 + caught.getMessage());
 }
 });

Chapter 4

[69]

13.	 Finally, in the constructor, create a little info panel that displays descriptive
text about this application, so that we can display this text when this sample
is selected in the list of available samples in our Samples application. Add
the info panel and the work panel to a dock panel, and initialize the widget.

 HorizontalPanel infoPanel = new HorizontalPanel();
 infoPanel.add(new HTML(
 "<div class='infoProse'>This example
 demonstrates how to automatically fill a
 form by retrieving the data from the server
 asynchronously. Start typing a customer ID
 in the provided field, and corresponding
 values for that customer are retrieved
 asynchronously from the server and the form
 filled for you.</div>"));
 DockPanel workPane = new DockPanel();
 workPane.add(infoPanel, DockPanel.NORTH);
 workPane.add(workPanel, DockPanel.CENTER);
 workPane.setCellHeight(workPanel, "100%");
 workPane.setCellWidth(workPanel, "100%");
 initWidget(workPane);

14.	 Add the service to the module file for the Samples application—Samples.
gwt.xml in the com.packtpub.gwtbook.samples package.

 <servlet path="/autoformfill" class=
 "com.packtpub.gwtbook.samples.server.
 AutoFormFillServiceImpl"/>

Interactive Forms

[70]

Here is what the application looks like when the user types in a CustomerID, in this
case 1111, which is known to our application:

What Just Happened?
We create a service that contains customer data stored in a HashMap data structure.
In a real application, this data would usually come from an external data source
such as a database. For each customer, we create a map that contains the customer
information fields stored as key value pairs. This customer map is then added to
a master HashMap using the customerID as the key. This makes it easier for us to
retrieve the right customer information when we are provided with the key, which in
this case is the customerID.

HashMap customer2 = new HashMap();
customer2.put("first name", "Jane");
customer2.put("last name", "Customer");
customer2.put("address", "456 elm street");
customer2.put("city", "Miami");

Chapter 4

[71]

customer2.put("state", "FL");
customer2.put("zip", "24156");
customer2.put("phone", "817-123-4567");
formInfo.put("2222", customer2);

When the user interface is loaded in the browser, the user is presented with a page
that contains fields that are pertinent to a customer. The user needs to type a unique
customer ID in the text box provided. There are only three known customer ids in
this sample application—1111, 2222, and 3333. We are using the customer ID as the
key to customer information here, but you could also use a social security number
or any other unique ID based on the requirements of your application. Of course in
a real application the user would need to enter a password as well as an ID number
to avoid unauthorized display of confidential details to anyone entering a valid ID.
When the user types in a customer ID in the text box, for instance 1111, the event
handler onKeyUp() is triggered. In the event handler we invoke the getFormInfo()
method in the AutoFormFillService and pass in the typed text as a parameter. The
getFormInfo() method searches the customer information for the given customer
ID and returns the information as a HashMap. If no information is found due to an
unknown ID, we return an empty map. The values from this map are retrieved and
the corresponding fields are filled in by calling the setValues().

firstName.setText((String) values.get("first name"));
lastName.setText((String) values.get("last name"));
address.setText((String) values.get("address"));
city.setText((String) values.get("city"));
state.setText((String) values.get("state"));
zip.setText((String) values.get("zip"));
phone.setText((String) values.get("phone"));

This is a simple but very powerful and effective way to provide a nice experience for
users interacting with our system.

Sortable Tables
Tables are probably the most common way to display business data in an
application. They are well known to all users and provide a universal way to view
data. This has traditionally been hard to on a web page. GWT provides us with the
ability to easily and quickly provide this functionality in our applications. We are
going to create an application that contains a table whose rows can be sorted in an
ascending or descending order by clicking on a column header. This provides for a
much better user experience, as the user can modify the order of the displayed
data to suit their needs. The table widgets provided with GWT does not have a
built-in way to provide this capability, but GWT provides us with enough tools to
add support for this easily to a table. Please keep in mind that this is just one way to
create tables that can be sorted using GWT.

Interactive Forms

[72]

Time for Action—Sorting Table Rows
We do not need to create a service for this application as the sorting of data takes
place on the client. We will create an application with some seed data for our table,
and then add support for sorting that data by clicking on the column headers.

1.	 Create a new Java file named SortableTablesPanel.java in the com.
packtpub.gwtbook.samples.client.panels package. We will add support
to this class to make the included table sortable by clicking on the column
headers. First create a CustomerData class that will represent one row in the
table, and accessors for each field.

 private class CustomerData
 {
 private String firstName;
 private String lastName;
 private String country;
 private String city;
 public CustomerData(String firstName, String lastName,
 String city, String country)
 {
 this.firstName = firstName;
 this.lastName = lastName;
 this.country = country;
 this.city = city;
 }
 public String getCountry()
 {
 return country;
 }
 public String getCity()
 {
 return city;
 }
 public String getFirstName()
 {
 return firstName;
 }
 public String getLastName()
 {
 return lastName;
 }
 }

Chapter 4

[73]

2.	 Create an ArrayList named customerData for storing the customer data.
Create variables for storing the sort direction, the headers for the columns
in the table, temporary data structures for sorting, and a FlexTable for
displaying the customer data.

 private int sortDirection = 0;
 private FlexTable sortableTable = new FlexTable();
 private String[] columnHeaders = new String[]
 { "First Name", "Last Name", "City", "Country" };
 private ArrayList customerData = new ArrayList();
 private HashMap dataBucket = new HashMap();
 private ArrayList sortColumnValues = new ArrayList();

3.	 In the constructor for the SortableTablesPanel, create a new
VerticalPanel that we will use as the container for the widgets that we are
adding to the user interface. Set the styles for the table and set the column
headers for the table.

 VerticalPanel workPanel = new VerticalPanel();
 sortableTable.setWidth(500 + "px");
 sortableTable.setStyleName("sortableTable");
 sortableTable.setBorderWidth(1);
 sortableTable.setCellPadding(4);
 sortableTable.setCellSpacing(1);
 sortableTable.setHTML(0, 0, columnHeaders[0]
 + " ");
 sortableTable.setHTML(0, 1, columnHeaders[1]
 + " ");
 sortableTable.setHTML(0, 2, columnHeaders[2]
 + " ");
 sortableTable.setHTML(0, 3, columnHeaders[3]
 + " ");

4.	 Also in the constructor, add five customers to the customerData list. Add
the data from this list to the table and set a listener on the table that will sort
the rows when the first column is clicked. We will be displaying this list of
customers in the table and then sorting the table when a column header
is clicked.

 customerData.add(new CustomerData("Rahul","Dravid","Bangalore",
 "India"));
 customerData.add(new CustomerData("Nat", "Flintoff", "London",
 "England"));
 customerData.add(new CustomerData("Inzamamul", "Haq", "Lahore",
 "Pakistan"));
 customerData.add(new CustomerData("Graeme", "Smith", "Durban",

Interactive Forms

[74]

 "SouthAfrica"));
 customerData.add(new CustomerData("Ricky", "Ponting", "Sydney",
 "Australia"));
 int row = 1;
 for (Iterator iter = customerData.iterator(); iter.hasNext();)
 {
 CustomerData element = (CustomerData) iter.next();
 sortableTable.setText(row, 0, element.getFirstName());
 sortableTable.setText(row, 1, element.getLastName());
 sortableTable.setText(row, 2, element.getCity());
 sortableTable.setText(row, 3, element.getCountry());
 row++;
 }
 RowFormatter rowFormatter = sortableTable.getRowFormatter();
 rowFormatter.setStyleName(0, "tableHeader");
 sortableTable.addTableListener(new TableListener()
 {
 public void onCellClicked(SourcesTableEvents sender, int row,
 int cell)
 {
 if (row == 0)
 {
 sortTable(row, cell);
 }
 }
 });

5.	 Finally, in the constructor, add the table to the work panel. Create a little info
panel that displays descriptive text about this application, so that we can
display this text when this sample is selected in the list of available samples
in our Samples application. Add the info panel and the work panel to a dock
panel, and initialize the widget.

 HorizontalPanel infoPanel = new HorizontalPanel();
 infoPanel.add(new HTML(
 "<div class='infoProse'>This example shows
 how to create tables whose rows can be
 sorted by clicking on the column
 header.</div>"));
 workPanel.setStyleName("sortableTables-Panel");
 workPanel.add(sortableTable);
 DockPanel workPane = new DockPanel();
 workPane.add(infoPanel, DockPanel.NORTH);
 workPane.add(workPanel, DockPanel.CENTER);
 workPane.setCellHeight(workPanel, "100%");

Chapter 4

[75]

 workPane.setCellWidth(workPanel, "100%");
 sortTable(0, 0);
 initWidget(workPane);

5.	 Add a private method for redrawing the headers of the table. This is a nice
way for us to redraw the table column header so that we can change the
image displayed in the header to match the current sort direction.

 private void redrawColumnHeaders(int column)
 {
 if (sortDirection == 0)
 {
 sortableTable.setHTML(0, column, columnHeaders[column]
 + " ");
 }
 else if (sortDirection == 1)
 {
 sortableTable.setHTML(0, column, columnHeaders[column]
 + " ");
 }
 else
 {
 sortableTable.setHTML(0, column, columnHeaders[column]
 + " ");
 }
 for (int i = 0; i < 4; i++)
 {
 if (i != column)
 {
 sortableTable.setHTML(0, i, columnHeaders[i]
 + " ");
 }
 }
 }

6.	 Add a private method to redraw the entire table when we change the
sort order.

 private void redrawTable()
 {
 int row = 1;
 for (Iterator iter = sortColumnValues.iterator();
 iter.hasNext();)
 {
 String key = (String) iter.next();
 CustomerData custData = (CustomerData) dataBucket.get(key);

Interactive Forms

[76]

 sortableTable.setText(row, 0, custData.getFirstName());
 sortableTable.setText(row, 1, custData.getLastName());
 sortableTable.setText(row, 2, custData.getCity());
 sortableTable.setText(row, 3, custData.getCountry());
 row++;
 }
 }

7.	 Add a private method that can sort the data in an ascending or descending
way and redraw the table with the sorted rows. We are using the sort method
provided by the Collections class to sort the data, but can also modify this
to use the Comparator class to compare two pieces of data, and then use that
for sorting.

 public void sortTable(int row, int cell)
 {
 dataBucket.clear();
 sortColumnValues.clear();
 for (int i = 1; i < customerData.size() + 1; i++)
 {
 dataBucket.put(sortableTable.getText(i, cell), new
 CustomerData(
 sortableTable.getText(i, 0), sortableTable.getText(i, 1),
 sortableTable.getText(i, 2), sortableTable.getText
 (i, 3)));
 sortColumnValues.add(sortableTable.getText(i, cell));
 }
 if (sortDirection == 0)
 {
 sortDirection = 1;
 Collections.sort(sortColumnValues);
 }
 else
 {
 sortDirection = 0;
 Collections.reverse(sortColumnValues);
 }
 redrawColumnHeader(cell);
 resetColumnHeaders(cell);
 redrawTable();
 }

Chapter 4

[77]

Here is a screenshot of the application. You can click on any of the column headers to
sort the data.

What Just Happened?
We create a CustomerData class to represent each row in a FlexTable. We then
create some customer data and store it in an ArrayList.

customerData.add(new CustomerData("Rahul", "Dravid", "Bangalore",
 "India"));

Data from this list is added to the table. We need to specify the row number and
column number in order to add an element to the table.

CustomerData element = (CustomerData) iter.next();
sortableTable.setText(row, 0, element.getFirstName());
sortableTable.setText(row, 1, element.getLastName());
sortableTable.setText(row, 2, element.getCity());
sortableTable.setText(row, 3, element.getCountry());

Interactive Forms

[78]

The column headers are contained in row zero and the table data starts from row 1.
We add the column header by setting the HTML for that particular cell like this:

sortableTable.setHTML(0, 0, columnHeaders[0] + "
");

This enables us to add a snippet of HTML to the cell instead of setting just plain text.
We add the text for the column header along with an img tag with a blank image
file. A column header without an image next to the text visually indicates to the
user that there is no sort order specified for that particular column. When we click
on a column header, we will be modifying this image to use either an ascending
or descending icon. An event handler is registered to listen for clicks on the table.
GWT does not contain a mechanism to register a handler when someone clicks on a
specific cell, so we use the general table click listener and check to see if the click was
on row zero, which is the row that contains the column headers. If the user did click
on the column header, we go ahead and sort the table.

The real magic happens in the sortTable() method. A temporary HashMap named
dataBucket is created to store the rows from the table, with each row keyed by the
value in the column whose header was clicked, along with a temporary ArrayList
named sortColumnValues that stores the column values in the column whose
header was clicked. This means that the sortColumnValues list contains values that
are keys in the dataBucket map.

for (int i = 1; i < customerData.size() + 1; i++)
{
 dataBucket.put(sortableTable.getText(i, cell), new CustomerData(
 sortableTable.getText(i, 0), sortableTable.getText(i, 1),
 sortableTable.getText(i, 2), sortableTable.getText(i, 3)));
 sortColumnValues.add(sortableTable.getText(i, cell));
}

We check the value of the sortDirection variable and, based on the value, sort
the sortColumnValues list either ascending or descending to contain the column
values in the right order. The built-in sort() and reverseSort() methods of the
Collections class are used to provide the sorting mechanism.

if (sortDirection == 0)
{
 sortDirection = 1;
 Collections.sort(sortColumnValues);
}
else
{
 sortDirection = 0;
 Collections.reverse(sortColumnValues);
}

Chapter 4

[79]

The table column headers are then redrawn so that the column that was clicked will
have the right icon for the sort order and all the other column headers have only
plain text and a blank image. Finally, we redraw the table by iterating through the
sortColumnValues list and retrieving the associated CustomerData object from the
dataBucket and adding it as a row in the table.

This application demonstrates the tremendous power that is provided by the GWT
framework that enables you to manipulate tables to extend their functionality. GWT
provides different kinds of tables for building user interfaces:

FlexTable: A table that creates cells on demand. You can even have rows that
contain a different number of cells. This table expands as needed when you
add rows and columns to it.
Grid: A table that can contain text, HTML, or child widgets. It must,
however, be created explicitly with the number of desired rows and columns.

We will be using both of these table widgets extensively in the applications that we
build in this chapter and the rest of this book.

Dynamic Lists
We will create an application that uses dynamic lists to present the user with a way
to filter criteria for a search. In this section we are going to create dynamic tables,
which will enable us to populate child tables as items in a master table are selected.
We are going to do this by using GWT's AJAX support and display only those items
in a child table that are relevant to the selection in the main table. This application
will make it easy to navigate and filter out criteria for a search. In this sample
application, we are going to enable a user to select a manufacturer of automobiles,
which will automatically fill a second list with all the brands of cars made by that
manufacturer. When the customer further selects an item in this list of brands, a third
list will be automatically populated with the models of cars for the selected brand. In
this way, a user can interactively select and navigate through the search criteria, in a
user-friendly and intuitive way without having to submit data and refresh the page
to present some of this information.

•

•

Interactive Forms

[80]

Time for Action—Filtering Search Criteria
As a part of this application, we will also create a service that will provide
information on the manufacturers, brands, and models, and create a user interface
that asynchronously retrieves this information from the service to display it to
the user.

1.	 Create a new Java file named DynamicListsService.java in
the com.packtpub.gwtbook.samples.client package. Define a
DynamicListsService interface with methods for retrieving information
about the manufacturers, brands, and models:

 public interface DynamicListsService extends RemoteService
 {
 public List getManufacturers();
 public List getBrands(String manufacturer);
 public List getModels(String manufacturer, String brand);
 }

2.	 Create a new Java file named DynamicListsServiceAsync.java
in the com.packtpub.gwtbook.samples.client package. Define a
DynamicListsServiceAsync interface:

 public interface DynamicListsServiceAsync
 {
 public void getManufacturers(AsyncCallback callback);
 public void getBrands(String manufacturer,
 AsyncCallback callback);
 public void getModels(String manufacturer, String brand,
 AsyncCallback callback);
 }

3.	 Create a new Java file named DynamicListsServiceImpl.java in
the com.packtpub.gwtbook.samples.server package. Define a
DynamicListsServiceImpl class that extends RemoteServiceServlet and
implements the previously created DynamicListsService interface. This
class will return information about the manufacturers, brands, and models.
Create a class named Manufacturer to encapsulate the information about
each manufacturer, including the brands and models of automobiles offered
by them.

 private class Manufacturer
 {
 private HashMap brands = new HashMap();
 public Manufacturer(HashMap brands)
 {
 this.brands = brands;

Chapter 4

[81]

 }
 public HashMap getBrands()
 {
 return brands;
 }
 }

4.	 Create a private method to load the manufacturer information into a
HashMap. The data on the manufacturers will be loaded into the first table
later on. When the user interface starts up, the manufacturers table is the only
one with the data, and provides the starting point for using the application.

 private void loadData()
 {
 ArrayList brandModels = new ArrayList();
 brandModels.add("EX");
 brandModels.add("DX Hatchback");
 brandModels.add("DX 4-Door");
 HashMap manufacturerBrands = new HashMap();
 manufacturerBrands.put("Civic", brandModels);
 brandModels = new ArrayList();
 brandModels.add("SX");
 brandModels.add("Sedan");
 manufacturerBrands.put("Accord", brandModels);
 brandModels = new ArrayList();
 brandModels.add("LX");
 brandModels.add("Deluxe");
 manufacturerBrands.put("Odyssey", brandModels);
 Manufacturer manufacturer = new
 Manufacturer(manufacturerBrands);
 data.put("Honda", manufacturer);
 brandModels = new ArrayList();
 brandModels.add("LXE");
 brandModels.add("LX");
 manufacturerBrands = new HashMap();
 manufacturerBrands.put("Altima", brandModels);
 brandModels = new ArrayList();
 brandModels.add("NX");
 brandModels.add("EXE");
 manufacturerBrands.put("Sentra", brandModels);
 manufacturer = new Manufacturer(manufacturerBrands);
 data.put("Nissan", manufacturer);
 brandModels = new ArrayList();
 brandModels.add("E300");
 brandModels.add("E500");

Interactive Forms

[82]

 manufacturerBrands = new HashMap();
 manufacturerBrands.put("E-Class", brandModels);
 brandModels = new ArrayList();
 brandModels.add("C250");
 brandModels.add("C300");
 manufacturerBrands.put("C-Class", brandModels);
 manufacturer = new Manufacturer(manufacturerBrands);
 data.put("Mercedes", manufacturer);
 }

5.	 Implement the service method for retrieving a list of manufacturers.
 public ArrayList getManufacturers()
 {
 ArrayList manufacturersList = new ArrayList();
 for (Iterator iter=data.keySet().iterator(); iter.hasNext();)
 {
 manufacturersList.add((String) iter.next());
 }
 return manufacturersList;
 }

6.	 Implement the service method for retrieving the list of brands offered by
a manufacturer.

 public ArrayList getBrands(String manufacturer)
 {
 ArrayList brandsList = new ArrayList();
 for (Iterator iter = ((Manufacturer)data.get(manufacturer))
 .getBrands().keySet().iterator(); iter.hasNext();)
 {
 brandsList.add((String) iter.next());
 }
 return brandsList;
 }

7.	 Implement the service method for retrieving the models offered by a
manufacturer for a particular brand.

 public ArrayList getModels(String manufacturer, String brand)
 {
 ArrayList modelsList = new ArrayList();
 Manufacturer mfr = (Manufacturer) data.get(manufacturer);
 HashMap mfrBrands = (HashMap) mfr.getBrands();
 for (Iterator iter = ((ArrayList)
 mfrBrands.get(brand)).iterator(); iter.hasNext();)
 {

Chapter 4

[83]

 modelsList.add((String) iter.next());
 }
 return modelsList;
 }

8.	 Create the user interface for this application in a new Java file named
DynamicListsPanel.java in the com.packtpub.gwtbook.samples.
client.panels package. Create three Grid widgets to hold the
manufacturers, brands, and models information and add them to the main
panel. Create the service class that we are going to invoke.

 Grid manufacturers = new Grid(5, 1);
 Grid brands = new Grid(5, 1);
 Grid models = new Grid(5, 1);
 final DynamicListsServiceAsync dynamicListsService =
 (DynamicListsServiceAsync) GWT.create
 (DynamicListsService.class);

9.	 Add a private method for clearing out the panels.
 public void clearSelections(Grid grid, boolean clearData)
 {
 for (int i = 0; i < grid.getRowCount(); i++)
 {
 if (clearData)
 {
 grid.setText(i, 0, " ");
 }
 }
 }

10.	 In the constructor for the DynamicListsPanel, create a new
HorizontalPanel that we will use as the container for the widgets that we
are adding to the user interface. Also, create the service target and set its
entry point.

 HorizontalPanel workPanel = new HorizontalPanel();
 ServiceDefTarget endpoint = (ServiceDefTarget)
 dynamicListsService;
 endpoint.setServiceEntryPoint("/Samples/dynamiclists");

11.	 In the same constructor, add an event handler to listen for clicks on the Select
Manufacturer table.

 manufacturers.addTableListener(new TableListener()
 {
 public void onCellClicked
 (SourcesTableEvents sender,
 int row, int cell)

Interactive Forms

[84]

 {
 clearSelections(manufacturers,
 false);
 clearSelections(brands, true);
 clearSelections(models, true);
 selectedManufacturer = row;
 AsyncCallback callback = new
 AsyncCallback()
 {
 public void onSuccess(Object
 result)
 {
 brands.clear();
 int row = 0;
 for (Iterator iter =
 ((ArrayList) result).
 iterator();
 iter.hasNext();)
 {
 brands.setText(row++, 0,
 (String) iter.next());
 }
 }
 public void onFailure(Throwable
 caught)
 {
 Window.alert("Error calling
 the Dynamic Lists service to
 get the brands." +
 caught.getMessage());
 }
 };
 dynamicListsService.getBrands
 (manufacturers.getText(row,
 cell),callback);
 }
 });

12.	 In the same constructor, add an event handler to listen for clicks on the Select
Brand table.

 brands.addTableListener
 (new TableListener()
 {
 public void onCellClicked
 (SourcesTableEvents sender, int row, int cell)

Chapter 4

[85]

 {
 clearSelections(brands, false);
 clearSelections(models, true);
 AsyncCallback callback = new
 AsyncCallback()
 {
 public void onSuccess(Object result)
 {
 models.clear();
 int row = 0;
 for (Iterator iter = ((ArrayList)
 result).iterator(); iter.hasNext();)
 {
 models.setText(row++, 0, (String)
 iter.next());
 }
 }
 public void onFailure(Throwable caught)
 {
 Window.alert("Error calling the Dynamic
 Lists service to get the models." +
 caught.getMessage());
 }
 };
 dynamicListsService.getModels
 (manufacturers.getText
 (selectedManufacturer, cell),
 brands.getText(row, cell), callback);
 }
 });

13.	 Also in the constructor, add a listener to the Select Models table to clear out
the selections when a model is selected. Load the Select Manufacturer table
with data when the application starts.

 models.addTableListener(new TableListener()
 {
 public void onCellClicked
 (SourcesTableEvents sender, int row,
 int cell)
 {
 clearSelections(models, false);
 models.getCellFormatter()
 .setStyleName(row, cell,
 "dynamicLists-Selected");

Interactive Forms

[86]

 }
 });
 AsyncCallback callback = new AsyncCallback()
 {
 public void onSuccess(Object result)
 {
 int row = 0;
 for (Iterator iter = ((ArrayList) result).iterator();
 iter.hasNext();)
 {
 manufacturers.setText(row++, 0, (String) iter.next());
 }
 }
 public void onFailure(Throwable caught)
 {
 Window.alert("Error calling the Dynamic Lists service to
 get the manufacturers." + caught.getMessage());
 }
 };
 dynamicListsService.getManufacturers(callback);

14.	 In the constructor, create a VerticalPanel named itemPanel, and add each
table and its associated label to it. Create an itemPanel for each of the three
tables, set the style, and add them to the workPanel.

 VerticalPanel itemPanel = new VerticalPanel();
 Label itemLabel = new Label("Select Manufacturer");
 itemLabel.setStyleName("dynamicLists-Label");
 itemPanel.add(itemLabel);
 itemPanel.add(manufacturers);
 workPanel.add(itemPanel);
 itemPanel = new VerticalPanel();
 itemLabel = new Label("Select Brand");
 itemLabel.setStyleName("dynamicLists-Label");
 itemPanel.add(itemLabel);
 itemPanel.add(brands);
 workPanel.add(itemPanel);
 itemPanel = new VerticalPanel();
 itemLabel = new Label("Models");
 itemLabel.setStyleName("dynamicLists-Label");
 itemPanel.add(itemLabel);
 itemPanel.add(models);
 workPanel.add(itemPanel);
 manufacturers.setStyleName("dynamicLists-List");

Chapter 4

[87]

 brands.setStyleName("dynamicLists-List");
 models.setStyleName("dynamicLists-List");
 workPanel.setStyleName("dynamicLists-Panel");

15.	 Finally, in the constructor, create a little info panel that displays descriptive
text about this application, so that we can display this text when this sample
is selected in the list of available samples in our Samples application. Add
the info panel and the work panel to a dock panel, and set the widget.

 HorizontalPanel infoPanel = new HorizontalPanel();
 infoPanel.add(new HTML(
 "<div class='infoProse'>This example
 demonstrates the creation of dynamic
 lists. You select an item from the first
 list and corresponding items are retrieved
 asynchronously from the server to display
 in the second list. You can then select an
 item in the second list to get another
 selection of items. In this particular
 example, we retrieve car brand by
 manufacturer, and then get and display the
 specific models for the selected
 brand.</div>"));
 DockPanel workPane = new DockPanel();
 workPane.add(infoPanel, DockPanel.NORTH);
 workPane.add(workPanel, DockPanel.CENTER);
 workPane.setCellHeight(workPanel, "100%");
 workPane.setCellWidth(workPanel, "100%");
 initWidget(workPane);

16.	 Add the service to the module file for the Samples application—Samples.
gwt.xml in the com.packtpub.gwtbook.samples package.

 <servlet path="/dynamiclists" class=
 "com.packtpub.gwtbook.samples.server.DynamicListsServiceImpl"/>

Interactive Forms

[88]

Here is a screenshot of the application when we have selected one of the
manufacturers—Mercedes, and one of its brands—E-class:

What Just Happened?
We create a list of the Manufacturer objects, one per manufacturer. Each of these
Manufacturer objects contains a HashMap named brands, which contains an
ArrayList of models for that particular brand. This data structure that we have
just created contains all the information we need regarding the brands and models
offered by a manufacturer. In an actual application this data would usually be
retrieved from an enterprise data source. For instance, here is how we build up the
data for the manufacturer Mercedes:

brandModels = new ArrayList();
brandModels.add("E300");
brandModels.add("E500");
manufacturerBrands = new HashMap();
manufacturerBrands.put("E-Class", brandModels);
brandModels = new ArrayList();
brandModels.add("C250");
brandModels.add("C300");
manufacturerBrands.put("C-Class", brandModels);
manufacturer = new Manufacturer(manufacturerBrands);
data.put("Mercedes", manufacturer);

Chapter 4

[89]

We then implement the three service methods from the interface to return a list
of manufacturers, a list of brands for a given manufacturer, and finally a list of
models for a given manufacturer and brand. Each of these methods navigates the
Manufacturer objects, and retrieves and returns a list with the necessary information.
When we request a list of models for a given brand and manufacturer, the service
method implementation returns the list by navigating the manufacturers list like this:

Manufacturer mfr = (Manufacturer) data.get(manufacturer);
HashMap mfrBrands = (HashMap) mfr.getBrands();
for (Iterator iter = ((ArrayList) mfrBrands.get(brand)).iterator();
 iter.hasNext();)
{
 modelsList.add((String) iter.next());
}
return modelsList;

The user interface consists of three Grid widgets. A Grid is another kind of a table
widget that can contain text, HTML, or a child widget within its cells. When the
application is initialized, the list of manufacturers is initially retrieved from the
DynamicListsService and the manufacturers grid is filled with the data. An
event handler is registered to listen for clicks in the grids. When an item in the
manufacturers grid is clicked, we clear the brands grid first and then invoke the
getBrands() method on the service and load the brands grid with the retrieved
information. When the user selects an item from the brands grid by clicking on it,
we first clear the models grid and then we invoke the getModels() method on the
service and load the models grid with the retrieved information. Every time we make
a selection in any of the grids, we were able to retrieve all this information using
GWT without any page refreshes or page submissions!

Flickr-Style Editable Labels
Flickr (http://flickr.com/) is one of the most innovative Web 2.0 sites on the
Internet. Its use of AJAX makes this website a pleasure to use. A prime example of
this is the label widget that is displayed below any image that you add to your flickr
account. It looks like a simple label, but when you hover the cursor over it, it changes
color indicating that it is more than a label. When you click on it, it transforms into
a text box where you can edit the text in the label! You even get buttons to make
your changes persist or cancel to discard your changes. After you save or cancel,
it transforms back into a label again. Try it out. It is really neat! This is a great way
of combining multiple HTML controls—a label, text box, and buttons into one
compound control that saves valuable space on the web page, while providing the
necessary functionality in a very user-friendly manner. In this section, we are going
to recreate the flickr-style label using the widgets available to us in GWT.

Interactive Forms

[90]

Time for Action—A Custom Editable Label
We are going to create a label that is dynamically converted into an editable text
box when you click on it. It will also provide you with the ability to save changes
or discard changes. If you modify the text and save the changes, the label text will
be changed, otherwise the original text will be retained, and the text box will be
transformed back into a label. It is a very innovative user interface and you really
need to use it to appreciate it!

1.	 Create a new Java file named FlickrEditableLabelPanel.java in the com.
packtpub.gwtbook.samples.client.panels package. Create an image, a
label, a text box and two buttons for the user interface.

 private Label originalName;
 private String originalText;
 private Button saveButton;
 private Button cancelButton;
 private Image image = new Image("images/sample.jpg");
 private Label orLabel = new Label("or");

2.	 Create a private method for displaying the text box along with the buttons
while hiding the label. This is what will essentially transform the label into a
text box with buttons!

 private void ShowText()
 {
 originalText = originalName.getText();
 originalName.setVisible(false);
 saveButton.setVisible(true);
 orLabel.setVisible(true);
 cancelButton.setVisible(true);
 newName.setText(originalText);
 newName.setVisible(true);
 newName.setFocus(true);
 newName.setStyleName("flickrPanel-textBox-edit");
 }

3.	 In the constructor for FlickrEditableLabelPanel, create an event handler
that listens for a click on the label, and invokes the above method.

 originalName.addClickListener(new ClickListener()
 {
 public void onClick(Widget sender)
 {
 ShowText();
 }
 });

Chapter 4

[91]

4.	 Also, in the constructor, create an event handler that listens for a mouse
hover and modifies the label style to provide a visual cue to the user to click
on the label.

 originalName.addMouseListener(new MouseListener()
 {
 public void onMouseDown
 (Widget sender, int x, int y)
 {
 }
 public void onMouseEnter
 (Widget sender)
 {
 originalName.setStyleName
 "flickrPanel-label-hover");
 }
 public void onMouseLeave
 (Widget sender)
 {
 originalName.setStyleName
 ("flickrPanel-label");
 }
 public void onMouseMove
 (Widget sender, int x, int y)
 {
 }
 public void onMouseUp
 (Widget sender, int x, int y)
 {
 }
 });

5.	 Create a text box for typing in the new name in the constructor and create an
event handler that listens for the return key and escape key when the focus is
in the text box, and either saves the change or cancels out.

 newName.addKeyboardListener(new KeyboardListenerAdapter()
 {
 public void onKeyPress(Widget
 sender, char keyCode, int
 modifiers)
 {
 switch (keyCode)
 {
 case KeyboardListenerAdapter.
 KEY_ENTER:saveChange();
 break;

Interactive Forms

[92]

 case KeyboardListenerAdapter.
 KEY_ESCAPE:cancelChange();
 break;
 }
 }
 });

6.	 Create an event handler in the constructor to listen for a click on the save
button and save the changes.

 saveButton.addClickListener(new ClickListener()
 {
 public void onClick(Widget sender)
 {
 saveChange();
 }
 });

7.	 Create an event handler in the constructor to listen for a click on the cancel
button and discard any changes made.

 cancelButton.addClickListener(new ClickListener()
 {
 public void onClick(Widget sender)
 {
 cancelChange();
 }
 });

8.	 In the constructor, set the visibility of the widgets when the application is
first loaded. When the user interface is first displayed, we want the label to
be shown and everything else hidden.

 originalName.setVisible(true);
 newName.setVisible(false);
 saveButton.setVisible(false);
 orLabel.setVisible(false);
 cancelButton.setVisible(false);

9.	 Finally, in the constructor, create a HorizontalPanel named buttonPanel
and add the widgets that we created to it. Create a VerticalPanel named
workPanel and add the buttonPanel to it. Create a little info panel that
displays descriptive text about this application, so that we can display
this text when this sample is selected in the list of available samples in our
Samples application. Add the info panel and the work panel to a dock panel,
and initialize the widget.

Chapter 4

[93]

 HorizontalPanel buttonPanel = new HorizontalPanel();
 buttonPanel.setStyleName("flickrPanel-buttonPanel");
 buttonPanel.add(saveButton);
 buttonPanel.add(orLabel);
 buttonPanel.add(cancelButton);
 DockPanel workPane = new DockPanel();
 workPane.add(infoPanel, DockPanel.NORTH);
 VerticalPanel workPanel = new VerticalPanel();
 workPanel.setStyleName("flickrPanel");
 workPanel.add(image);
 workPanel.add(originalName);
 workPanel.add(newName);
 workPanel.add(buttonPanel);
 workPane.add(workPanel, DockPanel.CENTER);
 workPane.setCellHeight(workPanel, "100%");
 workPane.setCellWidth(workPanel, "100%");
 initWidget(workPane);

10.	 Create a private method for displaying the label and hiding the text. Now we
are hiding the label and displaying our nice text-editing interface with the
text box and the buttons for saving or discarding changes made.

 private void showLabel()
 {
 originalName.setVisible(true);
 saveButton.setVisible(false);
 orLabel.setVisible(false);
 cancelButton.setVisible(false);
 newName.setVisible(false);
 }

11.	 Create a private method for saving the changes.
 private void saveChange()
 {
 originalName.setText(newName.getText());
 showLabel();
 // This is where you can call an RPC service to update
 // a db or call some other service to propagate
 // the change. In this example we just change the
 // text of the label.
 }

Interactive Forms

[94]

12.	 Create a method for discarding the changes.
 public void cancelChange()
 {
 originalName.setText(originalText);
 showLabel();
 }

This is what the application looks like when you visit the page:

Chapter 4

[95]

If you click on the label under the image, it will be converted to a text box with a save
and cancel button. You can modify the text and save changes or click on cancel to
change back to a label.

What Just Happened?
We create an user interface that consists of an image with a label under it, a text box,
a save button, a label, and a cancel button. An event handler is registered to listen for
clicks on the label. When the user clicks on the label, the event handler is triggered,
and we hide the label, and set the text box and the buttons to be visible.

originalText = originalName.getText();
originalName.setVisible(false);
saveButton.setVisible(true);
orLabel.setVisible(true);

Interactive Forms

[96]

cancelButton.setVisible(true);
newName.setText(originalText);
newName.setVisible(true);
newName.setFocus(true);
newName.setStyleName("flickrPanel-textBox-edit");

If we modify the text and click save, the event handler that is listening for the click
on the save button saves the text as the values of the label and once again displays
the label and hides all the other widgets.

originalName.setText(newName.getText());
originalName.setVisible(true);
saveButton.setVisible(false);
orLabel.setVisible(false);
cancelButton.setVisible(false);
newName.setVisible(false);

If we discard the changes by clicking the cancel button, the event handler that is
listening for the click on the cancel button will display the label and hide all the
other widgets.

originalName.setText(originalText);
originalName.setVisible(true);
saveButton.setVisible(false);
orLabel.setVisible(false);
cancelButton.setVisible(false);
newName.setVisible(false);

In this application we do not invoke any services to propagate the change to a
server-side process, but we can easily do that by adding the code to invoke a service
when we save the change made to the text.

Summary
In this chapter we took a look at creating a live search application. Then we took a
look at creating a password strength checker. Also, we created forms that can be
auto-filled with information from the server. We also created applications where
tables were sorted. Then before creating a flickr-style editable label, we created
dynamically populating lists based on user selection.

In the next chapter, we are going to look at creating responsive complex interfaces,
which use some of the more advanced features of GWT.

Responsive Complex
Interfaces

In this chapter, we will create user interfaces that demonstrate some advanced
features of GWT.

The tasks that we will address are:

Pageable tables
Editable tree nodes
Log spy
Sticky notes
Jigsaw puzzle

Pageable Tables
We are going to start exploring more complex GWT user interfaces in this chapter.
We routinely come across some cases in today's business world where we need
to use tables to display a large amount of data. Displaying all of the available data
in a table at once is not a viable option, either from the point of view of usability or
from a practical perspective.

We can also potentially lock up the browser that is displaying the table, if the dataset
retrieved is of a large enough size. A much better way to display this data to users
would be to show them a fixed number of results first, and then provide them with
the mechanism to navigate through the results; so that they can page back and
forward through the data at their leisure. This makes for a nicer user experience, and
also loads the smaller dataset much faster.

•

•

•

•

•

Responsive Complex Interfaces

[98]

In this section, we are going to create an application that provides this functionality.
As a part of this sample, we are also going to learn how to use an embedded
database with a GWT application.

Time for Action—Interfacing a Dataset
We will create an application that will let us retrieve data in chunks or pages, instead
of getting everything at once. We will do this by retrieving the first ten items as a
result of a query, and provide a way for the user to either go forward or backward
through this set of results. The steps are as follows:

1.	 Create a new Java file named PageableDataService.java in the
com.packtpub.gwtbook.samples.client package. Define the
PageableDataService interface with one method to retrieve the
customer data, by providing a start index and the number of items to
retrieve as parameters:

 public interface PageableDataService extends RemoteService
 {
 public List getCustomerData(int startIndex, int numItems);
 }

2.	 Create the asynchronous version of this service definition interface in a new
Java file named PageableDataServiceAsync.java in the com.packtpub.
gwtbook.samples.client package:

 public interface PageableDataServiceAsync
 {
 public void getCustomerData(int startIndex, int numItems,
 AsyncCallback callback);
 }

3.	 Create the implementation of our pageable data service in a new Java file
named PageableDataServiceImpl.java in the com.packtpub.gwtbook.
samples.server package. Create a private ArrayList object named
customerData that will be the container for the customer data:

 private ArrayList customerData = new ArrayList();

4.	 It will be simpler if we use a database for storing our data instead of
managing data structures in our service. We are going to use HSQLDB—a
small embedded database for storing the data that we will be accessing in
this service. First, load the data from the pre-populated database into a list:

Chapter 5

[99]

 private void loadData()
 {
 Class.forName("org.hsqldb.jdbcDriver");
 Connection conn = DriverManager.getConnection
 ("jdbc:hsqldb:file:samplesdb", "sa", "");
 Statement st = conn.createStatement();
 ResultSet rs = st.executeQuery("SELECT * FROM users");
 for (; rs.next();)
 {
 ArrayList customer = new ArrayList();
 customer.add((String) rs.getObject(2));
 customer.add((String) rs.getObject(3));
 customer.add((String) rs.getObject(4));
 customer.add((String) rs.getObject(5));
 customer.add((String) rs.getObject(6));
 customerData.add(customer);
 }
 st.execute("SHUTDOWN");
 conn.close();
 }

5.	 We call the loadData() function in the constructor for the service, so that all
the required data is loaded and is available after the service is initialized:

 public PageableDataServiceImpl()
 {
 super();
 loadData();
 }

6.	 Now add the service-implementation method that will send back only the
requested subset of the data:

 public ArrayList getCustomerData(int startIndex, int numItems)
 {
 ArrayList customers = new ArrayList();
 for (int i = startIndex - 1; i < (startIndex + numItems); i++)
 {
 customers.add((ArrayList) customerData.get(i));
 }
 return customers;
 }

Responsive Complex Interfaces

[100]

7.	 Now create the user interface for interacting with the pageable data service.
Create a new Java file named PageableDataPanel.java in the com.
packtpub.gwtbook.samples.client.panels package. As mentioned at the
beginning of the previous chapter, each of the user interfaces created in this
book will be added to a sample application that is similar to the KitchenSink
application that is available as one of the sample projects with the GWT
download. That is why we will create each user interface as a panel that
extends the SamplePanel class, and we will add the created panel to the list
of sample panels in the sample application. The SamplePanel class and the
structure of our Samples application are discussed at the beginning of the
previous chapter. Add a FlexTable class for displaying the data, along with
buttons for paging forward and backward through the data. Create an array of
strings to store the column headers, and an integer variable to store the start
index into the customer data list:

 private FlexTable customerTable = new FlexTable();
 private Button backButton = new Button("<<<");
 private Button forwardButton = new Button(">>");
 private String[] customerTableHeaders = new String[]
 { "Name", "City","Zip Code", "State", "Phone" };
 private int startIndex = 1;

8.	 Create the service class that we will use for invoking the service to get
the data:

 final PageableDataServiceAsync pageableDataService =
 (PageableDataServiceAsync)
 GWT.create(PageableDataService.class);
 ServiceDefTarget endpoint = (ServiceDefTarget)
 pageableDataService;
 endpoint.setServiceEntryPoint(GWT.getModuleBaseURL() +
 "pageabledata");

9.	 Add a private method for clearing out the table before we populate it
with data:

 private void clearTable()
 {
 for (int row=1; row<customerTable.getRowCount(); row++)
 {
 for (int col=0; col<customerTable.getCellCount(row); col++)
 {
 customerTable.clearCell(row, col);
 }
 }
 }

Chapter 5

[101]

10.	 Add a private method for updating the table with data retrieved from
the service:

 private void update(int startIndex)
 {
 AsyncCallback callback = new AsyncCallback()
 public void onSuccess(Object result)
 {
 ArrayList customerData = (ArrayList) result;
 int row = 1;
 clearTable();
 for (Iterator iter=customerData.iterator(); iter.hasNext();)
 {
 ArrayList customer = (ArrayList) iter.next();
 customerTable.setText(row, 0, (String) customer.get(0));
 customerTable.setText(row, 1, (String) customer.get(1));
 customerTable.setText(row, 2, (String) customer.get(2));
 customerTable.setText(row, 3, (String) customer.get(3));
 customerTable.setText(row, 4, (String) customer.get(4));
 row++;
 }
 }
 public void onFailure(Throwable caught)
 {
 Window.alert("Error when invoking the pageable data service
 : " + caught.getMessage());
 }
 pageableDataService.getCustomerData(startIndex, 10, callback);
 }

11.	 In the constructor for PageableDataPanel, create a VerticalPanel object
that will be the container panel for this user interface, and initialize the table
that will hold the customer data:

 VerticalPanel workPanel = new VerticalPanel();
 customerTable.setWidth(500 + "px");
 customerTable.setBorderWidth(1);
 customerTable.setCellPadding(4);
 customerTable.setCellSpacing(1);
 customerTable.setText(0, 0, customerTableHeaders[0]);
 customerTable.setText(0, 1, customerTableHeaders[1]);
 customerTable.setText(0, 2, customerTableHeaders[2]);
 customerTable.setText(0, 3, customerTableHeaders[3]);
 customerTable.setText(0, 4, customerTableHeaders[4]);

Responsive Complex Interfaces

[102]

12.	 Create an inner navigation bar that holds the back and forward buttons:
 HorizontalPanel innerNavBar = new HorizontalPanel();
 innerNavBar.setStyleName("pageableData-NavBar");
 innerNavBar.setSpacing(8);
 innerNavBar.add(backButton);
 innerNavBar.add(forwardButton);

13.	 Add an event handler to listen for clicks on the back button to
the constructor:

 backButton.addClickListener(new ClickListener()
 {
 public void onClick(Widget sender)
 {
 if (startIndex >= 10)
 startIndex -= 10;
 update(startIndex);
 }
 });

14.	 Add an event handler to listen for clicks on the forward button to
the constructor:

 forwardButton.addClickListener(new ClickListener()
 {
 public void onClick(Widget
 sender)
 {
 if (startIndex < 40)
 {
 startIndex += 10;
 update(startIndex);
 }
 }
 });

15.	 Finally, in the constructor, add the customer data table and the navigation
bar to the work panel. Create a little info panel that displays descriptive text
about this application, so that we can display the text when this sample is
selected in the list of available samples in our Samples application. Add the
info panel and the work panel to a dock panel, and initialize the widget. Call
the update() method, so that we can get the first batch of customer data and
display it when the page is initially loaded:

 workPanel.add(innerNavBar);
 HorizontalPanel infoPanel = new HorizontalPanel();
 infoPanel.add(new HTML("<div class='infoProse'>Create lists
 that can be paged by fetching data from the server on demand

Chapter 5

[103]

 we go forward and backward in the list.</div>"));
 workPanel.add(customerTable);
 DockPanel workPane = new DockPanel();
 workPane.add(infoPanel, DockPanel.NORTH);
 workPane.add(workPanel, DockPanel.CENTER);
 workPane.setCellHeight(workPanel, "100%");
 workPane.setCellWidth(workPanel, "100%");
 initWidget(workPane);
 update(1);

16.	 Add the service to the module file for the Samples application—Samples.
gwt.xml—in the com.packtpub.gwtbook.samples package:

 <servlet path="/Samples/pageabledata" class=
 "com.packtpub.gwtbook.samples.server.PageableDataServiceImpl"/>

Here is the user interface for the application:

Click on the buttons to go either forward or backward in the list.

Responsive Complex Interfaces

[104]

What Just Happened?
We are using an embedded database (Hypersonic SQL—HSQLDB—http://www.
hsqldb.org) containing the customer data that we will page through, displaying
only ten results at a time. All the components required to use this database are
contained in the hsqldb.jar file. In order to use it in a GWT project, we need to
ensure that the hsqldb.jar file is added to the buildpath for the Eclipse project.
Then it will be available on the classpath, when you either run or debug the project.

The in-memory version of HSQLDB is being used, which means that the database
runs in the same Java Virtual Machine as our GWT application. After initializing the
JDBC driver for HSQLDB, we get a connection to a database named samplesdb, by
specifying the database file path. If this file does not exist, it will be created, and if it
does exist, the database will be loaded by the database engine. The file path provided
is relative to the directory from which this JVM was started; so in our case, the
database file will be created in the root directory of our project.

Class.forName("org.hsqldb.jdbcDriver");
Connection conn = DriverManager.getConnection
("jdbc:hsqldb:file:samplesdb", "sa", "");

The data from the customer table is retrieved and stored in a local ArrayList. This
list data structure contains one ArrayList per row in the customers table. It will be
used as the base for retrieving sets of information. Each request to retrieve customer
data will provide a start index and the number of items to be retrieved. The start
index tells us the offset into the ArrayList, while the number of items limits the
results returned.

The user interface for the application displays a table along with two buttons. The
back button pages backward through the dataset, while the forward button lets us
move forward through the list. When the page is loaded, an asynchronous call is
made to the PageableDataService interface to get the first ten items and display
them in the table. Event handlers are registered to listen for clicks on the two buttons.
Clicking on either of the buttons triggers a call to the remote service to get the next
set of items. We store the start index of the currently displayed table items in a
private variable. This variable is decremented when we click on the back button, and
incremented when we click on the forward button. It is provided as a parameter to
the remote method when we request the next set of data. The result from the request
is used to populate the table on the page.

ArrayList customerData = (ArrayList) result;
int row = 1;
clearTable();
for (Iterator iter = customerData.iterator(); iter.hasNext();)
{

Chapter 5

[105]

 ArrayList customer = (ArrayList) iter.next();
 customerTable.setText(row, 0, (String) customer.get(0));
 customerTable.setText(row, 1, (String) customer.get(1));
 customerTable.setText(row, 2, (String) customer.get(2));
 customerTable.setText(row, 3, (String) customer.get(3));
 customerTable.setText(row, 4, (String) customer.get(4));
 row++;
}

We clear out the data in the table and then add new data by setting the text for
each column.

Editable Tree Nodes
Tree controls provide a very user-friendly way to display a set of hierarchical
data—the common examples being the directory structure on your file system or the
nodes in an XML document. GWT provides a tree widget that can display this data,
but does not provide any way to modify the nodes of the tree itself. One of the most
common uses of modifying a displayed node in a tree control is the renaming of files
and folders in your file explorer, on your favorite platform. We are going to create an
application that shows how to edit the displayed node in a tree by just clicking on it
and typing in the new text. This sample also demonstrates how easy it is to extend
GWT to make it do some of the things that are not provided out of the box.

Time for Action—Modifying the Node
We will create an application that contains a tree that behaves similarly to the
Windows file explorer, by allowing us to click on a node and edit the text for the
node. The steps are as follows:

1.	 Create the user interface for this application in a new Java file named
EditableTreeNodesPanel.java in the com.packtpub.gwtbook.samples.
client.panels package. This class also extends the SamplePanel class like
all the other user interfaces in this book. A SamplePanel class extends the
Composite class, and is a simple way to create several user interfaces, and
add each of them to our Samples application, so that we can display a list of
all the applications in a manner similar to the KitchenSink sample project
from the GWT distribution. We have described the sample application
structure in a section at the beginning of Chapter 4. Create a tree, a text box,
and a label. Finally, create variables for the work panel and the work pane:

 private Tree editableTree = new Tree();
 private TreeItem currentSelection = new TreeItem();

Responsive Complex Interfaces

[106]

 private TextBox textbox = new TextBox();
 private AbsolutePanel workPanel = new AbsolutePanel();
 private DockPanel workPane = new DockPanel();

2.	 Create a private method that populates the tree with some nodes:
 private void initTree()
 {
 TreeItem root = new TreeItem("root");
 root.setState(true);
 int index = 100;
 for (int j = 0; j < 10; j++)
 {
 TreeItem item = new TreeItem();
 item.setText("File " + index++);
 root.addItem(item);
 }
 editableTree.addItem(root);
 }

3.	 In the constructor for EditableTreeNodesPanel, initialize the tree and add
an event handler for listening to clicks on the tree node:

 initTree();
 editableTree.addTreeListener(new TreeListener()
 {
 public void onTreeItemSelected(TreeItem item)
 {
 if (textbox.isAttached())
 {
 if(!currentSelection.getText().equals(textbox.getText()))
 {
 currentSelection.setText(textbox.getText());
 }
 workPanel.remove(textbox);
 }
 textbox.setHeight(item.getOffsetHeight() + "px");
 textbox.setWidth("90px");
 int xpos = item.getAbsoluteLeft() - 133;
 int ypos = item.getAbsoluteTop() - 115;
 workPanel.add(textbox, xpos, ypos);
 textbox.setText(item.getText());
 textbox.setFocus(true);
 currentSelection = item;
 textbox.addFocusListener(new FocusListener()
 {

Chapter 5

[107]

 public void onLostFocus(Widget
 sender)
 {
 if (sender.isAttached())
 {
 if (!currentSelection.getText()
 .equals(textbox.getText()))
 {
 currentSelection.setText
 (textbox.getText());
 }
 workPanel.remove(textbox);
 }
 }
 });
 }
 public void onTreeItemStateChanged(TreeItem item)
 {
 }
 }

4.	 In the constructor, create a little info panel that displays descriptive text
about this application, so that we can display the text when this sample is
selected in the list of available samples in our Samples application. Add the
info panel and the work panel to the dock panel, and initialize the widget:

 HorizontalPanel infoPanel = new HorizontalPanel();
 infoPanel.add(new HTML
 ("<div class='infoProse'>This sample shows a tree whose nodes
 can be edited by clicking on a tree node.</div>"));
 workPanel.add(editableTree);
 workPane.add(infoPanel, DockPanel.NORTH);
 workPane.add(workPanel, DockPanel.CENTER);
 workPane.setCellHeight(workPanel, "100%");
 workPane.setCellWidth(workPanel, "100%");
 initWidget(workPane);

Responsive Complex Interfaces

[108]

Run the application:

You can click on a tree node and change the text in the text box that is displayed.

What Just Happened?
Tree controls are a nice way to visualize and explore hierarchical data. In this sample,
we create a tree with ten nodes, each node containing a string value. We register an
event handler that listens for selection events on the tree nodes. When a tree node
is selected, we create a text box that contains the same text as the tree node, and
position the text box over the tree node. The text box is positioned by retrieving the
left and top coordinates for the tree node. The currently selected tree node is stored
in a private variable. An event handler is registered to listen for focus events from
the newly added text box. When the text box loses focus, we take the current text and
modify the tree item value with it:

public void onLostFocus(Widget sender)
{
 if (sender.isAttached())
 {
 if (!currentSelection.getText().equals(textbox.getText()))
 {
 currentSelection.setText(textbox.getText());

Chapter 5

[109]

 }
 workPanel.remove(textbox);
 }
}

The isAttached() function enables us to check if the sender widget is actually
attached to the root panel, or if it has already been destroyed. We avoid setting
anything on the widget if it is no longer attached to the panel. That's all! GWT makes
it that simple to add support for inline editing of tree nodes. The current GWT
release does not yet support adding widgets other than strings to the tree as a tree
item. Once that support is available, it would be simple to refactor this example to
use text boxes as tree nodes, and make them editable or non-editable based on the
click event.

Log Spy
In this example, we will look how a server can be polled, based on a time interval set
by the client. This will involve using the GWT Timer object, and is very useful for
situations where you need to perform an action on the server, based on a repeating
time interval, and then asynchronously update a section of the web page with the
results of the action. We will create a simple application that can monitor and display
the contents of a log file in real time.

Time for Action—Updating a Log File
Almost every application has log files that contain debugging information. This
information is usually read by logging in to a server, navigating to a folder
containing the log file, and then opening the file in a text editor to actually view
the contents. This is a tedious way of checking log files. The better and more
user-friendly way is to use GWT to create an application that can display the
contents of the log file in a web page. The contents are updated in real time, as
messages are added to the log file. The following steps will give us the desired result:

1.	 Create a new Java file named LogSpyService.java in the com.packtpub.
gwtbook.samples.client package. Define a LogSpyService interface with
two methods—one method for retrieving all log entries and one method for
retrieving only the new entries:

 public interface LogSpyService extends RemoteService
 {
 public ArrayList getAllLogEntries();
 public ArrayList getNextLogEntries();
 }

Responsive Complex Interfaces

[110]

2.	 Create the asynchronous version of this service definition interface in a new
Java file named LogSpyServiceAsync.java in the com.packtpub.gwtbook.
samples.client package:

 public interface LogSpyServiceAsync
 {
 public void getAllLogEntries(AsyncCallback callback);
 public void getNextLogEntries(AsyncCallback callback);
 }

3.	 Create the implementation of the log spy service in a new Java file named
LogSpyServiceImpl.java in the com.packtpub.gwtbook.samples.server
package. First create a private method for reading a log file, a variable for
holding the file pointer, and a variable with the name of the log file that you
want to read:

 private long filePointer = 0;
 private File logfile = new File("test2.log");
 private ArrayList readLogFile()
 {
 ArrayList entries = new ArrayList();
 RandomAccessFile file = new RandomAccessFile(logfile, "r");
 long fileLength = logfile.length();
 if (fileLength > filePointer)
 {
 file.seek(filePointer);
 String line = file.readLine();
 while (line != null)
 {
 line = file.readLine();
 if (line != null && line.length() > 0)
 {
 entries.add(line);
 }
 }
 filePointer = file.getFilePointer();
 }
 file.close();
 return entries;
 }

4.	 Add the two methods that implement the service interface:
 public ArrayList getAllLogEntries()
 {
 return readLogFile();
 }

Chapter 5

[111]

 public ArrayList getNextLogEntries()
 {
 try
 {
 Thread.sleep(1000);
 }
 catch (InterruptedException e)
 {
 e.printStackTrace();
 }
 return readLogFile();
 }

5.	 Now create the user interface for interacting with the log spy service. Create
a new Java file named LogSpyPanel.java in the com.packtpub.gwtbook.
samples.client.panels package. Create variables for the work panel, a text
box for setting the monitoring interval, a label, and Start and Stop buttons.
We will also need a Boolean flag to indicate the current status of monitoring.

 Public VerticalPanel workPanel = new VerticalPanel();
 public ListBox logSpyList = new ListBox();
 public TextBox monitoringInterval = new TextBox();
 public Label monitoringLabel = new Label(
 "Monitoring Interval :");
 public Button startMonitoring = new Button("Start");
 public Button stopMonitoring = new Button("Stop");
 private boolean isMonitoring = false;

6.	 Create panels that will contain the Start and Stop buttons, the text box and
the label for the monitoring interval, and a timer:

 private HorizontalPanel intervalPanel = new HorizontalPanel();
 private HorizontalPanel startStopPanel = new HorizontalPanel();
 private Timer timer;

7.	 Create a listbox for displaying the log messages, and the service interface that
we will be invoking to get the log entries:

 public ListBox logSpyList = new ListBox();
 ServiceDefTarget endpoint = (ServiceDefTarget) logSpyService;
 endpoint.setServiceEntryPoint GWT.getModuleBaseURL()
 + "logspy");

8.	 In the constructor, set the initial value of the monitoring interval text box to
1000, and disable the Stop button:

 monitoringInterval.setText("1000");
 stopMonitoring.setEnabled(false);

Responsive Complex Interfaces

[112]

9.	 Set the styles for the panels, the text box, and the label:
 intervalPanel.setStyleName("logSpyPanel");
 startStopPanel.setStyleName("logSpyStartStopPanel");
 monitoringLabel.setStyleName("logSpyLabel");
 monitoringInterval.setStyleName("logSpyTextbox");

10.	 Add an event handler to listen for clicks on the Start button, and invoke the
log spy service from the handler:

 startMonitoring.addClickListener(new ClickListener()
 {
 public void onClick(Widget sender)
 {
 if (!isMonitoring)
 {
 timer = new Timer()
 {
 public void run()
 {
 AsyncCallback callback = new AsyncCallback()
 {
 public void onSuccess(Object result)
 {
 ArrayList resultItems = (ArrayList) result;
 for (Iterator iter = resultItems.iterator();
 iter.hasNext();)
 {
 logSpyList.insertItem(((String)
 iter.next()), 0);
 logSpyList.setSelectedIndex(0);
 }
 }
 public void onFailure(Throwable caught)
 {
 Window.alert("Error while invoking the logspy
 service " + caught.getMessage());
 }
 };
 logSpyService.getNextLogEntries(callback);
 }
 };
 timer.scheduleRepeating(Integer.parseInt
 (monitoringInterval.getText()));
 isMonitoring = true;
 startMonitoring.setEnabled(false);

Chapter 5

[113]

 stopMonitoring.setEnabled(true);
 }
 }
 });

11.	 Add an event handler to listen for clicks on the Stop button and
stop monitoring:

 stopMonitoring.addClickListener(new ClickListener()
 {
 public void onClick(Widget sender)
 {
 if (isMonitoring)
 {
 timer.cancel();
 isMonitoring = false;
 startMonitoring.setEnabled(true);
 stopMonitoring.setEnabled(false);
 }
 }
 });

12.	 Limit the number of visible items in the list to eight items:
 logSpyList.setVisibleItemCount(8);

13.	 Finally, in the constructor, create a little info panel that displays descriptive
text about this application, so that we can display this text when this sample
is selected in the list of available samples, in our Samples application. Add
the monitoring interval panel and the start-stop buttons panel to the work
panel. Add the info panel and the work panel to the dock panel, and initialize
the widget:

 HorizontalPanel infoPanel = new HorizontalPanel();
 infoPanel.add(new HTML
 ("<div class='infoProse'>View a log file live as entries are
 written to it. This is similar in concept to the unix
 utility tail. The new entries are retrieved and added in
 real time to the top of the list. You can start and stop
 the monitoring, and set the interval in milliseconds for
 how often you want to check the file for new entries.
 </div>"));
 intervalPanel.add(monitoringLabel);
 intervalPanel.add(monitoringInterval);
 startStopPanel.add(startMonitoring);
 startStopPanel.add(stopMonitoring);
 workPanel.add(intervalPanel);

Responsive Complex Interfaces

[114]

 workPanel.add(startStopPanel);
 workPanel.add(logSpyList);
 DockPanel workPane = new DockPanel();
 workPane.add(infoPanel, DockPanel.NORTH);
 workPane.add(workPanel, DockPanel.CENTER);
 workPane.setCellHeight(workPanel, "100%");
 workPane.setCellWidth(workPanel, "100%");
 initWidget(workPane);

14.	 Add the service to the module file for the Samples application—Samples.
gwt.xml in the com.packtpub.gwtbook.samples package:

 <servlet path="/Samples/logspy"
 class="com.packtpub.gwtbook.samples.server.LogSpyServiceImpl"/>

Here is a screenshot of the application that displays the entries in the log
file—test.log:

As entries are added to this file, they will be added in real time to the list, with the
first item in the list being the latest log entry. You can monitor any file that you want.
Just change the value of the logFile variable in the LogSpyServiceImpl class to
contain the requisite file name.

Chapter 5

[115]

What Just Happened?
Log files are usually just text files that have messages appended to them, as
applications write to the log file. This sample is using a simple log file and can
be modified to use any file that you want to monitor. We read the file using a
RandomAccessFile class so that we can access only the sections of the file that we
want, without needing to read the whole file into memory every time. A private
variable that contains the last file pointer is stored in the class. This pointer is a
cursor into the file. We have a method readLogFile() that accesses the file and
reads only the data from the file pointer to the end of the file. Every time the file is
read, the pointer is updated to store the last read position.

RandomAccessFile file = new RandomAccessFile(logfile, "r");
long fileLength = logfile.length();
if (fileLength > filePointer)
{
 file.seek(filePointer);
 String line = file.readLine();
 while (line != null)
 {
 line = file.readLine();
 if (line != null && line.length() > 0)
 {
 entries.add(line);
 }
 }
 filePointer = file.getFilePointer();
}
file.close();

If the file has not been modified since we last read it, we return an empty list without
trying to read the file. Whenever the client makes a request to get the new log entries,
we read the file and return the new entries.

The user interface consists of a list box, a text box that can be used to specify how
often you want to monitor the log file, and buttons for starting and stopping the
monitoring of the file. When the Start button is clicked, we start a timer that is
scheduled to go off after the provided time interval. Every time the timer goes off,
we make a request to get the log entries, and then in the onSuccess() callback
method we add the returned entries to the listbox. We insert the log entry to the
list and then set the last added entry as the selected item, so it visually indicates the
latest item in the list:

logSpyList.insertItem(((String) iter.next()), 0);
logSpyList.setSelectedIndex(0);

Responsive Complex Interfaces

[116]

If we click the Stop button, the timer is canceled, and the monitoring is halted. We do
something very different here, compared to all the other samples. We call the service
on a repeating time interval based on the time interval set by the user in the text box.
So we make an asynchronous request every time the timer goes off. This technique
can be used to do some very useful things for updating portions or sections of a
page on a scheduled time interval by making synchronous calls to the server to get
fresh information.

Sticky Notes
The Document Object Model (DOM) describes the structure of an HTML document
in the form of a tree structure that can be accessed using a language such as
JavaScript. All the modern web browsers facilitate the access to a loaded web page
through DOM scripting. GWT provides a rich set of methods that enable you to
manipulate the DOM of a web page. We can even intercept and preview DOM events.
We are going to learn how to use the GWT DOM methods and dialog boxes,
leverage them to provide the ability to create sticky notes similar to the ubiquitous
post-it notes, and drag them around to place them anywhere in the browser window.

Time for Action—Playing with Sticky Notes
We will create sticky notes that can be moved around in your browser window and
placed anywhere. The steps are as follows:

1.	 Create a new Java file named StickyNotesPanel.java in the com.
packtpub.gwtbook.samples.client.panels package. Create a work
panel, a button for creating the note, a text box for the name of the note,
and variables to hold the x and y coordinates of the note. Also create an
integer variable to hold the amount by which the coordinates of a new note
are to be incremented:

 private HorizontalPanel workPanel = new HorizontalPanel();
 private Button createNote = new Button("Create Note");
 private TextBox noteTitle = new TextBox();
 private int noteLeft = 300;
 private int noteTop = 170;
 private int increment = 10;

2.	 Create a new class named StickyNote that extends DialogBox. In the
constructor for this class, set the title for the note if provided, and add a text
area that will be used to type in the actual note:

 public StickyNote(String title)
 {

Chapter 5

[117]

 super();
 if (title.length() == 0)
 {
 setText("New Note");
 }
 else
 {
 setText(title);
 }
 TextArea text = new TextArea();
 text.setText("Type your note here");
 text.setHeight("80px");
 setWidget(text);
 setHeight("100px");
 setWidth("100px");
 setStyleName(text.getElement(), "notesText", true);
 setStyleName("notesPanel");
 }

3.	 Create a method in the StickyNote class that intercepts the DOM events:
 public boolean onEventPreview(Event event)
 {
 int type = DOM.eventGetType(event);
 switch (type)
 {
 case Event.ONKEYDOWN:
 {
 return onKeyDownPreview((char) DOM.eventGetKeyCode(event),
 KeyboardListenerCollection.getKeyboardModifiers(event));
 }
 case Event.ONKEYUP:
 {
 return onKeyUpPreview((char) DOM.eventGetKeyCode(event),
 KeyboardListenerCollection.getKeyboardModifiers(event));
 }
 case Event.ONKEYPRESS:
 {
 return onKeyPressPreview((char) DOM.eventGetKeyCode(event),
 KeyboardListenerCollection.getKeyboardModifiers(event));
 }
 }
 return true;
 }

Responsive Complex Interfaces

[118]

4.	 In the constructor for the StickyNotesPanel class, create a little info panel
that displays descriptive text about this application, so that we can display
the text when this sample is selected in the list of available samples in our
Samples application. Add this class as a listener to click events on the Create
Note button. Add the button for creating the note along with the title text box
to the work panel. Add the info panel and the work panel to the dock panel,
and initialize the widget:

 HorizontalPanel infoPanel = new HorizontalPanel();
 infoPanel.add(new HTML
 ("<div class='infoProse'>Create sticky notes and drag them
 around to position any where in your browser window. Go
 ahead and try it !
 </div>"));
 createNote.addClickListener(this);
 createNote.setStyleName("notesButton");
 workPanel.add(createNote);
 noteTitle.setStyleName("notesTitle");
 workPanel.add(noteTitle);
 DockPanel workPane = new DockPanel();
 workPane.add(infoPanel, DockPanel.NORTH);
 workPane.add(workPanel, DockPanel.CENTER);
 workPane.setCellHeight(workPanel, "100%");
 workPane.setCellWidth(workPanel, "100%");
 initWidget(workPane);

5.	 Make the StickyNotesPanel class implement the ClickListener interface,
and add code to the onClick() method to create a new note when the Create
Note button is clicked:

 public void onClick(Widget sender)
 {
 StickyNote note = new StickyNote(noteTitle.getText());
 note.setPopupPosition(noteLeft + increment, noteTop +
 increment);
 increment = increment + 40;
 note.show();
 }

Chapter 5

[119]

Here is a screenshot of the application:

When you create several notes, you can drag the notes around and place them
anywhere on the browser window.

What Just Happened?
This sample demonstrates the ease with which you can generate some really cool
interfaces and applications using GWT. The sticky notes application creates notes on
your screen that you can drag around inside the web browser and place anywhere
you want. The user interface contains a text box for typing in the name of the
note, and a button for creating a new note with the provided name. If no name is
provided, it is created with a default name New Note.

Responsive Complex Interfaces

[120]

The note itself is a subclass of DialogBox. It has a title and a text area for typing in
the note. A DialogBox class inherits from a PopupPanel class, and implements the
EventPreview interface. We implement the onEventPreview() method, as given in
step 3, from this interface, so that we can preview all the browser events first, before
they are sent to their targets. That essentially means that our sticky notes panel sits at
the top of the browser event preview stack.

We preview the keyboard events and then pass them on, down to the target. This
enables us to take a dialog box that is modal, and introduce non-modal behavior to
it. If we do not do this, once we create the first note, the note will be modal, and will
not allow us to create another note by clicking on the Create button, unless we close
the note first.

Now the note passes on the events after previewing them to the underlying panel,
and we can create as many notes as we want. An event handler is registered to
listen for clicks on the Create Note button. When the button is clicked, a new note
is created and we set its position relative to the browser window, and then show it.
We maintain a private variable that contains the left position of the last created note,
so that we can stagger the position of the notes as we create them, as we have done
in step 5. This arranges the notes nicely on the screen so that the notes do not cover
each other.

As our notes inherit from DialogBox, they are draggable; we can drag them around
the screen, and position them anywhere we want!

Jigsaw Puzzle
The previous sample demonstrated some of the dragging capabilities and DOM
event previewing in GWT. In this example, we are going to use the same DOM
methods but a different way to intercept or preview the DOM events. We will
also demonstrate some of the absolute positioning capabilities in GWT by using
AbsolutePanel. We will be creating a simple Mona Lisa puzzle that can be solved
by dragging and rearranging the pieces of the puzzle.

Time for Action—Let's Create a Puzzle!
We will create a simple jigsaw puzzle, whose pieces were created by dividing a
Mona Lisa image into nine pieces. The steps are as follows:

1.	 Create a new Java file named JigsawPuzzlePanel.java in the com.
packtpub.gwtbook.samples.client.panels package that implements the
MouseListener interface. Create an AbsolutePanel class that will be the
main panel to which all the widgets will be added. Also add two variables to
store the x and y positions of the mouse cursor:

Chapter 5

[121]

 private AbsolutePanel workPanel = new AbsolutePanel();
 private boolean inDrag;
 private int xOffset;
 private int yOffset;

2.	 In the constructor for JigsawPuzzlePanel, add the Mona Lisa images to the
panel, and add the panel as a listener for mouse events from the images:

 Image monalisa = new Image("images/monalisa_face1_8.jpg");
 monalisa.addMouseListener(this);
 workPanel.add(monalisa, 60, 20);
 monalisa = new Image("images/monalisa_face1_7.jpg");
 monalisa.addMouseListener(this);
 workPanel.add(monalisa, 60, 125);
 monalisa = new Image("images/monalisa_face1_2.jpg");
 monalisa.addMouseListener(this);
 workPanel.add(monalisa, 60, 230);
 monalisa = new Image("images/monalisa_face1_3.jpg");
 monalisa.addMouseListener(this);
 workPanel.add(monalisa, 170, 20);
 monalisa = new Image("images/monalisa_face1_4.jpg");
 monalisa.addMouseListener(this);
 workPanel.add(monalisa, 170, 125);
 monalisa = new Image("images/monalisa_face1_1.jpg");
 monalisa.addMouseListener(this);
 workPanel.add(monalisa, 170, 230);
 monalisa = new Image("images/monalisa_face1_6.jpg");
 monalisa.addMouseListener(this);
 workPanel.add(monalisa, 280, 20);
 monalisa = new Image("images/monalisa_face1_9.jpg");
 monalisa.addMouseListener(this);
 workPanel.add(monalisa, 280, 125);
 monalisa = new Image("images/monalisa_face1_5.jpg");
 monalisa.addMouseListener(this);
 workPanel.add(monalisa, 280, 230);

3.	 Register to intercept the DOM mouse events in the constructor:
 DOM.addEventPreview(new EventPreview()
 {
 public boolean onEventPreview(Event event)
 {
 switch (DOM.eventGetType(event))
 {
 case Event.ONMOUSEDOWN:
 case Event.ONMOUSEMOVE:

Responsive Complex Interfaces

[122]

 case Event.ONMOUSEUP:
 DOM.eventPreventDefault(event);
 }
 return true;
 }
 });

4.	 Implement the method to listen for mouse down events in the constructor:
 public void onMouseDown(Widget source, int x, int y)
 {
 DOM.setCapture(source.getElement());
 xOffset = x;
 yOffset = y;
 inDrag = true;
 }

5.	 Implement the method to listen for mouse move events in the constructor:
 public void onMouseMove(Widget source, int x, int y)
 {
 if (inDrag)
 {
 int xAbs = x + source.getAbsoluteLeft() - 135;
 int yAbs = y + source.getAbsoluteTop() - 120;
 ((AbsolutePanel)source.getParent()).
 setWidgetPosition(source, xAbs- xOffset, yAbs - yOffset);
 }
 }

6.	 Implement the method to listen for mouse up events in the constructor:
 public void onMouseUp(Widget source, int x, int y)
 {
 DOM.releaseCapture(source.getElement());
 inDrag = false;
 }

7.	 Finally in the constructor, create a little info panel that displays descriptive
text about this application, so that we can display the text when this sample
is selected in the list of available samples in our Samples application.
Add the info panel and the work panel to the dock panel, and initialize
the widget:

 HorizontalPanel infoPanel = new HorizontalPanel();
 infoPanel.add(new HTML
 ("<div class='infoProse'>This example demonstrates the use
 of dragging to move things around and place them anywhere

Chapter 5

[123]

 in the window. It is easy to forget that you are actually
 doing this in a web browser !
 </div>"));
 DockPanel workPane = new DockPanel();
 workPane.add(infoPanel, DockPanel.NORTH);
 workPane.add(workPanel, DockPanel.CENTER);
 workPane.setCellHeight(workPanel, "100%");
 workPane.setCellWidth(workPanel, "100%");
 initWidget(workPane);

Here is the puzzle when you first visit the page:

Responsive Complex Interfaces

[124]

Here is the solved puzzle:

What Just Happened?
This sample demonstrates the absolute positioning capabilities in GWT. An image
file of the Mona Lisa was split into nine equal-sized images. We jumble the images
and present them on the screen in a 3x3 square, when the application is rendered.
The user can then rearrange the image pieces by dragging them around and
repositioning them on the screen to recreate the Mona Lisa.

We use an AbsolutePanel class as our work panel in this sample. It has the ability to
position all of its child widgets absolutely, and even allows the widgets to overlap.
We add the nine images to the panel by positioning them absolutely, so they form a
nice 3x3 grid.

Chapter 5

[125]

Here is one column of the grid:

Image monalisa = new Image("images/monalisa_face1_8.jpg");
monalisa.addMouseListener(this);
workPanel.add(monalisa, 60, 20);
monalisa = new Image("images/monalisa_face1_7.jpg");
monalisa.addMouseListener(this);
workPanel.add(monalisa, 60, 125);
monalisa = new Image("images/monalisa_face1_2.jpg");
monalisa.addMouseListener(this);
workPanel.add(monalisa, 60, 230);

In the previous example, we were able to implement the onEventpreview() method
to preview the browser events first before they are sent to their target. We were able
to do this as the note was a subclass of PopupPanel, which provides this ability. But
in the current sample we are not using a pop-up panel. So we use another method
to add ourselves to the top of the event preview stack. This time we are using the
addEvetnpreview() method in the DOM object, as illustrated in step 3.

In step 4, we implement the MouseListener interface and register ourselves as the
event handler for mouse events in the panel. When the user clicks on an image prior
to dragging it, we get the element that was clicked and set it as the mouse-capture.
This ensures that element will receive all of the mouse events, until it is released
from the mouse-capture. We store the x and y coordinates of the element in a
private variable. We also set a flag that tells us that we are currently in the mode of
dragging an element.

Once the user starts dragging an image, we check to see if we are in drag mode, and
we set the position of the widget, which will move the widget to the new position.
You can only set the absolute widget position by calling the absolute panel that
contains the widget; so we have to get the parent object of the image and then cast it
to the right class. We have covered all this in step 5.

When the user has finished dragging an image to a position and releasing the
mouse, we release the element from the mouse-capture and set the drag flag to false,
as in step 6.

The absolute positioning support in GWT still needs some work, and can act quite
different in Firefox and Internet Explorer, and their multiple versions.

Responsive Complex Interfaces

[126]

Summary
In this chapter, we learned how to create tables that can page through a set of data in
a user-friendly manner, and extended a tree widget to add simple support for editing
the tree nodes in place. We utilized the timer object to create a log spy application
that monitors a given log file for new entries, and displays them in a list that is
updated in real time.

We learned how to use some of the DOM methods and the DOM event preview
capability in GWT, and leveraged it to implement a draggable sticky notes
application. We also learned how to make dialog boxes non-modal, so that we can
adapt them for our use. Finally, utilizing the absolute positioning functionality and
an alternate method of previewing DOM events, we created a puzzle application.

In the next chapter, we will learn how to integrate third-party JavaScript libraries
with GWT using the JavaScript Native Interface.

Browser Effects with JSNI
and JavaScript Libraries

In this chapter, we will learn how to create user interfaces that can utilize cool
browser effects provided by some well-known third-party JavaScript libraries. We
will take advantage of the JavaScript Native Interface (JSNI) provided by GWT to
wrap these existing JavaScript libraries and use them in our GWT applications.

The tasks that we will address are:

Moo.Fx
Rico Rounded Corners
Rico Color Selector
Script.aculo.us effects

What is JSNI?
JSNI provides a way to mix JavaScript code with Java code. It is similar in concept
to the Java Native Interface (JNI) provided by Sun's Java environment. JNI enables
your Java code to call C and C++ methods. JSNI enables your Java code to call
into JavaScript methods. It is very powerful technique that lets us access low-level
JavaScript code directly from Java code, and opens the door to a wide variety of uses
and possibilities listed below:

Call JavaScript code from Java
Call Java code from JavaScript
Throw exceptions that cross the Java/JavaScript boundaries
Access Java fields from JavaScript

•

•

•

•

•

•

•

•

Browser Effects with JSNI and Javascript Libraries

[128]

However, this powerful technique should be used carefully, as JSNI code may not be
portable across browsers. The current implementation of the GWT compiler will also
not be able to perform any optimizations on JSNI code. JSNI methods must always
be declared native, and the JavaScript code that is placed in the JSNI method must
be placed in a comment block that is specially formatted. So each JSNI method will
consist of two parts—a native method declaration, and the JavaScript code for the
method embedded inside a specially formatted code block. Here is an example of a
JSNI method that calls the alert() JavaScript method:

native void helloGWTBook()
/*-{
 $wnd.alert("Hello, GWT book!");
}-*/;

In the above example, the JavaScript code is embedded in a '/*-{' and '}-*/' block.
Another thing to be aware of is the use of the $wnd and $doc variables. GWT code
always runs inside a nested frame inside the browser, so you cannot access the
window or document objects in the normal way inside your JSNI code. You must
use the $wnd and $doc variables, which are automatically initialized by GWT to
refer to the window and document objects for the host page. The GWT compiler can
check our JSNI code. So if you run it in web mode and compile your application,
the compiler will flag any errors in your JSNI code. This is a nice way to debug JSNI
code, as these errors will not be displayed until run time when you are running in
hosted mode. In this chapter, we are going to use JSNI to wrap some third-party
JavaScript libraries, and use the cool browser effects provided by them, inside our
GWT user interfaces.

In the recent versions of GWT, JSNI functions sometimes do
not work in hosted mode, but work fine when deployed.

Moo.Fx
Moo.fx is a super lightweight and fast JavaScript library that provides several cool
effects for web applications (http://moofx.mad4milk.net). It is compact and works
in all the major web browsers. We are going to use JSNI to wrap some of the effects
provided by the Moo.fx library and use these effects in our GWT application.

Chapter 6

[129]

Time for Action—Using JSNI
We are going to use the JSNI provided by the GWT framework to wrap the Moo.fx
library and intermingle Java and JavaScript to use its functionality in our GWT
user interface.

1.	 Add the prototype and Moo.fx JavaScript files that will be needed by our
application to the module's HTML file—Samples.html.

 <script type="text/JavaScript"src="JavaScript/prototype.js">
 </script>
 <script type="text/JavaScript"src="JavaScript/moo.fx.js">
 </script>

2.	 Create a new Java class named MooFx.java in the com.packtpub.gwtbook.
samples.client.util package that wraps the Moo.fx JavaScript
library effects.

3.	 Add a new JSNI method in MooFx.java for creating an opacity.fx object.
 public native static Element opacity(Element element)
 /*-{
 $wnd._nativeExtensions = false;
 return new $wnd.fx.Opacity(element);
 }-*/;

4.	 Add a JSNI method for toggling the opacity effect.
 public native static void toggleOpacity(Element element)
 /*-{
 $wnd._nativeExtensions = false;
 element.toggle();
 }-*/;

5.	 Add a private JSNI method that takes a parameter string of options and
converts it into a JavaScript object.

 private static native JavaScriptObject buildOptions
 (String opts)
 /*-{
 eval("var optionObject = new Object()");
 var options = opts.split(',');
 for (var i =0; i < options.length; i++)
 {
 var opt = options[i].split(':');
 eval("optionObject." + opt[0] + "=" + opt[1]);
 }
 return optionObject;
 }-*/;

Browser Effects with JSNI and Javascript Libraries

[130]

6.	 Add a static Java method for creating a height effect, which uses the above
buildOptions() to build a JavaScript object for passing on the options to a
JSNI method.

 public static Element height(Element element, String opts)
 {
 return height(element, buildOptions(opts));
 }

7.	 Add a new JSNI method that will create the height effect object.
 private native static Element height
 (Element element, JavaScriptObject opts)
 /*-{
 $wnd._nativeExtensions = false;
 return new $wnd.fx.Height(element, opts);
 }-*/;

8.	 Add a new JSNI method for toggling the height effect.
 public native static void toggleHeight(Element element)
 /*-{
 $wnd._nativeExtensions = false;
 element.toggle();
 }-*/;

9.	 Add a static Java method for creating a width effect, which uses the above
buildOptions() to build a JavaScript object for passing on the options to a
JSNI method.

 public static Element width(Element element, String opts)
 {
 return width(element, buildOptions(opts));
 }

10.	 Add a new JSNI method that will create the width effect object.
 private native static Element width
 (Element element, JavaScriptObject opts)
 /*-{
 $wnd._nativeExtensions = false;
 return new $wnd.fx.Width(element, opts);
 }-*/;

11.	 Add a new JSNI method for toggling the width effect.
 public native static void toggleWidth(Element element)
 /*-{
 $wnd._nativeExtensions = false;
 element.toggle();
 }-*/;

Chapter 6

[131]

12.	 Create the user interface for this application in a new Java file named
MooFxEffectsPanel.java in the com.packtpub.gwtbook.samples.
client.panels package. Add an HTML fragment that contains an outer div
element with an inner div element that contains a paragraph element with
text. Add three different variables containing this fragment. Also add an
element for each effect.

 private HTML opacityBox = new HTML
 ("<div class='moofxBox'><div id=\"opacitybox\">
 <p class=\"text\">
 Lorem ipsum dolor sit amet, consectetur adipisicing elit,
 sed do eiusmod tempor incididunt ut labore et dolore
 magna aliqua. Ut enim ad minim veniam, quis nostrud
 exercitation ullamco laboris nisi ut aliquip ex ea
 commodo consequat.
 </p></div></div>");
 private HTML heightBox = new HTML
 ("<div class='moofxBox'><div id=\"heightbox\">
 <p class=\"text\">
 Lorem ipsum dolor sit amet, consectetur adipisicing elit,
 sed do eiusmod tempor incididunt ut labore et dolore
 magna aliqua. Ut enim ad minim veniam, quis nostrud
 exercitation ullamco laboris nisi ut aliquip ex ea
 commodo consequat.
 </p></div></div>");
 private HTML widthBox = new HTML
 ("<div class='moofxBox'><div id=\"widthbox\">
 <p class=\"text\">
 Lorem ipsum dolor sit amet, consectetur adipisicing elit,
 sed do eiusmod tempor incididunt ut labore et dolore
 magna aliqua. Ut enim ad minim veniam, quis nostrud
 exercitation ullamco laboris nisi ut aliquip ex ea
 commodo consequat.
 </p></div></div>");
 private Element widthBoxElement;
 private Element heightBoxElement;
 private Element opacityBoxElement;

13.	 Create three buttons, one for toggling each Moo.fx effect.
 Button opacityButton = new Button("Toggle Opacity");
 Button heightButton = new Button("Toggle Height");
 Button widthButton = new Button("Toggle Width");

Browser Effects with JSNI and Javascript Libraries

[132]

14.	 Register an event handler to listen for clicks on each of the buttons, and call
the appropriate method for toggling the effect.

 opacityButton.addClickListener(new ClickListener()
 {
 public void onClick(Widget sender)
 {
 MooFx.toggleOpacity
 (opacityBoxElement);
 }
 });
 heightButton.addClickListener(new ClickListener()
 {
 public void onClick(Widget sender)
 {
 MooFx.toggleHeight
 (heightBoxElement);
 }
 });
 widthButton.addClickListener(new ClickListener()
 {
 public void onClick(Widget sender)
 {
 MooFx.toggleWidth
 (widthBoxElement);
 }
 });

15.	 Create a DeferredCommand that creates each of the effect objects when it
executes.

 DeferredCommand.add(new Command()
 {
 public void execute()
 {
 opacityBoxElement = MooFx.opacity
 (DOM.getElementById("opacitybox"));
 }
 });
 DeferredCommand.add(new Command()
 {
 public void execute()
 {
 heightBoxElement =
 MooFx.height(DOM.getElementById
 ("heightbox"), "duration:2500");

Chapter 6

[133]

 }
 });
 DeferredCommand.add(new Command()
 {
 public void execute()
 {
 widthBoxElement =
 MooFx.width(DOM.getElementById
 ("widthbox"), "duration:2000");
 }
 });

16.	 In the constructor, add the buttons and divs for each effect to the work panel.
 opacityButton.setStyleName("moofxButton");
 workPanel.add(opacityButton);
 workPanel.add(opacityBox);
 heightButton.setStyleName("moofxButton");
 workPanel.add(heightButton);
 workPanel.add(heightBox);
 widthButton.setStyleName("moofxButton");
 workPanel.add(widthButton);
 workPanel.add(widthBox);

17.	 Finally, create a little info panel that displays descriptive text about this
application, so that we can display this text when this sample is selected in
the list of available samples in our Samples application. Add the info panel
and the work panel to a dock panel, and initialize the widget.

 HorizontalPanel infoPanel = new HorizontalPanel();
 infoPanel.add(new HTML("<div class='infoProse'>
 Use cool Moo.fx effects in your
 GWT application.</div>"));
 DockPanel workPane = new DockPanel();
 workPane.add(infoPanel, DockPanel.NORTH);
 workPane.add(workPanel, DockPanel.CENTER);
 workPane.setCellHeight(workPanel, "100%");
 workPane.setCellWidth(workPanel, "100%");
 initWidget(workPane);

Browser Effects with JSNI and Javascript Libraries

[134]

Here is a screenshot of the application. Click on each button to see the effect in action.

What Just Happened?
The main effects provided by the Moo.fx library are:

Opacity: Modify the opacity or transparency of an element.
Height: Modify the height of an element.
Width: Modify the width of an element.

In this sample, we created a Java class named MooFx, which wrapped the Moo.fx
JavaScript library using JSNI. We created a native method named opacity() for
instantiating an opacity object. In this method, we call the JavaScript constructor for
the opacity object and return the resulting object, which is of type Element. We store
this in a variable.

return new $wnd.fx.Opacity(element);

•
•
•

Chapter 6

[135]

We then create a native method named toggleOpacity() for toggling the opacity of
an element from one state to another. This method uses the variable that we stored
earlier and calls the toggle method on it to change its current state.

element.toggle();

We create height() and width() Java methods that are passed a string parameter
containing the options that need to be provided to the Moo.fx height and width
constructors. These two methods use a native method named buildOptions() to
create the JavaScript object containing the options, which will then be passed on to
the native method for creating the height and width. The buildOptions() method
parses the provided string, and creates a JavaScript object and sets its properties and
the property values. We again utilize the eval() function to set the properties and
return the object.

private static native JavaScriptObject buildOptions(String opts)
/*-{
 eval("var optionObject = new Object()");
 var options = opts.split(',');
 for (var i =0; i < options.length; i++)
 {
 var opt = options[i].split(':');
 eval("optionObject." + opt[0] + "=" + opt[1]);
 }
 return optionObject;
}-*/;

The returned JavaScript options object is passed on to the native height() and
width() methods to create the respective effect objects similar to the opacity()
method. We then add native methods for toggling the height and width. That is all
we have to do to wrap the library in an easy-to-use Java class!

In the user interface, we create an HTML object with an outer div that contains an
inner div with a paragraph of text. The HTML widget enables us to create arbitrary
HTML and add it to a panel. We used the HTML widget in this sample, but we
can also create the same element using the methods in the DOM object in the GWT
framework. In the next sample, we will use that functionality, so that we are familiar
with the different tools provided by GWT. We also create three buttons, one each for
toggling each of the effects. Event handlers are registered with each of these buttons
to listen for clicks and then call the appropriate toggle method for the specified
effect. In the method for creating the effect, we use the getElementById() on the
DOM object to get the div element that we are interested in. We needed to do this, as
we do not have access to the div that we added to the panel. The div that we were
interested in was added to the panel as part of the HTML widget.

opacityBoxElement = MooFx.opacity(DOM.getElementById("opacitybox"));

Browser Effects with JSNI and Javascript Libraries

[136]

We then toggle the requisite effect on the element.

MooFx.toggleOpacity(opacityBoxElement);

The effects themselves are constructed by calling the respective constructors for
the effects inside DeferredCommand. The elements that we have added are not
available yet by using their ID, until the event handlers have all completed. The
DeferredCommand runs after they have all completed, and this ensures that our
element has been added to the DOM and can be accessed by using its ID. We get the
element, create an effect, and associate it with the element.

DeferredCommand.add(new Command()
 {
 public void execute()
 {
 opacityBoxElement = MooFx.opacity
 (DOM.getElementById("opacitybox"));
 }
 });

We have successfully accessed the library from Java in our GWT application, and can
reuse these effects everywhere. In the ColorSelector sample later in this chapter,
we will use one of the Moo.fx effects in combination with effects form other libraries.

Rico Rounded Corners
Elements on a web page with rounded corners are visually much more attractive
than straight corners and are aesthetically more appealing. It is also one of the hottest
design trends in the look and feel of web applications. Rico (http://openrico.
org/rico/home.page) is another fine JavaScript library that has great support for
this and makes it extremely easy to use. It also provides a great deal of functionality,
but we are only wrapping and using the rounded corners effects part of Rico. We
are only using labels in this sample for applying the rounded corners, but you can
also apply it to text paragraphs and several other HTML elements. In this example
we will wrap the rounded corners effect from Rico and use it in our application to
display several labels with different types of rounded corners.

Time for Action—Supporting the Labels
We are going to wrap the Rico library and provide support for labels with rounded
corners in our GWT user interface.

1.	 Add the prototype and Rico JavaScript files that will be needed by our
application to the module's HTML file—Samples.html.

Chapter 6

[137]

 <script type="text/JavaScript"src="JavaScript/prototype.js">
 </script>
 <script type="text/JavaScript"src="JavaScript/rico.fx.js">
 </script>

2.	 Create a new Java class named Rico.java in the com.packtpub.gwtbook.
samples.client.util package that will wrap the rico JavaScript
library effects.

3.	 Add a new JSNI method in Rico.java for rounding the corner of a widget.
 private native static void corner
 (Element element, JavaScriptObject opts)
 /*-{
 $wnd._nativeExtensions = false;
 $wnd.Rico.Corner.round(element, opts);
 }-*/;

4.	 Add a private JSNI method that takes a parameter of string options and
converts it into a JavaScript object.

 private static native JavaScriptObject buildOptions(String opts)
 /*-{
 eval("var optionObject = new Object()");
 var options = opts.split(',');
 for (var i =0; i < options.length; i++)
 {
 var opt = options[i].split(':');
 eval("optionObject." + opt[0] + "=" + opt[1]);
 }
 return optionObject;
 }-*/;

5.	 Add a static Java method for creating a rounded corner, which uses the
above buildOptions() to build a JavaScript object for passing on the options
to a JSNI method.

 public static void corner(Widget widget, String opts)
 {
 corner(widget.getElement(), buildOptions(opts));
 }

6.	 Add a static Java method for creating a rounded corner without passing any
options, and using the defaults.

 public static void corner(Widget widget)
 {
 corner(widget.getElement(), null);
 }

Browser Effects with JSNI and Javascript Libraries

[138]

7.	 Create the user interface for this application in a new Java file named
RoundedCornersPanel.java in the com.packtpub.gwtbook.samples.
client.panels package. Create a grid with three rows and two columns.
We will add labels to this grid.

 private Grid grid = new Grid(3, 2);

8.	 Add six labels that will have six different rounded corners applied to them.
 private Label lbl1 = new Label("Label with rounded corners.");
 private Label lbl2 = new Label
 ("Label with only the top corners rounded.");
 private Label lbl3 = new Label("Label with only the
 bottom corners rounded.");
 private Label lbl4 = new Label("Label with only the
 bottom right corner rounded.");
 private Label lbl5 = new Label("Label with compact
 rounded corners ");
 private Label lbl6 = new Label("Label with rounded corners
 and red border.");

9.	 Call the method to create the rounded corner for each of the labels, passing it
different options to it.

 Rico.corner(lbl1);
 Rico.corner(lbl2, "corners:\"top\"");
 Rico.corner(lbl3, "corners:\"bottom\"");
 Rico.corner(lbl4, "corners:\"br\"");
 Rico.corner(lbl5, "compact:true");
 Rico.corner(lbl6, "border: 'red'");

10.	 Add the labels to the grid.
 grid.setWidget(0, 0, lbl1);
 grid.setWidget(0, 1, lbl2);
 grid.setWidget(1, 0, lbl3);
 grid.setWidget(1, 1, lbl4);
 grid.setWidget(2, 0, lbl5);
 grid.setWidget(2, 1, lbl6);

11.	 Finally, create a little info panel that displays descriptive text about this
application, so that we can display this text when this sample is selected in
the list of available samples in our Samples application. Add the info panel
and the work panel to a dock panel, and initialize the widget.

 HorizontalPanel infoPanel =
 new HorizontalPanel();infoPanel.add(new HTML
 ("<div class='infoProse'>Labels with different
 kinds of rounded corners.</div>"));
 workPanel.add(grid);

Chapter 6

[139]

 DockPanel workPane = new DockPanel();
 workPane.add(infoPanel, DockPanel.NORTH);
 workPane.add(workPanel, DockPanel.CENTER);
 workPane.setCellHeight(workPanel, "100%");
 workPane.setCellWidth(workPanel, "100%");
 initWidget(workPane);

Here is a screenshot displaying labels with different types of rounded corners:

What Just Happened?
We created a Java class that uses JSNI to provide access to the rounded corners
functionality in the Rico JavaScript library. We create a buildOptions() method
like in the previous sample, which can accept a parameter that contains a string
with options, and add those options as properties on a native JavaScript object. This
options object is then passed to a JSNI method that calls the corner() method in the
Rico library for the provided element.

private native static void corner
 (Element element, JavaScriptObject opts)
/*-{
 $wnd._nativeExtensions = false;
 $wnd.Rico.Corner.round(element, opts);
}-*/;

Browser Effects with JSNI and Javascript Libraries

[140]

In the user interface, we create a grid, and add six labels to it. Each of these labels has
a different type of rounded corner applied to it. Rico supports rounded corners on all
four sides or a specific side. It can also create corners in the compact form, where the
corners are slightly less rounded than the default version. You can even round two
or three corners and leave the fourth one square. Rico provides other methods that
you can wrap and use in your application in addition to the rounded corners. The
procedure is very similar to what we have done so far and is usually just a matter
of implementing all the methods from the JavaScript library that you are interested
in. In the next sample, we will wrap some more functionality in Rico and use it in a
color selector application.

Rico Color Selector
We have successfully wrapped the rounded corners effect from Rico in the previous
example. In this section, we are going to add support for accessing color information
using Rico's Color object. We will wrap this functionality using JSNI and then create
a color selector application that uses Rico color objects along with the Moo.fx effects
that we created earlier in the chapter.

Time for Action—Wrapping the Color Methods
We will wrap the color methods in the Rico library and use them to create an
application for selecting colors.

1.	 Add a new JSNI method in Rico.java for creating a color object with
provided red, green, and blue values, and apply it to the element provided.

 public native static void color
 (Element element, int red, int green,int blue)
 /*-{
 $wnd._nativeExtensions = false;
 eval('' + element.id +' = new $wnd.Rico.Color
 (' + red +',' + green +',' + blue + ')');
 element.style.backgroundColor=eval
 (element.id + '.asHex()');
 }-*/;

2.	 Add a new JSNI method in Rico.java for getting the hex value of a Rico
color object.

 public native static String getColorAsHex(Element element)
 /*-{
 $wnd._nativeExtensions = false;
 return (eval(element.id + '.asHex()'));
 }-*/;

Chapter 6

[141]

3.	 Create the user interface for this application in a new Java file named
ColorSelectorPanel.java in the com.packtpub.gwtbook.samples.
client.panels package. Create a grid with three rows and three columns.
Create three text fields for entering the values, along with the work panel and
divs for the color box and the color text.

 private HorizontalPanel workPanel = new HorizontalPanel();
 private Grid grid = new Grid(3, 3);
 private TextBox redText = new TextBox();
 private TextBox greenText = new TextBox();
 private TextBox blueText = new TextBox();
 private Element outerDiv = DOM.createDiv();
 private Element colorDiv = DOM.createDiv();
 private Element colorText = DOM.createElement("P");
 private Element colorBox = DOM.createElement("P");

4.	 In the constructor, initialize the grid, and default the values in each of the text
boxes to zero.

 grid.setText(0, 0, "Red");
 grid.setText(1, 0, "Green");
 grid.setText(2, 0, "Blue");
 redText.setText("0");
 grid.setWidget(0, 1, redText);
 greenText.setText("0");
 grid.setWidget(1, 1, greenText);
 blueText.setText("0");
 grid.setWidget(2, 1, blueText);
 grid.setText(0, 2, "(0-255)");
 grid.setText(1, 2, "(0-255)");
 grid.setText(2, 2, "(0-255)");

5.	 Register an event handler to listen for keyboard events.
 redText.addKeyboardListener(this);
 blueText.addKeyboardListener(this);
 greenText.addKeyboardListener(this);

6.	 Create a paragraph element for displaying the selected color.
 DOM.setAttribute(colorBox, "className", "ricoColorBox");
 DOM.setAttribute(colorBox, "id", "colorBox");
 DOM.setInnerText(colorBox, "");
 Rico.color(colorBox, 0, 0, 0);

7.	 Create the element for displaying the hex value of the selected color.
 DOM.setAttribute(outerDiv, "className", "heightBox");
 DOM.setAttribute(colorDiv, "id", "colorDiv");

Browser Effects with JSNI and Javascript Libraries

[142]

 DOM.setAttribute(colorText, "className", "text");
 DOM.appendChild(colorDiv, colorText);
 DOM.appendChild(outerDiv, colorDiv);
 DOM.appendChild(workPanel.getElement(), outerDiv);

8.	 Create a DeferredCommand for initializing the height effect from Moo.fx and
for setting the initial selected color as (0, 0, 0).

 DeferredCommand.add(new Command()
 {
 public void execute()
 {
 MooFx.height(DOM.getElementById("colorDiv"),
 "duration:500");
 DOM.setInnerText(colorText, Rico.getColorAsHex
 (colorBox));
 }
 });

9.	 Add an onKeyPress() handler to display the selected color when the
user types in the new RGB values, and apply the height effect to the div
displaying the hex value of the selected color.

 public void onKeyPress(Widget sender, char keyCode,
 int modifiers)
 {
 MooFx.toggleHeight(DOM.getElementById("colorDiv"));
 Timer t = new Timer()
 {
 public void run()
 {
 if ((redText.getText().length() > 0)
 && (greenText.getText().length() > 0)
 && (blueText.getText().length() > 0))
 {
 Rico.color(colorBox,
 Integer.parseInt(redText.getText()),
 Integer.parseInt(greenText.getText()),
 Integer.parseInt(blueText.getText()));
 DOM.setInnerText(colorText, Rico.getColorAsHex
 (colorBox));
 MooFx.toggleHeight(DOM.getElementById("colorDiv"));
 }
 }
 };
 t.schedule(500);
 }

Chapter 6

[143]

10.	 Finally, create a little info panel that displays descriptive text about this
application, so that we can display this text when this sample is selected in
the list of available samples in our Samples application. Add the info panel
and the work panel to a dock panel, and initialize the widget.

 HorizontalPanel infoPanel = new HorizontalPanel();infoPanel.add
 (new HTML("<div class='infoProse'>
 Select a color by providing the red, green and blue values.
 The selected color will be applied to the box on the screen
 and the hex value of the color will be displayed below it
 with an element sliding up and then sliding down to display
 the value. Check it out by typing in the color
 components!</div>"));
 DockPanel workPane = new DockPanel();
 workPane.add(infoPanel, DockPanel.NORTH);
 workPane.add(workPanel, DockPanel.CENTER);
 workPane.setCellHeight(workPanel, "100%");
 workPane.setCellWidth(workPanel, "100%");
 initWidget(workPane);

Here is the application. Type in new values of RGB, and watch the selected color
being displayed as soon as you stop typing, and the hex value for the current color
displayed with a slide up and slide down window effect!

Browser Effects with JSNI and Javascript Libraries

[144]

What Just Happened?
We first enhance our Rico wrapper class from the previous sample, to add access to
the color functionality. Rico provides us with the ability to create a color object by
using a set of red, green, and blue values. Once this color object is constructed, its
hex value can be retrieved as a string. We add a JSNI method to create a color object.
Inside this method, we create the Rico.Color object and then set the background
of the provided element to the newly created color. The color object is stored in a
variable with the name of the variable being the same as the ID of the element. We
use the eval() method to dynamically create the variable and to set the background
color. We set the backgroundColor DHTML property for the element:

eval('' + element.id +' = new $wnd.Rico.Color
 (' + red +',' + green +',' + blue + ')');
element.style.backgroundColor=eval(element.id + '.asHex()');

We also create a JSNI method that can return the hex value of the background color
of the provided element.

public native static String getColorAsHex(Element element)
/*-{
 return (eval(element.id + '.asHex()'));
}-*/;

In the user interface, we create a grid and populate it with three text boxes for
entering the color values, and some identifiers for each field. We use the DOM object
for creating various elements in this sample, instead of using an HTML widget.
The DOM object contains several static methods for creating various elements and
for manipulating the Document Object Model of the web page. We create two div
elements and a paragraph element and add them to the panel in the page. These will
be used for creating the element that will have the height effect applied to it to slide
up and down the div before displaying the hex value of the selected color. Since
the workPanel is a GWT widget, we call the getElement() method provided on all
the widgets to get access to the underlying DOM element, and then append the div
element to it.

DOM.setAttribute(outerDiv, "className", "heightBox");
DOM.setAttribute(colorDiv, "id", "colorDiv");
DOM.setAttribute(colorText, "className", "text");
DOM.appendChild(colorDiv, colorText);
DOM.appendChild(outerDiv, colorDiv);
DOM.appendChild(workPanel.getElement(), outerDiv);

Chapter 6

[145]

We once again use a DeferredCommand to set the initial hex value of the current color
and to set up the height effect object from Moo.fx. Since we are using a paragraph
element to display the string with the color hex value, we have to set its inner text
using the DOM object. If we used a GWT widget instead, we would set the value by
calling the setText() method.

MooFx.height(DOM.getElementById("colorDiv"), "duration:500");
DOM.setInnerText(colorText, Rico.getColorAsHex(colorBox));

Finally, in the onKeyPress() method we first toggle the height of the colordiv, so
the element slides up. Then we schedule a timer to go off in 500 milliseconds, and
when the timer fires, we create a new color object with the current values in the red,
green, and blue text boxes, set the text of the colorText element to the hex value of
this color, and then toggle the height of the colordiv so it slides down to display
this value. The timer is necessary to slow it down a little, so you can clearly see the
transition and the effect.

MooFx.toggleHeight(DOM.getElementById("colorDiv"));
Timer t = new Timer()
{
 public void run()
 {
 if((redText.getText().length() > 0)
 && (greenText.getText().length() > 0)
 && (blueText.getText().length() > 0))
 {
 Rico.color(colorBox, Integer.parseInt(redText.getText()),
 Integer.parseInt(greenText.getText()),
 Integer.parseInt(blueText.getText()));
 DOM.setInnerText(colorText, Rico.getColorAsHex(colorBox));
 MooFx.toggleHeight(DOM.getElementById("colorDiv"));
 }
 }
};
t.schedule(500);

Script.aculo.us Effects
Script.aculo.us (http://script.aculo.us/) is an amazing JavaScript library
written by Thomas Fuchs that enables all kinds of snazzy transitions and visual
effects inside the web page. It is a cross-browser-compatible library that is built on
top of the prototype JavaScript framework. It is also one of the most popular Web
2.0 libraries that is widely used in a variety of applications and is, most notably,
also included in the Ruby On Rails web framework. Script.aculo.us effects are

Browser Effects with JSNI and Javascript Libraries

[146]

integrated and provided by the Effect class, which is a part of this library. We will
use this class to invoke and use the various effects in our GWT application. Unlike
the other sections in this chapter, we will not use JSNI here, but we will show how
to use an existing wrapper library inside our application to provide some nice
browser effects.

Time for Action—Applying Effects
The gwt-widget library is a terrific group of extensions and enhancements to
the GWT framework maintained by Robert Hanson (http://gwt-widget.
sourceforge.net/). It provides a Java class that wraps the effects, and we will use
this class in our application. We will add a grid with two rows and four columns,
each containing a small image file, and apply one effect to each of the images.

We need to reference the gwt-widgets module that provides the Java wrapper for
the library. This is leveraging the module inheritance feature of GWT. We will go
into an explanation of this concept in the What Just happened? section of this sample.
Follow the steps given below to add the grid:

1.	 Add the following entry to the existing Samples.gwt.xml file in the
com.packtpub.gwtbook.samples package:

 <inherits name='org.gwtwidgets.WidgetLibrary'/>

2.	 Add the prototype and Script.aculo.us JavaScript files that are used by
the above module:

 <script type="text/JavaScript"src="JavaScript/prototype.js">
 </script>
 <script type="text/JavaScript src="JavaScript/Scriptaculous.js">
 </script>

3.	 Create the user interface for this application in a new Java file named
ScriptaculousEffectsPanel.java in the com.packtpub.gwtbook.
samples.client.panels package. Create a grid with two rows and four
columns. Create eight images, and eight buttons, and a work panel.

 private HorizontalPanel workPanel = new HorizontalPanel();
 private Grid grid = new Grid(2, 4);
 private Image packtlogo1 = new Image("images/packtlogo.jpg");
 private Image packtlogo2 = new Image("images/packtlogo.jpg");
 private Image packtlogo3 = new Image("images/packtlogo.jpg");
 private Image packtlogo4 = new Image("images/packtlogo.jpg");
 private Image packtlogo5 = new Image("images/packtlogo.jpg");
 private Image packtlogo6 = new Image("images/packtlogo.jpg");
 private Image packtlogo7 = new Image("images/packtlogo.jpg");

Chapter 6

[147]

 private Image packtlogo8 = new Image("images/packtlogo.jpg");
 private Button fadeButton = new Button("fade");
 private Button puffButton = new Button("puff");
 private Button shakeButton = new Button("shake");
 private Button growButton = new Button("grow");
 private Button shrinkButton = new Button("shrink");
 private Button pulsateButton = new Button("pulsate");
 private Button blindUpButton = new Button("blindup");
 private Button blindDownButton = new Button("blinddown");

4.	 Add the button and image for the fade effect to a VerticalPanel and add
the panel to the grid.

 VerticalPanel gridCellPanel = new VerticalPanel();
 gridCellPanel.add(packtlogo1);
 gridCellPanel.add(fadeButton);
 grid.setWidget(0, 0, gridCellPanel);

5.	 Add an event handler for listening to the click on the fade effect button, and
call the appropriate Script.aculo.us effect.

 fadeButton.addClickListener(new ClickListener()
 {
 public void onClick(Widget sender)
 {
 Effect.fade(packtlogo1);
 }
 });

6.	 Add the button and image for the shake effect to a VerticalPanel and add
the panel to the grid.

 gridCellPanel = new VerticalPanel();
 gridCellPanel.add(packtlogo3);
 gridCellPanel.add(shakeButton);
 grid.setWidget(0, 1, gridCellPanel);

7.	 Add an event handler for listening to the click on the shake effect button, and
call the appropriate Script.aculo.us effect.

 shakeButton.addClickListener(new ClickListener()
 {
 public void onClick(Widget sender)
 {
 Effect.shake(packtlogo3);
 }
 });

Browser Effects with JSNI and Javascript Libraries

[148]

8.	 Add the button and image for the grow effect to a VerticalPanel and add
the panel to the grid.

 gridCellPanel = new VerticalPanel();
 gridCellPanel.add(packtlogo4);
 gridCellPanel.add(growButton);
 grid.setWidget(0, 2, gridCellPanel);

9.	 Add an event handler for listening to the click on the grow effect button, and
call the appropriate Script.aculo.us effect.

 growButton.addClickListener(new ClickListener()
 {
 public void onClick(Widget sender)
 {
 Effect.grow(packtlogo4);
 }
 });

10.	 Add the button and image for the blind up effect to a VerticalPanel and
add the panel to the grid.

 gridCellPanel = new VerticalPanel();
 gridCellPanel.add(packtlogo8);
 gridCellPanel.add(blindUpButton);
 grid.setWidget(0, 3, gridCellPanel);

11.	 Add an event handler for listening to the click on the blind up effect button,
and call the appropriate Script.aculo.us effect.

 blindUpButton.addClickListener(new ClickListener()
 {
 public void onClick(Widget sender)
 {
 Effect.blindUp(packtlogo8);
 }
 });

12.	 Add the button and image for the puff effect to a VerticalPanel and add
the panel to the grid.

 gridCellPanel = new VerticalPanel();
 gridCellPanel.add(packtlogo2);
 gridCellPanel.add(puffButton);
 grid.setWidget(1, 0, gridCellPanel);

Chapter 6

[149]

13.	 Add an event handler for listening to the click on the puff effect button, and
call the appropriate Script.aculo.us effect.

 puffButton.addClickListener(new ClickListener()
 {
 public void onClick(Widget sender)
 {
 Effect.puff(packtlogo2);
 }
 });

14.	 Add the button and image for the shrink effect to a VerticalPanel and add
the panel to the grid.

 gridCellPanel = new VerticalPanel();
 gridCellPanel.add(packtlogo5);
 gridCellPanel.add(shrinkButton);
 grid.setWidget(1, 1, gridCellPanel);

15.	 Add an event handler for listening to the click on the shrink effect button,
and call the appropriate Script.aculo.us effect.

 shrinkButton.addClickListener(new ClickListener()
 {
 public void onClick(Widget sender)
 {
 Effect.shrink(packtlogo5);
 }
 });

16.	 Add the button and image for the pulsate effect to a VerticalPanel and add
the panel to the grid.

 gridCellPanel = new VerticalPanel();
 gridCellPanel.add(packtlogo6);
 gridCellPanel.add(pulsateButton);
 grid.setWidget(1, 2, gridCellPanel);

17.	 Add an event handler for listening to the click on the pulsate effect button,
and call the appropriate Script.aculo.us effect.

 pulsateButton.addClickListener(new ClickListener()
 {
 public void onClick(Widget sender)
 {
 Effect.pulsate(packtlogo6);
 }
 });

Browser Effects with JSNI and Javascript Libraries

[150]

18.	 Finally, create a little info panel that displays descriptive text about this
application, so that we can display this text when this sample is selected in
the list of available samples in our Samples application. Add the info panel
and the work panel to a dock panel, and initialize the widget.

 HorizontalPanel infoPanel =
 new HorizontalPanel();infoPanel.add
 (new HTML("<div class='infoProse'>
 Use nifty scriptaculous effects
 in GWT applications.
 </div>"));
 workPanel.setStyleName("scriptaculouspanel");
 workPanel.add(grid);
 DockPanel workPane = new DockPanel();
 workPane.add(infoPanel, DockPanel.NORTH);
 workPane.add(workPanel, DockPanel.CENTER);
 workPane.setCellHeight(workPanel, "100%");
 workPane.setCellWidth(workPanel, "100%");
 initWidget(workPane);

19.	 Add the gwt-widgets.jar to the buildpath in Eclipse so it can find the
referenced classes.

Here are the various effects that we have in this application:

Click on each button to see the respective effect applied to the image.

Chapter 6

[151]

What Just Happened?
Modules are XML files that contain the configuration settings for a GWT project. We
have already seen and used the one for our Samples project. This is the file where
we have referenced the external JavaScript files used by our application, along
with entries for the RPC services used by our application, etc. GWT modules also
have the ability to inherit from other modules. This enables the inheriting module
to use resources that are declared in the inherited module. It prevents the issue of
duplicate resource mapping and promotes reuse, making it easy to package GWT
libraries as modules and distribute them and reuse them across projects. We can
specify the module to be inherited from, by using the inherits tag and providing
the fully qualified name of the module. All GWT applications must inherit from the
com.google.gwt.user.User module, which provides the core web toolkit items. In
this example we inherit from the org.gwtwidgets.WidgetLibrary that provides
the Script.aculo.us effects class that we used in our application. Here is how we
defined this inheritance in the Samples.gwt.xml file:

<inherits name='org.gwtwidgets.WidgetLibrary'/>

The Script.aculo.us effects are divided into two different types—Core effects
and Combination effects. The core effects are the foundation of the library and the
combination effects mix and use the core effects to create combination effects. The
core effects in this library are:

Opacity: Sets the transparency of an element.
Scale: Scales an element smoothly.
Move By: Moves an element by the given amount of pixels.
Highlight: Draws attention to an element by changing its background color
and flashing it.
Parallel: Multiple effects are applied in parallel to the element.

The above core effects are mixed together to create the following combination effects:

Fade: Fades an element away.
Puff: Makes an element disappear in a cloud of smoke.
Shake: Moves an element repeatedly to the left and right.
Blind Down: Simulates a window blind coming down over an element.
Blind Up: Simulates a window blind going up over an element.
Pulsate: Fades an element in and out and makes it appear to be pulsating.
Grow: Grows an element in size.
Shrink: Reduces an element in size.

•

•

•

•

•

•

•

•

•

•

•

•

•

Browser Effects with JSNI and Javascript Libraries

[152]

Squish: Reduces an element by shrinking it to its left.
Fold: First reduces an element to its top, then to its left, and eventually makes
it disappear.

We position an image and a button inside each grid cell. When the button is clicked,
we apply an effect to the image element that is above the button. We invoke an effect
by providing the widget object to the desired effect method in the org.gwtwidgets.
client.wrap.Effect class. All the methods in this class are static and each
Script.aculo.us effect has a correspondingly named method in this class. So in
order to fade an element, we call the Effect.fade() method and provide it with
the image widget to which to apply the effect. These transitions are a very nice
way to add dazzle to our application and provide a better user experience. You
can also mix and match the provided effects in different ways to create and use
customized effects.

Summary
We have covered several JavaScript libraries and their use in GWT applications. A
very important thing to be aware of while using all these libraries is that including
a lot of JavaScript will increase the bloat that has to be loaded by the browser and
will almost certainly increase page load times, and make things run slower. So use
the visual effects sparingly and do not go overboard with them. Another caveat is
the lack of portability when using JSNI for your application. This can cause your
application to work quite differently in different versions of browsers.

In this chapter we have learned about JSNI. We utilized JSNI to wrap the Moo.fx
library and used its effects. We also wrapped different pieces of the Rico library and
utilized it to create rounded corners for labels and a color selector application. We
used the Script.aculo.us effects provided by the gwt-widgets library. We used an
existing library in this case to provide the effects. We also learned how to use module
inheritance in GWT.

In the next chapter, we are going to learn how to create custom GWT widgets that
can be shared across projects.

•

•

Custom Widgets
GWT provides a wide variety of widgets—such as labels, text boxes, trees, etc., out
of the box for you to use in your applications. These widgets provide a good starting
point for building user interfaces, but will almost always not provide you with
everything you need. This is where the concept of creating custom widgets by either
combining the existing ones in newer and innovative ways, or writing new widgets
from scratch comes in handy. In this chapter, we are going to tackle two things
commonly used in web pages—a calendar display and a weather conditions display.
Since these two functions are not provided by anything currently shipped in GWT,
we will create these two widgets. We will also learn how to package them so that we
can reuse them on a different GWT project if necessary.

The tasks that we will address are:

Calendar widget
Weather widget

Calendar Widget
We will create a reusable calendar widget, which can be easily used in multiple
GWT applications. This widget is based on Alexei Sokolov's simple calendar widget
(http://gwt.components.googlepages.com/calendar). We will adapt it to suit
our requirements. The calendar will display the current date along with a listing for
the current month and will enable navigation either forward or backward through
the calendar. We will also provide a way to get back to the current day, no matter
where we have navigated in the calendar.

•

•

Custom Widgets

[154]

Time for Action—Creating a Calendar
We will now create a calendar widget. The steps are as follows:

1.	 Create a new widget project to contain the artifacts for our custom
widgets. We will create our widget in this project and then use it inside an
application in our original Samples project. When we create the new project,
the Widgets.gwt.xml file will be automatically created for us, and by default
it will contain the following entry for inheriting from the User module. This
is the one module that every GWT module needs to inherit from:

 <inherits name='com.google.gwt.user.User'/>

2.	 Create a new Java file named CalendarWidget.java in the com.packtpub.
gwtbook.widgets.client package that extends the com.google.gwt.user.
client.ui.Composite class and implements the com.google.gwt.user.
client.ui.ClickListener interface:

 public class CalendarWidget extends Composite implements
 ClickListener
 {
 }

3.	 Create the elements needed for creating a navigation bar to go forward and
backward in the calendar, along with a DockPanel class that will be the
container for the calendar itself:

 private DockPanel navigationBar = new DockPanel();
 private Button previousMonth = new Button("<", this);
 private Button nextMonth = new Button(">", this);
 private final DockPanel outerDockPanel = new DockPanel();

4.	 Create string arrays to store the weekday names and the names of the
months in a year. We will retrieve the names from these arrays to display in
the user interface:

 private String[] daysInWeek = new String[] { "Sunday",
 "Monday", "Tuesday","Wednesday", "Thursday", "Friday",
 "Saturday"};
 private String[] monthsInYear = new String[] { "January",
 "February", "March", "April", "May", "June", "July",
 "August", "September", "October", "November", "December"};

Chapter 7

[155]

5.	 Create a variable for holding the HTML used to display the title of the
calendar. Create labels for displaying the week day and the date for the
current day. Also, create and initialize a private variable that contains the
current date:

 private HTML calendarTitle = new HTML();
 private Label dayOfWeek = new Label("");
 private Label dateOfWeek = new Label("");
 private Date currentDate = new Date();

6.	 Create a new Grid object that overrides the clearCell() method to set the
text for the column cell:

 private final Grid calendarGrid = new Grid(7, 7)
 {
 public boolean clearCell(int row, int column)
 {
 boolean retValue = super.clearCell(row, column);
 Element td = getCellFormatter().getElement(row, column);
 DOM.setInnerHTML(td, "");
 return retValue;
 }
 };

7.	 Create a private static class named CalendarCell that extends the HTML class:
 private static class CalendarCell extends HTML
 {
 private int day;
 public CalendarCell(String cellText, int day)
 {
 super(cellText);
 this.day = day;
 }
 public int getDay()
 {
 return day;
 }
 }

An instance of this class will be added to the grid object we created earlier,
to display a single calendar element in a cell.

8.	 Add accessors to the CalendarWidget class for getting the current date,
along with the day, month, and year components of the current date:

 public int getYear()
 {

Custom Widgets

[156]

 return 1900 + currentDate.getYear();
 }
 public int getMonth()
 {
 return currentDate.getMonth();
 }
 public int getDay()
 {
 return currentDate.getDate();
 }
 public Date getDate()
 {
 return currentDate;
 }

These methods will be used to retrieve the individual data for a given calen-
dar date.

9.	 Add mutators to the CalendarWidget class for modifying the day, month,
and year components of the currentDate variable:

 private void setDate(int year, int month, int day)
 {
 currentDate = new Date(year - 1900, month, day);
 }
 private void setYear(int year)
 {
 currentDate.setYear(year - 1900);
 }
 private void setMonth(int month)
 {
 currentDate.setMonth(month);
 }

10.	 Create a method for computing the calendar for a month previous to the
current month:

 public void computeCalendarForPreviousMonth()
 {
 int month = getMonth() - 1;
 if (month < 0)
 {
 setDate(getYear() - 1, 11, getDay());
 }
 else
 {
 setMonth(month);
 }

Chapter 7

[157]

 renderCalendar();
 }

We will use this when the user clicks on the button for navigating to the pre-
vious month.

11.	 Create a method for computing the calendar for a month after to the
current month:

 public void computeCalendarForNextMonth()
 {
 int month = getMonth() + 1;
 if (month > 11)
 {
 setDate(getYear() + 1, 0, getDay());
 }
 else
 {
 setMonth(month);
 }
 renderCalendar();
 }

We will use this when the user clicks on the button for navigating to the
next month.

12.	 Create a method for computing the number of days in a given month. There
is no simple method for getting this information currently; so we need to
calculate it:

 private int getDaysInMonth(int year, int month)
 {
 switch (month)
 {
 case 1:
 if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0)
 return 29;
 else
 return 28;
 case 3:
 return 30;
 case 5:
 return 30;
 case 8:
 return 30;
 case 10:
 return 30;

Custom Widgets

[158]

 default:
 return 31;
 }
 }

13.	 Create a renderCalendar() method that can draw the calendar and all of
its elements. Get the various components of the currently set date object, set
the calendar title, and format the calendar grid. Also compute the number
of days in the month and the current day, and set the date and weekday
label values. Finally, set the values of the grid cells to the computed
calendar values:

 private void renderCalendar()
 {
 int year = getYear();
 int month = getMonth();
 int day = getDay();
 calendarTitle.setText(monthsInYear[month] + " " + year);
 calendarGrid.getRowFormatter().setStyleName(0, "weekheader");
 for (int i = 0; i < daysInWeek.length; i++)
 {
 calendarGrid.getCellFormatter().setStyleName(0, i, "days");
 calendarGrid.setText(0, i, daysInWeek[i].substring(0, 1));
 }
 Date now = new Date();
 int sameDay = now.getDate();
 int today = (now.getMonth() == month && now.getYear() + 1900
 == year) ? sameDay : 0;
 int firstDay = new Date(year - 1900, month, 1).getDay();
 int numOfDays = getDaysInMonth(year, month);
 int weekDay = now.getDay();
 dayOfWeek.setText(daysInWeek[weekDay]);
 dateOfWeek.setText("" + day);
 int j = 0;
 for (int i = 1; i < 6; i++)
 {
 for (int k = 0; k < 7; k++, j++)
 {
 int displayNum = (j - firstDay + 1);
 if (j < firstDay || displayNum > numOfDays)
 {
 calendarGrid.getCellFormatter().setStyleName(i, k,
 "empty");
 calendarGrid.setHTML(i, k, " ");
 }

Chapter 7

[159]

 else
 {
 HTML html = new calendarCell(""+
 String.valueOf(displayNum) + "",displayNum);
 html.addClickListener(this);
 calendarGrid.getCellFormatter().setStyleName(i, k,
 "cell");
 if (displayNum == today)
 {
 calendarGrid.getCellFormatter().addStyleName(i, k,
 "today");
 }
 else if (displayNum == sameDay)
 {
 calendarGrid.getCellFormatter().addStyleName(i, k,
 "day");
 }
 calendarGrid.setWidget(i, k, html);
 }
 }
 }
 }

14.	 Create the constructor CalendarWidget() to initialize and lay out all the
various elements that compose our calendar widget:

 HorizontalPanel hpanel = new HorizontalPanel();
 navigationBar.setStyleName("navbar");
 calendarTitle.setStyleName("header");
 HorizontalPanel prevButtons = new HorizontalPanel();
 prevButtons.add(previousMonth);
 HorizontalPanel nextButtons = new HorizontalPanel();
 nextButtons.add(nextMonth);
 navigationBar.add(prevButtons, DockPanel.WEST);
 navigationBar.setCellHorizontalAlignment(prevButtons,
 DockPanel.ALIGN_LEFT);
 navigationBar.add(nextButtons, DockPanel.EAST);
 navigationBar.setCellHorizontalAlignment(nextButtons,
 DockPanel.ALIGN_RIGHT);
 navigationBar.add(calendarTitle, DockPanel.CENTER);
 navigationBar.setVerticalAlignment(DockPanel.ALIGN_MIDDLE);
 navigationBar.setCellHorizontalAlignment(calendarTitle,
 HasAlignment.ALIGN_CENTER);
 navigationBar.setCellVerticalAlignment(calendarTitle,
 HasAlignment.ALIGN_MIDDLE);
 navigationBar.setCellWidth(calendarTitle, "100%");

Custom Widgets

[160]

15.	 In the constructor, round the container panel that will hold all of the widget
elements using the Rico class that we created in Chapter 6. As we learned in
Chapter 6, the Rico class has static methods that can be used to get access to
the rounding method. We are directly using the Rico class created earlier to
keep things simple, but another way would be to split off the Rico-related
functionality into its own separate module and then use it here. Initialize the
widget with this container panel:

 initWidget(hpanel);
 calendarGrid.setStyleName("table");
 calendarGrid.setCellSpacing(0);
 DOM.setAttribute(hpanel.getElement(), "id", "calDiv");
 DOM.setAttribute(hpanel.getElement(), "className",
 "CalendarWidgetHolder");
 Rico.corner(hpanel.getElement(), null);
 hpanel.add(outerDockPanel);

16.	 Also, in the constructor add the navigation bar, the calendar grid, and the
today button to the vertical panel:

 VerticalPanel calendarPanel = new VerticalPanel();
 calendarPanel.add(navigationBar);
 VerticalPanel vpanel = new VerticalPanel();
 calendarPanel.add(calendarGrid);
 calendarPanel.add(todayButton);

17.	 Register an event handler to listen for clicks on the today button, and to
redraw the calendar to the current date:

 todayButton.setStyleName("todayButton");
 todayButton.addClickListener(new ClickListener()
 {
 public void onClick(Widget sender)
 {
 currentDate = new Date();
 renderCalendar();
 }
 });

18.	 Add the styles for the day and weekday labels and add the widgets to the
vertical panel:

 dayOfWeek.setStyleName("dayOfWeek");
 dateOfWeek.setStyleName("dateOfWeek");
 vpanel.add(dayOfWeek);
 vpanel.add(dateOfWeek);

Chapter 7

[161]

19.	 Add the two panels to the main panel for the widget:
 outerDockPanel.add(vpanel, DockPanel.CENTER);
 outerDockPanel.add(calendarPanel, DockPanel.EAST);

20.	 Draw the calendar and also register to sink all click events:
 renderCalendar();
 setStyleName("CalendarWidget");
 this.sinkEvents(Event.ONCLICK);

21.	 Create a JAR file that contains the widget that we have created. You can
export a JAR file by using the JAR Packager tool built into Eclipse. Select
Export from the File menu and you will have a similar screen to this:

Custom Widgets

[162]

22.	 Fill in the information, as it appears in the next screenshot, for creating the
JAR, and select the resources that will be included in it:

Chapter 7

[163]

23.	 Create the JAR file and save as widgets_jar_desc.jardesc, so that we
can recreate the JAR easily whenever we need to. This is shown in the
following screenshot:

24.	 Now that we have successfully created the JAR file named widgets.jar that
contains our calendar widget, let us actually use it in a different project. Add
this JAR to the buildpath for our Samples Eclipse project, so that the classes
we need can be found on the classpath for the project.

Custom Widgets

[164]

25.	 We also need to add the widgets.jar file to the scripts for running in
hosted mode and web mode. Modify the Samples-shell.cmd file and the
Samples-compile.cmd file to add the path to this JAR file.

26.	 Modify the module XML file for the Samples project—Samples.gwt.xml—to
inherit from the widgets module. Add the following entry to the file:

 <inherits name='com.packtpub.gwtbook.widgets.Widgets'/>

This entry is an indicator to the GWT framework that the current module will
use resources from the com.packtpub.gwtbook.widgets.Widgets module.
GWT also provides an automatic resource injection mechanism to automati-
cally load resources used by a module. This is accomplished by creating the
modules with references to the external JavaScript and CSS files used by the
module, and is particularly useful when you create reusable modules, and
want to ensure that the users of the module have access to the particular
stylesheets or JavaScript files used by the module.
In our case, we can probably rewrite and split off our Rico support, which
we added in Chapter 6, into its own module, but for the sake of simplicity we
are using it as it is.

27.	 Create the user interface for the calendar widget application in a new Java
file named CalendarWidgetPanel.java in the com.packtpub.gwtbook.
samples.client.panels package in the Samples project. Create a work
panel for holding the calendar sample:

 private VerticalPanel workPanel = new VerticalPanel();

28.	 In the constructor, create a new class CalendarWidget and add it to the
panel. Create a little info panel that displays descriptive text about this
application, so that we can display the text when this sample is selected in
the list of available samples in our Samples application. Add the info panel
and the work panel to a dock panel, and initialize the widget:

 HorizontalPanel infoPanel = new HorizontalPanel();
 infoPanel.add(new HTML
 ("<div class='infoProse'>Click on the navigation buttons to
 go forward and backward through the calendar. When you
 want to come back to todays date, click on the Today
 button.</div>"));
 CalendarWidget calendar = new CalendarWidget();
 workPanel.add(calendar);
 DockPanel workPane = new DockPanel();
 workPane.add(infoPanel, DockPanel.NORTH);
 workPane.add(workPanel, DockPanel.CENTER);
 workPane.setCellHeight(workPanel, "100%");
 workPane.setCellWidth(workPanel, "100%");
 initWidget(workPane);

Chapter 7

[165]

Run the application to see the calendar widget in action:

What Just Happened?
A custom widget encapsulates functionality and enables reuse across multiple
projects. There are three ways to create a custom GWT widget:

Composite: Composite is a special GWT class that is itself a widget, and can
act as a container for other widgets. This lets us easily compose a complex
widget comprising any number of components.
Java: Create a widget from scratch similar to the way all the basic widgets of
GWT, such as Button are written.
JavaScript: Implement a widget whose methods call JavaScript. This method
should be chosen carefully, as the code will need to be written to carefully
consider the cross-browser implications.

Normal GWT widgets are just wrappers around HTML elements. A composite
widget is a complex widget composed of several simple widgets. It controls the
methods that are publicly accessible to the clients of the widget. You can, thus,
expose only the events that you want. Composite is the simplest and quickest way
to build a widget. In this example, we create a calendar widget by extending the

•

•

•

Custom Widgets

[166]

Composite class, and adding various components to it. The calendar consists of two
main panels—the one on the left displays the weekday and the actual date, while the
panel on the right displays the actual calendar along with the buttons for navigating
forward and backward through the calendar. You can use these buttons to go to a
different date. Anytime you want to return to the calendar for today's date, click on
the Today button, and the calendar will again be rendered for the current date.

We created a container named HorizontalPanel that contains the various
components of the calendar widget. This panel is given a nice rounded corner effect
by using the Rico library that we created in the previous chapter.

DOM.setAttribute(hpanel.getElement(), "id", "calDiv");
DOM.setAttribute(hpanel.getElement(), "className",
 "CalendarWidgetHolder");
Rico.corner(hpanel.getElement(), null);

For the calendar, we used a Grid object with seven rows and seven columns. We
overrode its clearCell() method to clear the contents of the cell by setting the text
for the TD element to an empty string:

public boolean clearCell(int row, int column)
{
 boolean retValue = super.clearCell(row, column);
 Element td = getCellFormatter().getElement(row, column);
 DOM.setInnerHTML(td, "");
 return retValue;
}

This grid was created by populating each of its cells with CalendarCell. This is a
custom class that we created where each of the cells can take an HTML snippet as the
text, and lets us lay out a much better grid.

private static class calendarCell extends HTML
{
 private int day;
 public calendarCell(String cellText, int day)
 {
 super(cellText);
 this.day = day;
 }
 public int getDay()
 {
 return day;
 }
}

Chapter 7

[167]

The renderCalendar() method does the bulk of the work in this widget. It sets the
values for the weekday and the date, and also draws the calendar itself. When we
create the calendar grid, we set the styles for each individual cell. If the cell happens
to be the current date, we set it to a different style; so visually we can immediately
discern the current date by just looking at the grid. When the calendar widget is
initialized, it automatically draws the calendar for the current date. The navigation
bar contains two buttons—one for navigating forward to go to the next month, and
the other button for navigating backward to the previous month. When one of the two
navigation buttons is clicked, we redraw the calendar. So, for instance, when we click
on the previous button, we compute the previous month and redraw the calendar:

public void computeCalendarForPreviousMonth()
{
 int month = getMonth() - 1;
 if (month < 0)
 {
 setDate(getYear() - 1, 11, getDay());
 }
 else
 {
 setMonth(month);
 }
 renderCalendar();
}

We also added a button to the calendar so as to let us redraw the calendar to the
current date. After navigating either forward or backward in the calendar, we can
click on the Today button, and have the calendar rendered for the current date:

todayButton.addClickListener(new ClickListener()
{
 public void onClick(Widget sender)
 {
 currentDate = new Date();
 renderCalendar();
 }
});

We utilized the built-in functionality in Eclipse to export our widget resources as a
JAR file. This JAR file can be shared among teams or projects, and reused. We used
this exported widgets.jar file in our Samples project, by creating a simple panel,
instantiating the calendar widget, and adding it to the panel. The file also needs to be
added to the compile and shell batch files for the project; so that it can be found on
the classpath when either of these commands is run. We could have done some of
the date manipulation in a simpler way by using the Calendar class that is available

Custom Widgets

[168]

in the JDK 1.4 + versions. However, we could not use the Calendar class as it is
not one of the JRE classes that are provided by the GWT framework currently. So if
we would have used it, we had had compilation errors. If in the future this class is
supported by GWT, it should be quite simple to switch it out to use the functionality
provided by the Calendar class to perform some of the date manipulation.

Weather Widget
We will create a weather widget that uses the Yahoo Weather RSS service to retrieve
the weather information and display the current weather conditions. We will create
an RPC service that provides this functionality, and then use the RPC in our widget
to display the weather information for a given US ZIP code. The user interface for
this widget will contain an image for the current weather condition, along with all
the other weather-related information that is available via the Yahoo weather service.

Time for Action—Creating a Weather
Information Service
This widget will also be created in the same widgets project that we used to create
the calendar widget in the previous section. The steps are as follows:

1.	 Create a new Java file named Weather.java in the com.packtpub.gwtbook.
widgets.client package. This class will encapsulate all the weather-related
information for a given ZIP code, and will be used as the return parameter
in the RPC service that we will create later on in this example. We can also
use the recently added GWT support for client-side XML parsing to read
an XML string returned to the client. We are going to learn about GWT's
XML support in Chapter 9. For now, we are going to use a simple object to
encapsulate the returned weather information. This will enable us to focus on
the custom widget functionality and keeps things simple. Create variables for
each of the properties:

 private String zipCode = "";
 private String chill = "";
 private String direction = "";
 private String speed = "";
 private String humidity = "";
 private String visibility = "";
 private String pressure = "";
 private String rising = "";
 private String sunrise = "";
 private String sunset = "";

Chapter 7

[169]

 private String latitude = "";
 private String longitude = "";
 private String currentCondition = "";
 private String currentTemp = "";
 private String imageUrl = "";
 private String city = "";
 private String state = "";
 private String error = "";

2.	 Add methods for getting and setting the various weather-related properties
for this class. Here are the methods to get and set chill, city, current
condition, and current temperature:

 public String getChill()
 {
 return chill;
 }
 public void setChill(String chill)
 {
 this.chill = chill;
 }
 public String getCity()
 {
 return city;
 }
 public void setCity(String city)
 {
 this.city = city;
 }
 public String getCurrentCondition()
 {
 return currentCondition;
 }
 public void setCurrentCondition(String currentCondition)
 {
 this.currentCondition = currentCondition;
 }
 public String getCurrentTemp()
 {
 return currentTemp;
 }
 public void setCurrentTemp(String currentTemp)
 {
 this.currentTemp = currentTemp;
 }

Custom Widgets

[170]

3.	 Add methods to get and set direction, error, humidity, and image URL:
 public String getDirection()
 {
 return direction;
 }
 public void setDirection(String direction)
 {
 this.direction = direction;
 }
 public String getError()
 {
 return error;
 }
 public void setError(String error)
 {
 this.error = error;
 }
 public String getHumidity()
 {
 return humidity;
 }
 public void setHumidity(String humidity)
 {
 this.humidity = humidity;
 }
 public String getImageUrl()
 {
 return imageUrl;
 }
 public void setImageUrl(String imageUrl)
 {
 this.imageUrl = imageUrl;
 }

4.	 Add methods to get and set latitude, longitude, pressure, and
barometer rising:

 public String getLatitude()
 {
 return latitude;
 }
 public void setLatitude(String latitude)
 {
 this.latitude = latitude;
 }

Chapter 7

[171]

 public String getLongitude()
 {
 return longitude;
 }
 public void setLongitude(String longitude)
 {
 this.longitude = longitude;
 }
 public String getPressure()
 {
 return pressure;
 }
 public void setPressure(String pressure)
 {
 this.pressure = pressure;
 }
 public String getRising()
 {
 return rising;
 }
 public void setRising(String rising)
 {
 this.rising = rising;
 }

5.	 Add methods to get and set speed, state, sunrise, and sunset values:
 public String getSpeed()
 {
 return speed;
 }
 public void setSpeed(String speed)
 {
 this.speed = speed;
 }
 public String getState()
 {
 return state;
 }
 public void setState(String state)
 {
 this.state = state;
 }
 public String getSunrise()
 {

Custom Widgets

[172]

 return sunrise;
 }
 public void setSunrise(String sunrise)
 {
 this.sunrise = sunrise;
 }
 public String getSunset()
 {
 return sunset;
 }
 public void setSunset(String sunset)
 {
 this.sunset = sunset;
 }

6.	 Add methods to get and set the visibility and the ZIP code:
 public String getVisibility()
 {
 return visibility;
 }
 public void setVisibility(String visibility)
 {
 this.visibility = visibility;
 }
 public String getZipCode()
 {
 return zipCode;
 }
 public void setZipCode(String zipCode)
 {
 this.zipCode = zipCode;
 }

7.	 Create the Weather() constructor to create a weather object:
 public Weather(String zipCode, String chill, String direction,
 String speed, String humidity, String visibility, String
 pressure, String rising, String sunrise, String sunset,
 String latitude, String longitude, String currentCondition,
 String currentTemp, String imageUrl, String city, String
 state)
 {
 this.zipCode = zipCode;
 this.chill = chill;
 this.direction = direction;

Chapter 7

[173]

 this.speed = speed;
 this.humidity = humidity;
 this.visibility = visibility;
 this.pressure = pressure;
 this.rising = rising;
 this.sunrise = sunrise;
 this.sunset = sunset;
 this.latitude = latitude;
 this.longitude = longitude;
 this.currentCondition = currentCondition;
 this.currentTemp = currentTemp;
 this.imageUrl = imageUrl;
 this.city = city;
 this.state = state;
 }

8.	 Create a new Java file named WeatherService.java in the com.packtpub.
gwtbook.widgets.client package. This is the service definition for
the weather service. Define one method to retrieve the weather data by
providing a ZIP code:

 public interface WeatherService extends RemoteService
 {
 public Weather getWeather(String zipCode);
 }

9.	 Create the asynchronous version of this service definition interface in a
new Java file named WeatherServiceAsync.java in the com.packtpub.
gwtbook.widgets.client package:

 public interface WeatherServiceAsync
 {
 public void getWeather(String zipCode, AsyncCallback
 callback);
 }

10.	 Create the implementation of the weather service in a new Java file named
WeatherServiceImpl.java in the com.packtpub.gwtbook.widgets.
server package. We are going to use two third-party libraries from the
Dom4j (http://www.dom4j.org/) and Jaxen (http://jaxen.codehaus.
org/) projects in this sample, to make it easier for us to parse the Yahoo RSS
feed. Download the current versions of these libraries to the lib folder. Add
dom4j-xxx.jar and jaxen-xxx.jar in the lib folder to the buildpath
for Eclipse. Add the necessary code to retrieve the weather data for a
given ZIP code by accessing the Yahoo Weather RSS service in the
getWeather() method.

Custom Widgets

[174]

Create a SAX parser first:
 public Weather getWeather(String zipCode)
 {
 SAXReader reader = new SAXReader();
 Weather weather = new Weather();
 Document document;
 }

11.	 Retrieve the RSS document for the provided ZIP code:
 try
 {
 document = reader.read(new URL
 ("http://xml.weather.yahoo.com/forecastrss?p=" + z ipCode));
 }
 catch (MalformedURLException e)
 {
 e.printStackTrace();
 }
 catch (DocumentException e)
 {
 e.printStackTrace();
 }

12.	 Create a new XPath expression and add the namespaces that we are
interested in to the expression:

 XPath expression = new Dom4jXPath("/rss/channel");
 expression.addNamespace("yweather",
 "http://xml.weather.yahoo.com/ns/rss/1.0");
 expression.addNamespace("geo",
 "http://www.w3.org/2003/01/geo/wgs84_pos#");

We will later on use this expression to access the data we need from
the document.

13.	 Select the root node in the retrieved XML document, and check for any
errors. Return a weather object with an error message set, if any errors are
found in the XML:

 Node result = (Node) expression.selectSingleNode(document);
 String error = result.valueOf("/rss/channel/description");
 if (error.equals("Yahoo! Weather Error"))
 {
 weather.setError("Invalid zipcode "+ zipCode+
 " provided. No weather information available for this
 location.");
 return weather;
 }

Chapter 7

[175]

14.	 Select the description section using XPath, and then parse it to determine
the URL for the image that pertains to the returned weather data. Set this
information in the ImageUrl property of the weather object:

 String descriptionSection = result.valueOf
 ("/rss/channel/item/description");
 weather.setImageUrl(descriptionSection.substring
 (descriptionSection.indexOf("src=") + 5,
 descriptionSection.indexOf(".gif") + 4));

15.	 Use XPath expressions to select all the data that we are interested in from the
XML document, and set the various properties of the weather object. Finally,
return the object as the return value from our service:

 weather.setCity(result.valueOf("//yweather:location/@city"));
 weather.setState(result.valueOf
 ("//yweather:location/@region"));
 weather.setChill(result.valueOf("//yweather:wind/@chill"));
 weather.setDirection(result.valueOf
 ("//yweather:wind/@direction"));
 weather.setSpeed(result.valueOf("//yweather:wind/@speed"));
 weather.setHumidity(result.valueOf
 ("//yweather:atmosphere/@humidity"));
 weather.setVisibility(result.valueOf
 ("//yweather:atmosphere/@visibility"));
 weather.setPressure(result.valueOf
 ("//yweather:atmosphere/@pressure"));
 weather.setRising(result.valueOf
 ("//yweather:atmosphere/@rising"));
 weather.setSunrise(result.valueOf
 ("//yweather:astronomy/@sunrise"));
 weather.setSunset(result.valueOf
 ("//yweather:astronomy/@sunset"));
 weather.setCurrentCondition(result.valueOf
 ("//yweather:condition/@text"));
 weather.setCurrentTemp(result.valueOf
 ("//yweather:condition/@temp"));
 weather.setLatitude(result.valueOf("//geo:lat"));
 weather.setLongitude(result.valueOf("//geo:long"));
 return weather;

16.	 Our server-side implementation is now complete. Create a new Java file
named WeatherWidget.java in the com.packtpub.gwtbook.widgets.
client package that extends the com.google.gwt.user.client.
ui.Composite class and implements the com.google.gwt.user.client.
ui.ChangeListener interface:

Custom Widgets

[176]

 public class WeatherWidget extends Composite implements
 ChangeListener
 {
 }

17.	 In the WeatherWidget class, create panels for displaying the current
weather image, conditions, along with atmospheric, wind, astronomical,
and geographic measurements:

 private VerticalPanel imagePanel = new VerticalPanel();
 private HorizontalPanel tempPanel = new HorizontalPanel();
 private VerticalPanel tempHolderPanel = new VerticalPanel();
 private HorizontalPanel currentPanel = new HorizontalPanel();
 private HorizontalPanel windPanel = new HorizontalPanel();
 private HorizontalPanel windPanel2 = new HorizontalPanel();
 private HorizontalPanel atmospherePanel = new
 HorizontalPanel();
 private HorizontalPanel atmospherePanel2 = new
 HorizontalPanel();
 private HorizontalPanel astronomyPanel = new HorizontalPanel();
 private HorizontalPanel geoPanel = new HorizontalPanel();
 private Image image = new Image();
 private Label currentTemp = new Label("");
 private Label currentCondition = new Label("");

18.	 Create labels for displaying all of this information, along with a textbox
to allow users to enter the ZIP code of the place whose weather is to be
displayed in the widget:

 private Label windChill = new Label("");
 private Label windDirection = new Label("");
 private Label windSpeed = new Label("");
 private Label atmHumidity = new Label("");
 private Label atmVisibility = new Label("");
 private Label atmpressure = new Label("");
 private Label atmRising = new Label("");
 private Label astSunrise = new Label("");
 private Label astSunset = new Label("");
 private Label latitude = new Label("");
 private Label longitude = new Label("");
 private Label windLabel = new Label("Wind");
 private Label astLabel = new Label("Astronomy");
 private Label atmLabel = new Label("Atmosphere");
 private Label geoLabel = new Label("Geography");
 private Label cityLabel = new Label("");
 private TextBox zipCodeInput = new TextBox();

Chapter 7

[177]

19.	 Create and initialize the WeatherService object and set the entry-point URL
for the weather service:

 final WeatherServiceAsync weatherService =
 (WeatherServiceAsync) GWT.create(WeatherService.class);
 ServiceDefTarget endpoint = (ServiceDefTarget) weatherService;
 endpoint.setServiceEntryPoint(GWT.getModuleBaseURL() +
 "weather");

20.	 Create the WeatherWidget() constructor. In the constructor, create the work
panel; initialize the widget with our main panel and register to receive all
change events:

 VerticalPanel workPanel = new VerticalPanel();
 initWidget(workPanel);
 this.sinkEvents(Event.ONCHANGE);

21.	 Set id for the work panel, and use the Rico library, as in the previous
example, to round the corner for the panel:

 DOM.setAttribute(workPanel.getElement(), "id", "weatherDiv");
 DOM.setAttribute(workPanel.getElement(), "className",
 "weatherHolder");
 Rico.corner(workPanel.getElement(), null);

22.	 Add the requisite styles for each element and add the element to the
various panels:

 image.setStyleName("weatherImage");
 imagePanel.add(image);
 currentCondition.setStyleName("currentCondition");
 imagePanel.add(currentCondition);
 currentPanel.add(imagePanel);
 currentTemp.setStyleName("currentTemp");
 tempPanel.add(currentTemp);
 tempPanel.add(new HTML("<div class='degrees'>°</div>"));
 tempHolderPanel.add(tempPanel);
 cityLabel.setStyleName("city");
 tempHolderPanel.add(cityLabel);
 currentPanel.add(tempHolderPanel);
 windDirection.setStyleName("currentMeasurementsDegrees");
 windChill.setStyleName("currentMeasurementsDegrees");
 windSpeed.setStyleName("currentMeasurements");
 windPanel.add(windDirection);
 windPanel.add(new HTML
 ("<div class='measurementDegrees'>°</div>"));
 windPanel.add(windSpeed);
 windPanel2.add(windChill);

Custom Widgets

[178]

 windPanel2.add(new HTML
 ("<div class='measurementDegrees'>°</div>"));
 atmHumidity.setStyleName("currentMeasurements");
 atmpressure.setStyleName("currentMeasurements");
 atmVisibility.setStyleName("currentMeasurements");
 atmRising.setStyleName("currentMeasurements");
 atmospherePanel.add(atmHumidity);
 atmospherePanel.add(atmVisibility);
 atmospherePanel2.add(atmpressure);
 astSunrise.setStyleName("currentMeasurements");
 astSunset.setStyleName("currentMeasurements");
 astronomyPanel.add(astSunrise);
 astronomyPanel.add(astSunset);
 latitude.setStyleName("currentMeasurements");
 longitude.setStyleName("currentMeasurements");
 geoPanel.add(latitude);
 geoPanel.add(longitude);
 windLabel.setStyleName("conditionPanel");
 atmLabel.setStyleName("conditionPanel");
 astLabel.setStyleName("conditionPanel");
 geoLabel.setStyleName("conditionPanel");

23.	 Add all the panels to the main work panel:
 workPanel.add(currentPanel);
 workPanel.add(windLabel);
 workPanel.add(windPanel);
 workPanel.add(windPanel2);
 workPanel.add(atmLabel);
 workPanel.add(atmospherePanel);
 workPanel.add(atmospherePanel2);
 workPanel.add(astLabel);
 workPanel.add(astronomyPanel);
 workPanel.add(geoLabel);
 workPanel.add(geoPanel);

24.	 Create a small panel for inputting the ZIP code and a buffer panel to separate
it from the rest of the panels that compose this widget. Finally invoke the
getAndRenderWeather() method to get the weather information. Create
this method:

 HorizontalPanel bufferPanel = new HorizontalPanel();
 bufferPanel.add(new HTML("<div> </div>"));
 HorizontalPanel zipCodeInputPanel = new HorizontalPanel();
 Label zipCodeInputLabel = new Label("Enter Zip:");
 zipCodeInputLabel.setStyleName("zipCodeLabel");

Chapter 7

[179]

 zipCodeInput.setStyleName("zipCodeInput");
 zipCodeInput.setText("90210");
 zipCodeInput.addChangeListener(this);
 zipCodeInputPanel.add(zipCodeInputLabel);
 zipCodeInputPanel.add(zipCodeInput);
 workPanel.add(zipCodeInputPanel);
 workPanel.add(bufferPanel);
 getAndRenderWeather(zipCodeInput.getText());

25.	 Create a private method named getAndRenderWeather() for getting the
weather information from the service and displaying it in our user interface:

 private void getAndRenderWeather(String zipCode)
 {
 AsyncCallback callback = new AsyncCallback()
 {
 public void onSuccess(Object result)
 {
 Weather weather = (Weather) result;
 if (weather.getError().length() > 0)
 {
 Window.alert(weather.getError());
 return;
 }
 image.setUrl(weather.getImageUrl());
 currentTemp.setText(weather.getCurrentTemp());
 currentCondition.setText(weather.getCurrentCondition());
 windDirection.setText("Direction : " +
 weather.getDirection());
 windChill.setText("Chill : " + weather.getChill());
 windSpeed.setText("Speed : " + weather.getSpeed() +
 " mph");
 atmHumidity.setText("Humidity : " + weather.getHumidity()
 + " %");
 atmpressure.setText("Barometer : "+ weather.getPressure()
 + " in and "+ getBarometerState(
 Integer.parseInt(weather.getRising())));
 atmVisibility.setText("Visibility : "+
 (Integer.parseInt(weather.getVisibility())
 / 100) + " mi");
 astSunrise.setText("Sunrise : " + weather.getSunrise());
 astSunset.setText("Sunset : " + weather.getSunset());
 latitude.setText("Latitude : " + weather.getLatitude());
 longitude.setText("Longitude : " +
 weather.getLongitude());
 cityLabel.setText(weather.getCity() + ", " +

Custom Widgets

[180]

 weather.getState());
 }
 public void onFailure(Throwable caught)
 {
 Window.alert(caught.getMessage());
 }
 weatherService.getWeather(zipCode, callback);

26.	 Add a private method that returns the display text based on the integer value
of the rising attribute:

 private String getBarometerState(int rising)
 {
 if (rising == 0)
 {
 return "steady";
 }
 else if (rising == 1)
 {
 return "rising";
 }
 else
 {
 return "falling";
 }
 }

27.	 Add an event handler to get and render the new weather information when
the user types in a new ZIP code in the textbox:

 public void onChange(Widget sender)
 {
 if (zipCodeInput.getText().length() == 5)
 {
 getAndRenderWeather(zipCodeInput.getText());
 }
 }

Chapter 7

[181]

28.	 Rebuild the widgets.jar file to contain the new weather widget. Now we
can use our new JAR file to create a user interface that instantiates and uses
this widget.

29.	 Create the user interface for the weather widget application in a new Java
file named WeatherWidgetPanel.java in the com.packtpub.gwtbook.
samples.client.panels package in the Samples project. Create a work
panel for holding the weather widget:

 private VerticalPanel workPanel = new VerticalPanel();

30.	 In the constructor, create a new WeatherWidget and add it to the
panel. Since we are already inheriting from the widgets module in the
Samples.gwt.xml file, all the requisite classes should be resolved correctly.
Create a little info panel that displays descriptive text about this application,
so that we can display the text when this sample is selected in the list of
available samples in our Samples application. Add the info panel and the
work panel to a dock panel, and initialize the widget:

 HorizontalPanel infoPanel = new HorizontalPanel();
 infoPanel.add(new HTML
 ("<div class='infoProse'>A custom widget for viewing the
 weather conditions for a US city by entering the zipcode
 in the textbox.</div>"));:
 WeatherWidget weather = new WeatherWidget();
 workPanel.add(weather);
 DockPanel workPane = new DockPanel();
 workPane.add(infoPanel, DockPanel.NORTH);
 workPane.add(workPanel, DockPanel.CENTER);
 workPane.setCellHeight(workPanel, "100%");
 workPane.setCellWidth(workPanel, "100%");
 initWidget(workPane);

Custom Widgets

[182]

Here is a screenshot of the weather widget:

Type a new US ZIP code to see the weather conditions for that area.

What Just Happened?
Yahoo! Weather provides weather data and information for a provided US ZIP
code via RSS. Really Simple Syndication (RSS) is a lightweight XML format that
was primarily designed for distributing web content such as headlines. The service
provided can be accessed via a URL-based format and by providing the ZIP code
as a parameter to the URL. The response is an XML message that can be parsed and
searched for the required data.

We create an RPC WeatherService that accesses the Yahoo service, parses the data,
and provides it to us in the form of a simple weather object. This Weather class
models the weather for a single ZIP code. Each instance of the Weather class contains
the following attributes that are set by our WeatherService:

Chapter 7

[183]

zipCode: The ZIP code whose weather needs to be retrieved.
currentTemp: The current temperature.
currentConditions: The text that reflects the current weather conditions.
chill: The wind chill for this location.
direction: The wind direction.
speed: The current wind speed for this location.
humidity: The current humidity for this location.
visibility: The current visibility.
pressure: The current barometric pressure.
rising: Indicator to inform if the barometric pressure is rising, falling,
or steady.
sunrise: Time of sunrise.
sunset: Time of sunset.
latitude: Latitude of this location.
longitude: Longitude of this location.
city: The city that corresponds to this ZIP code.
state: The state that corresponds to this ZIP code.
imageUrl: The URL for the image that represents the current
weather conditions.
error: If there is any error encountered while retrieving the weather
information for a given ZIP code, this attribute is set. This enables the UI to
display a message box with this error.

We implement the getWeather() method in the WeatherServiceImpl class. We
use classes from the Dom4j and Jaxen libraries in this service. This also means that
we need to add the two JAR files for these projects to the buildpath for our Eclipse
project. Dom4j is a fast and easy-to-use XML parser, which supports searching
XML via XPath expressions. The XPath support is itself provided by classes from
the Jaxen project. We retrieve the response XML document by calling the Yahoo
weather service URL with a ZIP code parameter. The returned XML is searched
using XPath expressions. We add namespaces for yweather and geo to the
XPath expression, as some of the elements in the response XML are under this
different namespace:

document = reader.read(new URL
 ("http://xml.weather.yahoo.com/forecastrss?p=" + zipCode));
XPath expression = new Dom4jXPath("/rss/channel");
expression.addNamespace

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Custom Widgets

[184]

("yweather","http://xml.weather.yahoo.com/ns/rss/1.0");
expression.addNamespace
("geo","http://www.w3.org/2003/01/geo/wgs84_pos#");

We then search the response using XPath, get the value we are interested in, and
set the appropriate attribute for the weather object. So for instance, here is how we
get the value for the city and state for this location, and set those properties for the
weather object:

weather.setCity(result.valueOf("//yweather:location/@city"));
weather.setState(result.valueOf("//yweather:location/@region"));

We have to do something different for getting the image URL with the image for
the current conditions. This URL is embedded in a CDATA section in the response.
So we use an XPath expression to get the text for this node, and then access the
substring that contains the IMG tag that we are looking for:

String descriptionSection = result.valueOf
 ("/rss/channel/item/description");
weather.setImageUrl(descriptionSection.substring
 (descriptionSection.indexOf("src=") + 5,
 descriptionSection.indexOf(".gif") + 4));

The weather object with all these properties set is returned as the response from
a call to this service. We now create our actual widget that will utilize and call
this service. The user interface consists of a nice rounded panel that contains the
following components:

An image for the current conditions—the image URL.
The actual text for the current condition—such as cloudy, sunny, etc.
The current temperature.
A section for displaying the current wind conditions—chill, direction,
and speed.
A section for displaying the current atmospheric conditions—humidity,
visibility, and the barometric pressure and its direction of change.
A section for displaying the current astronomical data—sunrise and sunset.
A section for displaying the current geographic data—latitude and longitude
for this location.
A textbox for entering a new ZIP code.

•

•

•

•

•

•

•

•

Chapter 7

[185]

The temperature is displayed in degrees, and the degrees symbol is shown by using
the entity version—°—in the code. So we display the current temperature in the
widget like this:

tempPanel.add(new HTML("<div class='degrees'>°</div>"));

The service is invoked asynchronously when this widget is initialized, and the
corresponding display elements are set with their values when the response is
received from the WeatherService. We recreate the JAR file, to contain this widget
too, and then use this widget in the Samples project by instantiating it and adding it
to a panel. Since we had already added the widgets.jar file to the classpath in the
previous section, it should already be available to use in the Samples project. This
sample is more complex than the calendar widget because it also includes an RPC
service, in addition to the user interface. So when we use it, we need to add an entry
for the service from this widget to the module XML file of the project, where the
widget will be used:

<servlet path="/Samples/weather" class=
 "com.packtpub.gwtbook.widgets.server.WeatherServiceImpl"/>

Summary
In this chapter, we have learned about creating and reusing custom widgets. We
created a calendar widget, where we could navigate forward and backward, and
come back to the present date.

Then, we created a weather widget, which provided a weather information service
for a particular place.

In the next chapter, we will learn how to create and run unit tests for testing GWT
applications and RPC services.

Unit Tests
JUnit is a widely used open-source Java unit-testing framework created by Erich
Gamma and Kent Beck (http://junit.org). It allows you to incrementally build
a suite of tests as an integral part of your development effort and goes a long way
towards increasing your confidence in the stability of your code base. JUnit was
originally designed and used for testing Java classes, but has since been emulated
and used in several other languages such as Ruby, Python, and C#. GWT utilizes and
extends the JUnit framework to provide a way to test your AJAX code as simply as
any other Java code. In this chapter, we will learn how to create and run unit tests for
testing GWT applications and RPC services.

The tasks that we will address are:

Test a GWT page
Test an asynchronous service
Test a GWT page with an asynchronous service
Create and run a test suite

Test a GWT Page
A GWT page essentially consists of widgets and we can test the page by checking for
the presence of the widgets and also by checking for the widget values or parameters
that we want. In this section, we will learn how create a unit test for a GWT page.

Time for Action—Creating a Unit Test
We are going to test the AutoFormFillPanel page that we created in Chapter 4 by
using the testing support built into the GWT framework to write our unit test.

•

•

•

•

Unit Tests

[188]

The steps are as follows:

1.	 Run the GWT_HOME\junitCreator command script by providing
these parameters:

 junitCreator -junit junit.jar -module com.packtpub.gwtbook.samples.
 Samples -eclipse Samples -out ~pchaganti/dev/GWTBook/Samples ����com.
 packtpub.gwtbook.samples.client.panels.AutoFormFillPanelTest

2.	 Open the generated Java file com.packtpub.gwtbook.samples.client.
panels.AutoFormFillPanelTest.java in the test directory that was
automatically created when we ran the junitCreator command. Add a new
method named testPanel() to the file:

 public void testPanel()
 {
 }

3.	 Create the form and add assertions for checking the name of the Customer ID
label and the style associated with it:

 final AutoFormFillPanel autoFormFillPanel = new
 AutoFormFillPanel();
 assertEquals("Customer ID : ",
 autoFormFillPanel.getCustIDLbl().getText());
 assertEquals("autoFormItem-Label",
 autoFormFillPanel.getCustIDLbl().getStyleName());

4.	 Add similar assertions to test all the other elements on the page:
 assertEquals("Address : ",
 autoFormFillPanel.getAddressLbl().getText());
 assertEquals("autoFormItem-Label",
 autoFormFillPanel.getAddressLbl().getStyleName());
 assertEquals("City : ",
 autoFormFillPanel.getCityLbl().getText());
 assertEquals("autoFormItem-Label",

Chapter 8

[189]

 autoFormFillPanel.getCityLbl().getStyleName());
 assertEquals("First Name : ",
 autoFormFillPanel.getFirstNameLbl().getText());
 assertEquals("autoFormItem-Label",
 autoFormFillPanel.getFirstNameLbl().getStyleName());
 assertEquals("Last Name : ",
 autoFormFillPanel.getLastNameLbl().getText());
 assertEquals("autoFormItem-Label",
 autoFormFillPanel.getLastNameLbl().getStyleName());
 assertEquals("Phone Number : ",
 autoFormFillPanel.getPhoneLbl().getText());
 assertEquals("autoFormItem-Label",
 autoFormFillPanel.getPhoneLbl().getStyleName());
 assertEquals("State : ",
 autoFormFillPanel.getStateLbl().getText());
 assertEquals("autoFormItem-Label",
 autoFormFillPanel.getStateLbl().getStyleName());
 assertEquals("Zip Code : ",
 autoFormFillPanel.getZipLbl().getText());
 assertEquals("autoFormItem-Label",
 autoFormFillPanel.getZipLbl()

5.	 Add an entry to the Samples.gwt.xml file to inherit from the JUnit
testing module:

 <inherits name='com.google.gwt.junit.JUnit' />

6.	 Run the test in Eclipse by launching the AutoFormFillPanelTest-hosted
launch configuration from the Run menu and get a similar screen to this:

Unit Tests

[190]

What Just Happened?
The GWT framework supports unit testing by providing the GWTTestCase base class
that extends from TestCase in the JUnit testing library. We execute the unit tests by
compiling and running the class that extends from GWTTestCase. An invisible web
browser is launched by the GWT framework when we run this subclass, and the tests
are run inside the browser instance.

We use the junitCreator command script provided by GWT to generate the
scaffolding necessary for creating and running a unit test. We provide the name
of the test class as one of the parameters to this command. A sample test case that
extends from the GWTTestCase class is generated along with two launch scripts—one
for running in the host mode and the other for running in the web mode. These
launch configurations are generated in Eclipse format, and can be run directly from
inside the Eclipse environment.

The class that extends GWTTestCase must implement getModuleMethod() and
return the fully-qualified name of the GWT module that contains the test class. So in
our case, we return com.packtpub.gwtbook.samples.Samples from this method.
This enables GWT to resolve the dependencies and load the classes needed for
running the test correctly. If we are creating tests in a completely separate module,
this method will need to return the name of that containing module. We also need to
inherit from the GWT JUnit module in the module file of our project. That is why we
need to add this line to the Samples.gwt.xml file:

<inherits name='com.google.gwt.junit.JUnit' />

Using junitCreator is the simplest way to start using the unit testing features in
GWT. However, if you decide to create the various artifacts that are generated by
this command yourself, here are the steps involved in creating and running a unit
test in your GWT project:

1.	 Create a class that extends GWTTestCase. Implement the getModuleName()
method in this class to return the fully-qualified name of the module that
contains this class.

2.	 Compile the test case. In order to run your test, you must compile it first.
3.	 In order to run the tests, your classpath must include junit-dev-linux.

jar or gwt-dev-windows.jar file, and junit.jar file in addition to the
normal requirements.

Since GWTTestCase is just a subclass of TestCase, you have access to all the normal
assertion methods from the JUnit library. You can use these to assert and test all
kinds of things about the page, such as the structure of the document, including
tables and other HTML elements and their layout.

Chapter 8

[191]

Test an Asynchronous Service
In the previous section, we learned how to create simple tests for unit testing a
GWT page. However, most non-trivial GWT applications will access and use AJAX
services to retrieve data asynchronously. In this section, we will go through the steps
required to test an asynchronous service such as the AutoFormFillPanel service
that we created earlier in this book.

Time for Action—Testing the Asynchronous
Service
We are going to test AutoFormFillPanelService, which we created in Chapter 4:

1.	 Run the GWT_HOME\junitCreator command script by providing these
parameters:

 junitCreator -junit junit.jar -module com.packtpub.gwtbook.samples.
 Samples -eclipse Samples -out ~pchaganti/dev/GWTBook/Samples com.
 packtpub.gwtbook.samples.client.panels.AutoFormFillServiceTest

2.	 Open the generated Java file com.packtpub.gwtbook.samples.client.
panels.AutoFormFillServiceTest.java in the test directory that was
automatically created when we ran the junitCreator command. Add a new
method named testService() to the file:

 public void testService()
 {
 }

3.	 In the testService() method, instantiate AutoFormFillService and set the
entry point information:

 final AutoFormFillServiceAsync autoFormFillService =
 (AutoFormFillServiceAsync) GWT.create
 (AutoFormFillService.class);
 ServiceDefTarget endpoint = (ServiceDefTarget)
 autoFormFillService;
 endpoint.setServiceEntryPoint("/Samples/autoformfill");

4.	 Create a new asynchronous callback, and in the onSuccess() method add
assertions to test the data returned from invoking the service:

 AsyncCallback callback = new AsyncCallback()
 {
 public void onSuccess(Object result)
 {
 HashMap formValues = (HashMap) result;

Unit Tests

[192]

 assertEquals("Joe", formValues.get("first name"));
 assertEquals("Customer", formValues.get("last name"));
 assertEquals("123 peachtree street",
 formValues.get("address"));
 assertEquals("Atlanta", formValues.get("city"));
 assertEquals("GA", formValues.get("state"));
 assertEquals("30339", formValues.get("zip"));
 assertEquals("770-123-4567", formValues.get("phone"));
 finishTest();
 }
 };

5.	 Call the delayTestFinish() method and invoke the asynchronous service:
 delayTestFinish(2000);
 autoFormFillService.getFormInfo("1111", callback);

6.	 Run the test in Eclipse by launching the AutoFormFillPanelService-hosted
launch configuration from the Run menu. Here is the result:

What Just Happened?
JUnit provides support for testing normal Java classes, but lacks any support for
testing modules that have any kind of asynchronous behavior. A unit test will start
executing and will run through all the tests in the module in order. This approach

Chapter 8

[193]

will not work for testing asynchronous things, where you make a request and the
response comes back separately. GWT has this unique functionality, and supports
tests for asynchronous services; so you can call an RPC service and validate the
response from the service.

You can also test other long-running services, such as timers. In order to provide
this support, GWTTestCase extends TestCase class and provides two methods—
delayTestFinish() and finishTest()—which enable us to delay finishing a unit
test, and have control over when the test actually completes. This essentially lets us
put our unit test in an asynchronous mode, so we can wait for a response from a
call to a remote server and complete the test by validating the response when we
receive it.

In this sample, we structure our test using a standard pattern for testing long-lived
events in GWT. The steps are as follows:

1.	 We create an instance of the asynchronous service and set its entry point.
2.	 We set up an asynchronous event handler, which is our callback. In this

callback, we validate the received response by asserting the returned
values match our expected values. We then complete the test by calling
finishTest() to indicate to GWT that we want to leave the asynchronous
mode in the test:

 AsyncCallback callback = new AsyncCallback()
 {
 public void onSuccess(Object result)
 {
 HashMap formValues = (HashMap) result;
 assertEquals("Joe", formValues.get("first name"));
 assertEquals("Customer", formValues.get("last name"));
 assertEquals("123 peachtree street",formValues.get
 ("address"));
 assertEquals("Atlanta", formValues.get("city"));
 assertEquals("GA", formValues.get("state"));
 assertEquals("30339", formValues.get("zip"));
 assertEquals("770-123-4567", formValues.get("phone"));
 finishTest();
 }
 };

3.	 We set up a delay period for the test to finish. This makes the GWT test
framework wait for the requisite amount of time. Here we set a delay
of 2000 ms:

 delayTestFinish(2000);

Unit Tests

[194]

This must be set to a time period that is slightly longer than the time that the
service is expected to take to return the response.

4.	 Finally, we invoke the asynchronous event, providing it the callback
object as a parameter. In this case we just call the requisite method on
AutoFormFillService:

 autoFormFillService.getFormInfo("1111", callback);

You can use this pattern to test all asynchronous GWT services and classes that
use timers.

Test a GWT Page with an Asynchronous
Service
In this section, we will test a page that invokes an asynchronous service. This will
enable us to create one test that combines the previous two examples.

Time for Action—Combining the Two
We are going to combine the two tests that we wrote in the last two sections into one,
and create a comprehensive test for the AutoFormFillPanel page that tests both the
page elements and the asynchronous service used by the page. The steps are as follows:

1.	 Add a new method named simulateCustomerIDChanged() to the existing
AutoFormFillPanel class in the com.packtpub.gwtbook.samples.client.
panels package:

 public void simulateCustIDChanged(String custIDValue)
 {
 if (custIDValue.length() > 0)
 {
 AsyncCallback callback = new AsyncCallback()
 {
 public void onSuccess(Object result)
 {
 setValues((HashMap) result);
 }
 };
 custID.setText(custIDValue);
 autoFormFillService.getFormInfo(custIDValue, callback);
 }
 else
 {

Chapter 8

[195]

 clearValues();
 }
 }

2.	 Modify the testPanel() method name to testEverything(). At the bottom
of the method, invoke the simulateCustIDChanged() method and provide
an ID parameter of 1111:

 autoFormFillPanel.simulateCustIDChanged("1111");

3.	 Create a new Timer object, and add the following to its run() method:
 Timer timer = new Timer()
 {
 public void run()
 {
 assertEquals("Joe",
 autoFormFillPanel.getFirstName().getText());
 assertEquals("Customer",
 autoFormFillPanel.getLastName().getText());
 assertEquals("123 peachtree street",
 autoFormFillPanel.getAddress().getText());
 assertEquals("Atlanta",
 autoFormFillPanel.getCity().getText());
 assertEquals("GA", autoFormFillPanel.getState().getText());
 assertEquals("30339",
 autoFormFillPanel.getZip().getText());
 assertEquals("770-123-4567",
 autoFormFillPanel.getPhone().getText());
 finishTest();
 }
 };

4.	 Delay the test finish and run the timer:
 delayTestFinish(2000);
 timer.schedule(100);

Unit Tests

[196]

5.	 Run the test by launching the AutoFormFillPanelTest-hosted launch
configuration and get a similar result to this:

What Just Happened?
We have so far written two separate tests—one to test the various HTML elements
on the AutoFormFillPanel page, and the other to test AutoFormFillPanelService.
We can combine the two tests into one, and create a single test for testing the
panel. AutoFormFillPanel invokes the asynchronous service when the text in
the CustomerID textbox is changed. In order to simulate the keyboard listener in
the test, we create a new public method called simulateCustIDChanged() in the
AutoFormFillPanel class, which essentially does the same thing as the keyboard
listener event handler in that class. We are going to call this method to simulate the
text typed in by the user at the keyboard to change the CustomerID text.

Once we test the various HTML elements on the page, we invoke the
simulateCustIDChanged() method. We then set up an asynchronous event handler
using a Timer object. When the timer runs, we validate that the right values are
available from the panel, as given in step 3.

We set up a delay for the test to finish:

delayTestFinish(2000);

Chapter 8

[197]

Finally, we schedule the timer to run, so that when the timer fires after the given
delay, it will validate the expected results and then complete the test:

timer.schedule(100);

Create and Run a Test Suite
We have so far learned how to create and run individual unit tests. As your code
base increases, it is very tedious to run the tests all one at a time. JUnit provides the
concept of a test suite that lets you combine a set of tests into one suite and run them.
In this section, we are going to learn how to create and run multiple unit tests as part
of a suite.

Time for Action—Deploying a Test Suite
We have so far been generating a test-launch script for every test that we create and
running each test that we created separately. In this section, we will combine our
tests into a test suite and run all of our tests in a single launch configuration. The
steps are as follows:

1.	 Run the GWT_HOME\junitCreator command script by providing
these parameters:

 junitCreator -junit junit.jar -module com.packtpub.gwtbook.samples.
 Samples -eclipse Samples -out ~pchaganti/dev/GWTBook/Samplescom.
 packtpub.gwtbook.samples.client.SamplesTestSuite

2.	 Modify the SamplesTestSuite class and add a suite() method:
 public static Test suite()
 {
 TestSuite samplesTestSuite = new TestSuite();
 samplesTestSuite.addTestSuite(AutoFormFillServiceTest.class);
 samplesTestSuite.addTestSuite(AutoFormFillPanelTest.class);
 return samplesTestSuite;
 }

Unit Tests

[198]

3.	 Run the test by launching the SamplesTestSuite-hosted launch
configuration and get a similar result to this:

What Just Happened?
It can get tedious generating a separate launch script for each test that you write
and then having to run each of these tests separately. Using a test suite lets us
have one place to collect all of our tests. We can then use the launch script for the
suite to run all the tests. A test suite is essentially a collector for all the tests in a
project. We define a static factory method named suite() in our project. In this
method, we add all the tests to the suite object, and return the suite object as
the return value:

public static Test suite()
{
 TestSuite samplesTestSuite = new TestSuite();
 samplesTestSuite.addTestSuite(AutoFormFillServiceTest.class);
 samplesTestSuite.addTestSuite(AutoFormFillPanelTest.class);
 return samplesTestSuite;
}

Chapter 8

[199]

When we run this test by launching the script, the JUnit framework recognizes that
we are running a suite of tests, and it runs each of the tests defined in the suite.
There is currently no support for inferring all the tests present in a GWT project and
generating a test suite automatically to contain those tests. So you have to manually
add each test that you want to be a part of the suite to this method. Now that we
have the test suite working, we can delete all the other test launch configurations
from our Samples project, and just use this one configuration for running all
our tests.

Summary
In this chapter, we have learned to create unit test for a GWT page
(AutoFormFillPanel) and an asynchronous service (AutoFormFillPanelService).
We then combined these two and created a unit test for a GWT page that uses an
asynchronous service.

Finally, we combined all our tests into a test suite and ran all of our tests in a single
launch configuration.

In the next chapter, we will learn about the internationalization (I18N) and XML
support in GWT.

I18N and XML
In this chapter, we will learn how to use internationalization in a GWT application.
We will also create samples that showcase GWT support for the client-side creation
and parsing of XML documents.

The tasks that we will address are:

Internationalization
Create XML documents
Parse XML documents

Internationalization (I18N)
GWT provides extensive support for creating applications that can display text in
a wide variety of languages. In this section, we are going to utilize GWT to create a
page that can display text in the appropriate language for a given locale.

Time for Action—Using the I18N Support
We are going to create a simple GWT user interface that displays the appropriate image
and translation for the text "Welcome" for the specified locale. The image displayed will
be the flag that corresponds to the chosen locale. The steps are as follows:

1.	 Create a new Java file named I18NSamplesConstants.java in the com.
packtpub.gwtbook.samples.client.util package that defines an interface
named I18NSamplesConstants. Add the following two methods to the
interface—one for retrieving the welcome text and one for retrieving
the image:

 public interface I18NSamplesConstants extends Constants
 {
 String welcome();

•

•

•

I18N and XML

[202]

 String flag_image();
 }

2.	 Create a new file named I18NSamplesConstants.properties in the com.
packtpub.gwtbook.samples.client.util package. Add the properties for
the welcome text and the image to it:

 welcome = Welcome
 flag_image = flag_en.gif

This properties file represents the default locale, in this case US English.

3.	 Create a new file named I18NSamplesConstants_el_GR.properties in
the com.packtpub.gwtbook.samples.client.util package. Add the
properties for the welcome text and the image to it:

 welcome = υποδοχή
 flag_image = flag_el_GR.gif

This properties file represents the locale for Greek.

4.	 Create a new file named I18NSamplesConstants_es_ES.properties in
the com.packtpub.gwtbook.samples.client.util package. Add the
properties for the welcome text and the image to it:

 welcome = recepción
 flag_image = flag_es_ES.gif

This properties file represents the locale for Spanish.

5.	 Create a new file named I18NSamplesConstants_zh_CN.properties in
the com.packtpub.gwtbook.samples.client.util package. Add the
properties for the welcome text and the image to it:

 welcome =
 flag_image = flag_zh_CN.gif

This properties file represents the locale for Chinese.

6.	 Create a new Java file named I18NPanel.java in the com.packtpub.
gwtbook.samples.client.panels package. Create VerticalPanel that will
contain the user interface. We will add this panel into DockPanel and add
it into our Samples application, like all the other applications that we have
been working on in this book. Add a label that will display the welcome text
message in the appropriate language for the provided locale:

 private VerticalPanel workPanel = new VerticalPanel();
 private Label welcome = new Label();

Chapter 9

[203]

7.	 Create an instance of I18NSamplesConstants in the constructor. Add an
image widget for displaying the flag image and a label for displaying the
welcome text to the panel. Set the text for the label and the image file by
using I18NSamplesConstants. Finally, create a little info panel that displays
descriptive text about this application, so that we can display the text
when this sample is selected in the list of available samples in our Samples
application. Add the info panel and the work panel to a dock panel, and
initialize the widget:

 public I18nPanel()
 {
 I18NSamplesConstants myConstants = (I18NSamplesConstants)
 GWT.create(I18NSamplesConstants.class);
 // Always the same problem, samples are not "sound
 and complete"
 welcome.setText(myConstants.welcome());
 welcome.setStyleName("flagLabel");
 Image flag = new Image("images/" + myConstants.flag_image());
 flag.setStyleName("flag");
 workPanel.add(flag);
 workPanel.add(welcome);
 DockPanel workPane = new DockPanel();
 workPane.add(infoPanel, DockPanel.NORTH);
 workPane.add(workPanel, DockPanel.CENTER);
 workPane.setCellHeight(workPanel, "100%");
 workPane.setCellWidth(workPanel, "100%");
 initWidget(workPane);
 }

8.	 Add an entry to import the I18N module to the Samples.gwt.xml file:
 <inherits name ="com.google.gwt.i18n.I18N"/>

9.	 Add an entry for each locale that we support to the Samples.gwt.xml file:

 <extend-property name="locale" values="el_GR"/>
 <extend-property name="locale" values="es_ES"/>
 <extend-property name="locale" values="zh_CN"/>

I18N and XML

[204]

Run the application. Here is the default interface displayed in the default
locale—en_US:

Modify the URL to add a locale query parameter with each of the locales that we
support to see the user interface displayed in the appropriate language. Here is the
user interface displayed in Greek—el_GR:

http://localhost:8888/com.packtpub.gwtbook.samples.Samples/
Samples.html?locale=el_GR#i18n

Here is the user interface displayed in Spanish—es_ES:

http://localhost:8888/com.packtpub.gwtbook.samples.Samples/
Samples.html?locale=es_ES#i18n

Chapter 9

[205]

Here is the user interface displayed in Chinese—zh_CN:

http://localhost:8888/com.packtpub.gwtbook.samples.Samples/
Samples.html?locale=zh_CN#i18n

What Just Happened?
GWT provides various tools and techniques that help in developing
internationalized applications that can display text in various languages. There are
two main techniques for developing internationalized applications using GWT:

I18N and XML

[206]

Static String Internationalization: This is a type-safe technique that depends
on Java interfaces and regular properties files. It generates code from the
previous two components to provide an application with messages that
are aware of the locale whose context they are operating in. This technique
is recommended for new applications that do not have existing localized
properties files.
Dynamic String Internationalization: This technique is used when you
already have an existing localization system, such as your web server that
can generate localized strings. These translated strings are then printed
within your HTML page. This approach is usually slower than the static
approach, but since it does not have the code generation phase, you do not
need to recompile your application every time your message strings are
modified, or the list of locales supported is changed.

In this sample, we are using the static internationalization technique. We create an
interface I18NSamplesConstants that defines two methods—one method returns
the welcome message, while the other method returns the flag-image file name. We
then create a properties file for each locale supported by our application, and add the
messages in the appropriate language to the file.

A locale is an object that uniquely identifies a particular combination of language
and a region. So for instance, a locale of en_US refers to the language as English and
the region as United States. Similarly, fr_FR refers to the language French and the
region France. The properties file name must end with the locale identifier before
the extension properties. Here are the contents of our properties file for Spanish
language in the region Spain:

welcome = recepción
flag_image = flag_es_ES.gif

Our user interface is very simple, and it consists of one image with a label under
it. The image will display the flag of the region whose locale we are using, and the
label will display the welcome text in the language for the locale. The application
on startup will display the page in the default locale for your environment. You can
change this by appending a query parameter with the key locale and a value equal
to any of the supported locales. So in order to view the page in Greek, you would
append locale=el_GR to the respective URL.

•

•

Chapter 9

[207]

If you provide a locale that is not supported, the web page will be displayed
in the default locale. We access the appropriate text by creating the
I18NSamplesConstants class, using the accessors to get the localized messages, and
setting the values for the two widgets:

I18NSamplesConstants myConstants = (I18NSamplesConstants)
GWT.create(I18NSamplesConstants.class);
welcome.setText(myConstants.welcome());
Image flag = new Image("images/" + myConstants.flag_image());

The I18NSamplesConstants class extends from the Constants class, which enables
binding at compile time to constant values that are acquired from simple property
files. When we use GWT.create() method to instantiate I18NSamplesConstants,
GWT automatically generates the right subclass that uses values from the property
file for the appropriate locale and returns it. The supported locales themselves are
defined by the module file, using an extend-property tag. This informs the GWT
framework that we want to extend the default property "locale", by providing
alternatives for it:

<extend-property name="locale" values="el_GR"/>

We also inherit from com.google.gwt.i18n.I18N in the Samples.gwt.xml file so
that our module can have access to the I18N functionality provided by GWT.

There are several other tools provided by GWT to enhance the I18N support.
There is a Messages class that can be used when we want to provide localized
messages that have parameters passed to them. We can also ignore the localization,
and use a regular properties file to store configuration information. We also have
an i18nCreator command script that can generate the Constants or Messages
interfaces and sample properties files. Finally, a Dictionary class is also available
that can be used for dynamic internationalization, as it provides a way to dynamically
look up key-value pairs of strings that are defined in the HTML page for the module.

The I18N support in GWT is quite extensive and can be used to support either simple
or complicated internationalization scenarios.

Creating XML Documents
XML is in wide-spread use across enterprises in a variety of applications, and is also
very commonly used when integrating disparate systems. In this section, we will
learn about GWT's XML support and how to use it to create an XML document on
the client side.

I18N and XML

[208]

Time for Action—Creating an XML Document
We are going to take customer data stored in a CSV file, and create an XML
document containing the customer data. The steps are as follows:

1.	 Create a simple CSV file with the customer data in a file named
customers.csv in the com.packtpub.gwtbook.samples.public
package. Add the information for two customers to this file:

 John Doe,222 Peachtree St,Atlanta
 Jane Doe,111 10th St,New York

2.	 Create the user interface in a new Java file named CreateXMLPanel.java in
the package com.packtpub.gwtbook.samples.client.panels. Create a
private HTMLPanel variable that will display the XML document that we are
going to create. Also create a VerticalPanel class that will be the container
for the user interface:

 private HTMLPanel htmlPanel = new HTMLPanel("<pre></pre>");
 private VerticalPanel workPanel = new VerticalPanel();

3.	 Create a private method named createXMLDocument() that can take a string
and create the customer's XML document from it. Create an XML document
object, add the processing instruction for the XML version, and create a root
node named customers. Loop through the customer information on each
row from the CSV file. Create the appropriate XML nodes, set their value,
and add them to the root node. Finally return the XML document created:

 private Document createXMLDocument(String data)
 {
 String[] tokens = data.split("\n");
 Document customersDoc = XMLParser.createDocument();
 ProcessingInstruction procInstruction = customersDoc.
 createProcessingInstruction("xml", "version=\"1.0\"");
 customersDoc.appendChild(procInstruction);
 Element rootElement =
 customersDoc.createElement("customers");
 customersDoc.appendChild(rootElement);
 for (int i = 0; i < tokens.length; i++)
 {
 String[] customerInfo = tokens[i].split(",");
 Element customerElement =
 customersDoc.createElement("customer");
 Element customerNameElement =
 customersDoc.createElement("name");
 customerNameElement.appendChild
 (customersDoc.createTextNode(customerInfo[0]));

Chapter 9

[209]

 Element customerAddressElement =
 customersDoc.createElement("address");
 customerAddressElement.appendChild
 (customersDoc.createTextNode(customerInfo[1]));
 Element customerCityElement =
 customersDoc.createElement("city");
 customerCityElement.appendChild
 (customersDoc.createTextNode(customerInfo[2]));
 customerElement.appendChild(customerNameElement);
 customerElement.appendChild(customerAddressElement);
 customerElement.appendChild(customerCityElement);
 rootElement.appendChild(customerElement);
 }
 return customersDoc;
 }

4.	 Create a new method named createPrettyXML() that will format our XML
document nicely by indenting the nodes before we display it in HTMLPanel:

 private String createPrettyXML(Document xmlDoc)
 {
 String xmlString = xmlDoc.toString();
 xmlString = xmlString.replaceAll
 ("<customers", " <customers");
 xmlString = xmlString.replaceAll
 ("</customers"," </customers");
 xmlString = xmlString.replaceAll
 ("<customer>"," <customer>");
 xmlString = xmlString.replaceAll
 ("</customer>"," </customer>");
 xmlString = xmlString.replaceAll("<name>",
 " <name>
 ");
 xmlString = xmlString.replaceAll("</name>",
 "\n </name>");
 xmlString = xmlString.replaceAll("<address>",
 " <address>
 ");
 xmlString = xmlString.replaceAll("</address>",
 "\n </address>");
 xmlString = xmlString.replaceAll("<city>",
 " <city>
 ");
 xmlString = xmlString.replaceAll("</city>",
 "\n </city>");

I18N and XML

[210]

 xmlString = xmlString.replaceAll(">", ">\n");
 xmlString = xmlString.replaceAll("<", "<");
 xmlString = xmlString.replaceAll(">", ">");
 return xmlString;
 }

This is just a quick-and-dirty way of formatting the XML document, as GWT
does not currently provide a nice way to do this.

5.	 Create the user interface for this application in a new Java file named
CreateXMLPanel.java in the com.packtpub.gwtbook.samples.
client.panels package. In the constructor CreateXMLPanel(), make an
asynchronous HTTP request to get the customers.csv file. On success,
create the XML document from the data contained in the CSV file and
display it in the HTMLPanel. Finally, create a little info panel that displays
descriptive text about this application, so that we can display the text
when this sample is selected in the list of available samples in our Samples
application. Add the info panel and the work panel to a dock panel, and
initialize the widget:

 public CreateXMLPanel()
 {
 HorizontalPanel infoPanel = new HorizontalPanel();
 infoPanel.add(new HTML(
 "<div class='infoProse'>Read a comma separated text file
 and create an XML document from it.</div>"));
 HTTPRequest.asyncGet("customers.csv",
 new ResponseTextHandler()
 {
 public void onCompletion(String responseText)
 {
 Document customersDoc = createXMLDocument(responseText);
 if (htmlPanel.isAttached())
 {
 workPanel.remove(htmlPanel);
 }
 htmlPanel = new HTMLPanel("<pre>" +
 createPrettyXML(customersDoc) + "</pre>");
 htmlPanel.setStyleName("xmlLabel");
 workPanel.add(htmlPanel);
 }
 });
 DockPanel workPane = new DockPanel();
 workPane.add(infoPanel, DockPanel.NORTH);
 workPane.add(workPanel, DockPanel.CENTER);

Chapter 9

[211]

 workPane.setCellHeight(workPanel, "100%");
 workPane.setCellWidth(workPanel, "100%");
 initWidget(workPane);
 }

6.	 Add an entry to import the XML module to the Samples.gwt.xml file:

 <inherits name ="com.google.gwt.xml.XML"/>

Here is the page displaying the XML document created from the customer's CSV file:

What Just Happened?
GWT provides good support for generating XML documents on the client side, and
like everything else in the framework, it is browser-independent. You can utilize
the XMLParser class to generate the documents, and can be assured that the XML
document will be generated correctly in all the supported browsers. In this example,
we create a simple CSV file with the customer data. This customer data is retrieved
by using the asyncGet() method on the HTTPRequest object. Since there is no
support provided for reading files from the file system in GWT, this is a workaround

I18N and XML

[212]

to load external files without resorting to using RPC services. We provide the
name of the file and ResponseTextHandler as parameters to this method.
ResponseTextHandler provides a callback that is executed when the synchronous
call is completed. In the callback, we read in the contents of the response and
create an XML document with the values. A new document is created by using the
XMLParser object:

Document customersDoc = XMLParser.createDocument();

A processing instruction is added first to this document, so that the XML is
well formed:

ProcessingInstruction procInstruction =
 customersDoc.createProcessingInstruction("XML", "version=\"1.0\"");
customersDoc.appendChild(procInstruction);

We then create the root node and child node. We add a text node to the new node
with the value that we have parsed from the CSV file:

customersDoc.createElement("name");
customerNameElement.appendChild
 (customersDoc.createTextNode(customerInfo[0]));

This new document is displayed by using a pre-formatted block in HTMLPanel.
However, we need to format and indent the text nicely before displaying it in the
panel; otherwise the entire document will appear as one line string. We have a
private method that indents and formats the document nicely by using regular
expressions. This is slightly tedious. Hopefully, in the future GWT will support
creating pretty XML document in the framework itself. In this example, we are
retrieving the contents of the CSV file via an HTTP request; we can provide the data
for generating the XML in any format we like by using an RPC service.

Parse XML Documents
In the previous section, we used the GWT support for creating XML documents. In
this section, we are going to learn how to read XML documents. We will be creating an
application that can parse an XML file and populate a table using the data from the file.

Chapter 9

[213]

Time for Action—Parsing XML on the Client
We will be creating a GWT application that can read an XML file containing
information about some books, and populate a table with that data. The steps are
as follows:

1.	 Create a simple XML file with the books' data in a file named books.xml in
the com.packtpub.gwtbook.samples.client.public package:

 <?xml version="1.0" encoding="US-ASCII"?>
 <books>
 <book id="1">
 <title>I Claudius</title>
 <author>Robert Graves</author>
 <year>1952</year>
 </book>
 <book id="2">
 <title>The Woman in white</title>
 <author>Wilkie Collins</author>
 <year>1952</year>
 </book>
 <book id="3">
 <title>Shogun</title>
 <author>James Clavell</author>
 <year>1952</year>
 </book>
 <book id="4">
 <title>City of Djinns</title>
 <author>William Dalrymple</author>
 <year>2003</year>
 </book>
 <book id="5">
 <title>Train to pakistan</title>
 <author>Kushwant Singh</author>
 <year>1952</year>
 </book>
 </books>

2.	 Create the user interface for this application in a new Java file named
ParseXMLPanel.java in the com.packtpub.gwtbook.samples.client.
panels package. Create a VerticalPanel class that will contain our user
interface, and a FlexTable class that we will use for displaying the data from
the XML file:

 private VerticalPanel workPanel = new VerticalPanel();
 private FlexTable booksTable = new FlexTable();

I18N and XML

[214]

3.	 Create a private method named getElementTextValue() that can take a
parent XML element and a tag name, and return the text value for that node:

 private String getElementTextValue
 (Element parent, String elementTag)
 {
 return parent.getElementsByTagName
 (elementTag).item(0).getFirstChild().getNodeValue();
 }

4.	 In the constructor ParseXMLPanel(), add the table headers and styles for the
flex table:

 booksTable.setWidth(500 + "px");
 booksTable.setStyleName("xmlParse-Table");
 booksTable.setBorderWidth(1);
 booksTable.setCellPadding(4);
 booksTable.setCellSpacing(1);
 booksTable.setText(0, 0, "Title");
 booksTable.setText(0, 1, "Author");
 booksTable.setText(0, 2, "Publication Year");
 RowFormatter rowFormatter = booksTable.getRowFormatter();
 rowFormatter.setStyleName(0, "xmlParse-TableHeader");

5.	 In the same constructor, make an asynchronous HTTP request to get the
books.xml file, and on completion, parse the XML document and populate
a flex table with the data. Finally, create a little info panel that displays
descriptive text about this application, so that we can display the text
when this sample is selected in the list of available samples in our Samples
application. Add the info panel and the work panel to a dock panel, and
initialize the widget:

 HTTPRequest.asyncGet("books.xml", new ResponseTextHandler()
 {
 public void onCompletion(String responseText)
 {
 Document bookDom = XMLParser.parse(responseText);
 Element booksElement = bookDom.getDocumentElement();
 XMLParser.removeWhitespace(booksElement);
 NodeList bookElements =
 booksElement.getElementsByTagName("book");
 for (int i = 0; i < bookElements.getLength(); i++)
 {
 Element bookElement = (Element) bookElements.item(i);
 booksTable.setText(i + 1, 0, getElementTextValue(
 bookElement, "title"));

Chapter 9

[215]

 booksTable.setText(i + 1, 1, getElementTextValue(
 bookElement, "author"));
 booksTable.setText(i + 1, 2, getElementTextValue(
 bookElement, "year"));
 }
 }
 });
 DockPanel workPane = new DockPanel();
 workPanel.add(booksTable);
 workPane.add(infoPanel, DockPanel.NORTH);
 workPane.add(workPanel, DockPanel.CENTER);
 workPane.setCellHeight(workPanel, "100%");
 workPane.setCellWidth(workPanel, "100%");
 initWidget(workPane);

Here is the page with the table containing the data from the books.xml file:

What Just Happened?
We once again use the HTTPRequest object to retrieve the contents of a file on the
server, in this case the books.xml file, which contains some data on published
books that we want to display in a table on the page. The XMLParser object is
utilized to read in the contents of the asynchronous response into a document.
This XML document is then traversed using the familiar DOM API, and the text
values of the appropriate nodes are retrieved and used to populate the respective
column cells in the flex table. We use the getElementsByTagName() method to
get a NodeList that contains all the book elements:

NodeList bookElements = booksElement.getElementsByTagName("book");

I18N and XML

[216]

Once we have this list, we just iterate through its child nodes, and access the values
we are interested in:

for (int i = 0; i < bookElements.getLength(); i++)
{
 Element bookElement = (Element) bookElements.item(i);
 booksTable.setText(i + 1, 0, getElementTextValue(
 bookElement, "title"));
 booksTable.setText(i + 1, 1, getElementTextValue(
 bookElement, "author"));
 booksTable.setText(i + 1, 2, getElementTextValue(
 bookElement, "year"));
}

We inherit from the com.google.gwt.xml.xml file in the Samples.gwt.xml file so
that our module can have access to the XML functionality provided by GWT.

Summary
In this chapter, we learned how to create an application with internationalization
(I18N) support. We created a page that can display text in the appropriate language
for a given locale. Then, we created an XML document on the client side using
GWT's XML support.

Finally, we created an application that can parse an XML file and populate a table
using the data from the file.

In the next chapter, we will learn how to deploy our GWT application in Tomcat.

Deployment
In this chapter, we will first learn how to manually deploy GWT applications, so we
can gain familiarity with all the artifacts that are part of the deployment. We will
then automate this process by using Apache Ant.

The tasks that we will address are:

Manual deployment in Tomcat
Automated deployment using Ant
Deployment from Eclipse

Manual Deployment in Tomcat
We are going to take the Samples application that we have been working on in this
book, and go through the various steps needed to have it manually deployed and
running in Tomcat.

Time for Action—Deploying a GWT Application
Here are the steps required to manually deploy a GWT application to Tomcat:

1.	 Download and install Apache Tomcat for your platform (http://tomcat.
apache.org). Select the latest stable version from the 5.x series. I am going
to refer to the directory where Tomcat is installed as $TOMCAT_DIR, and the
directory that contains the Samples project as $SAMPLES_DIR.

2.	 Run $SAMPLES_DIR/Samples-compile to compile the entire application. This
will create a new directory named www under $SAMPLES_DIR.

•

•

•

Deployment

[218]

3.	 Create a new file named web.xml in the $SAMPLES_DIR directory. Add a
display name and a description for our application:

 <display-name>
 GWT Book Samples
 </display-name>
 <description>
 GWT Book Samples
 </description>

The display name is displayed when you browse the list of deployed
applications using the Tomcat manager.

4.	 In the web.xml file created in the previous step, add entries for each of the
RPC services we are using in our application and a corresponding servlet
mapping for each entry. Add an entry for the live-search service:

 <servlet>
 <servlet-name>livesearch</servlet-name>
 <servlet-class>
 com.packtpub.gwtbook.samples.server.
 LiveSearchServiceImpl
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>livesearch</servlet-name>
 <url-pattern>/livesearch</url-pattern>
 </servlet-mapping>

5.	 Add an entry for the password-strength service:
 <servlet>
 <servlet-name>pwstrength</servlet-name>
 <servlet-class>
 com.packtpub.gwtbook.samples.server.
 PasswordStrengthServiceImpl
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>pwstrength</servlet-name>
 <url-pattern>/pwstrength</url-pattern>
 </servlet-mapping>

6.	 Add an entry for the auto-form-fill service:
 <servlet>
 <servlet-name>autoformfill</servlet-name>
 <servlet-class>
 com.packtpub.gwtbook.samples.server.

Chapter 10

[219]

 AutoFormFillServiceImpl
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>autoformfill</servlet-name>
 <url-pattern>/autoformfill</url-pattern>
 </servlet-mapping>

7.	 Add an entry for the dynamic-lists service:
 <servlet>
 <servlet-name>dynamiclists</servlet-name>
 <servlet-class>
 com.packtpub.gwtbook.samples.server.
 DynamicListsServiceImpl
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>dynamiclists</servlet-name>
 <url-pattern>/dynamiclists</url-pattern>
 </servlet-mapping>

8.	 Add an entry for the pageable-data service:
 <servlet>
 <servlet-name>pageabledata</servlet-name>
 <servlet-class>
 com.packtpub.gwtbook.samples.server.
 PageableDataServiceImpl
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>pageabledata</servlet-name>
 <url-pattern>/pageabledata</url-pattern>
 </servlet-mapping>

9.	 Add an entry for the live-data-grid service:
 <servlet>
 <servlet-name>livedatagrid</servlet-name>
 <servlet-class>
 com.packtpub.gwtbook.samples.server.
 LiveDatagridServiceImpl
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>livedatagrid</servlet-name>

Deployment

[220]

 <url-pattern>/livedatagrid</url-pattern>
 </servlet-mapping>

10.	 Add an entry for the log-spy service:
 <servlet>
 <servlet-name>logspy</servlet-name>
 <servlet-class>
 com.packtpub.gwtbook.samples.server.
 LogSpyServiceImpl
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>logspy</servlet-name>
 <url-pattern>/logspy</url-pattern>
 </servlet-mapping>

11.	 Add an entry for the weather service:
 <servlet>
 <servlet-name>weather</servlet-name>
 <servlet-class>
 com.packtpub.gwtbook.widgets.server.
 WeatherServiceImpl
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>weather</servlet-name>
 <url-pattern>/weather</url-pattern>
 </servlet-mapping>

12.	 Add an entry for the welcome file and set the welcome file to the main HTML
page for our application—Samples.html:

 <welcome-file-list>
 <welcome-file>
 Samples.html
 </welcome-file>
 </welcome-file-list>

13.	 Create a new directory named WEB-INF under the www/com.packtpub.
gwtbook.samples.Samples directory. Create two subdirectories lib and
classes under the WEB-INF directory.

14.	 Copy the above web.xml file to the WEB-INF directory.

15.	 Copy the contents of $SAMPLES_DIR/bin to the WEB-INF/classes directory.

16.	 Copy the contents of $SAMPLES_DIR/lib to the WEB-INF/lib directory.

Chapter 10

[221]

17.	 Copy the www/com.packtpub.gwtbook.samples.Samples directory to
$TOMCAT_DIR/webapps.

18.	 Start up Tomcat. Once it is up and running, navigate to the following URL to
see the Samples application that we have created in this book:

 http://localhost:8080/com.packtpub.gwtbook.samples.Samples/

What Just Happened?
Compiling a GWT application generates HTML and JavaScript for the application
in the www directory. This contains all the artifacts needed for the user interface and
can actually be run on any web server. However, if you are using any RPC services,
then you need to ensure that any third-party JARs needed by the services along with
the service and support classes are deployed to a servlet container along with the
contents of the www directory. We have chosen Tomcat for this, as it is one of the most
widely used servlet containers and is the reference implementation for the JSP and
Servlet specifications. We can similarly deploy our application to any other container
such as Geronimo, JBoss, WebSphere, JOnAS, or Weblogic.

Deployment

[222]

Deploying to a servlet container such as Tomcat implies that we structure our
deployment to mimic the WAR format. So we need to ensure that all the Java classes
from our application are available in the WEB-INF/classes directory, and all the JAR
files used by our application need to be in the WEB-INF/lib directory. Accordingly,
we copy those artifacts to these directories. We also create a deployment descriptor
that is needed for Tomcat to recognize our deployment. This file is web.xml, and it
needs to be copied to the WEB-INF directory.

Once we have everything in place in the www/com.packtpub.gwtbook.samples.
Samples directory, we copy com.packtpub.gwtbook.samples.Samples to the web
applications directory for Tomcat—$TOMCAT_DIR/webapps. Then we start Tomcat,
which on startup will register the application from the web.xml file and make it
available at the context—com.packtpub.gwtbook.samples.Samples.

Automated Deployment Using Ant
We are going to make things easier on ourselves and reduce the tedious work,
by letting Ant handle the deployment of our GWT application. We will automate
everything we did in the previous section by using Apache Ant.

Time for Action—Creating the Ant Build File
Here are the steps for automating the deployment to Tomcat:

1.	 We will modify the $SAMPLES_DIR/Samples.ant.xml file that was created
when we ran applicationCreator to create our project in Chapter 3. Create
global properties to refer various directories:

 <property name="tmp" value="${basedir}/build" />
 <property name="www" value=
 "${basedir}/www/com.packtpub.gwtbook.samples.Samples" />
 <property name="lib" value="${basedir}/lib" />
 <property name="classes" value="${basedir}/bin" />
 <property name="gwt-home" value="/gwt-windows-1.3.1" />
 <property name="deploy-dir" value=
 " /shonu/jakarta-tomcat-5.0.28/webapps" />

2.	 Add the JARs that we will need while compiling to the classpath:
 <pathelement path="${lib}/junit.jar"/>
 <pathelement path="${lib}/widgets.jar"/>
 <pathelement path="${lib}/gwt-widgets-0.1.3.jar"/>

3.	 Modify the clean target to include other artifacts to clean up:
 <target name="clean" description=
 "Clean up the build artifacts">
 <delete file="Samples.jar"/>

Chapter 10

[223]

 <delete file="Samples.war"/>
 <delete>
 <fileset dir="bin" includes="**/*.class"/>
 <fileset dir="build" includes="**/*"/>
 <fileset dir="www" includes="**/*"/>
 </delete>
 </target>

4.	 Create a new target named create-war:
 <target name="create-war" depends="package" description=
 "Create a war file">
 <mkdir dir="${tmp}"/>
 <exec executable="${basedir}/Samples-compile.cmd"
 output="build-log.txt"/>
 <copy todir="${tmp}">
 <fileset dir="${www}" includes="**/*.*"/>
 </copy>
 <mkdir dir="${tmp}/WEB-INF" />
 <copy todir="${tmp}/WEB-INF">
 <fileset dir="${basedir}" includes="web.xml"/>
 </copy>
 <mkdir dir="${tmp}/WEB-INF/classes" />
 <copy todir="${tmp}/WEB-INF/classes">
 <fileset dir="${basedir}/bin" includes="**/*.*"/>
 </copy>
 <mkdir dir="${tmp}/WEB-INF/lib" />
 <copy todir="${tmp}/WEB-INF/lib">
 <fileset dir="${basedir}/lib" includes="**/*.jar" excludes=
 "gwt-dev-*.jar,gwt-servlet.jar,gwt-user.jar,*.so"/>
 </copy>
 <jar destfile="${tmp}/WEB-INF/lib/gwt-user-deploy.jar">
 <zipfileset src="${gwt-home}/gwt-user.jar">
 <exclude name="javax/**"/>
 <exclude name="META-INF/**"/>
 <exclude name="**/*.java"/>
 </zipfileset>
 </jar>
 <zip destfile="Samples.war" basedir="${tmp}" />
 </target>

5.	 Create a new target named deploy-war:
 <target name="deploy-war" depends="clean,create-war"
 description="Deploy the war file">
 <copy todir="${deploy-dir}">
 <fileset dir="${basedir}" includes="Samples.war"/>
 </copy>
 </target>

Deployment

[224]

6.	 Install Apache Ant if you do not already have it (http://ant.apache.org).
Make sure that the Ant binary is on your path.

7.	 Run Ant from $SAMPLES_DIR with these parameters:
 ant -f Samples.ant.xml deploy-war

This will clean the build artifacts, compile the entire application, create a
WAR file, and deploy the WAR file to Tomcat. You can access the deployed
application at the URL http://localhost:8080/Samples.

Here is the output when you run Ant:

What Just Happened?
Apache Ant provides a great way to automate deploying our application. We create
targets for cleaning out the old build artifacts, creating a WAR file, and deploying
this WAR file to the Tomcat webapps directory. The applicationCreator command
has an option for generating a simple build.xml file. We used this option to
generate a skeleton build.xml file for our Samples project in Chapter 3. We took
this generated file and modified it to add all the additional targets that we needed.
We also packaged all the class files for our application into Samples.jar instead of
copying the classes themselves.

Chapter 10

[225]

Deployment from Eclipse
In the previous section, we created the build file that is used along with Ant to
automate deployment of our application to Tomcat. However, we were running Ant
from the command line. In this section, we will go through the steps needed to run
Ant from inside Eclipse.

Time for Action—Running Ant from Eclipse
Here are the steps for running our build file from inside Eclipse:

1.	 Right-click the Samples.ant.xml file in the Navigator view in Eclipse. This
will display the option for running Ant. Select Run As | 1 Ant Build:

Deployment

[226]

2.	 This will execute Ant and display the output by running the build in the
Console view in Eclipse:

3.	 The previous screenshot shows the output of the compile target from the
Ant script, which is the default target if you don't specify any other. Now we
are going to run the deploy-war target. Right-click the Samples.ant.xml
file again in the Navigator view in Eclipse. This time select Run As | 2 Ant
Build... option, as shown in the following screenshot:

Chapter 10

[227]

4.	 This will display the window where you can select which target to execute:

Deployment

[228]

5.	 Select deploy-war and click Run to run the Ant build. The output will be
displayed in the Console view in Eclipse:

Now we can run Ant from inside Eclipse and successfully deploy our application
to Tomcat.

What Just Happened?
Eclipse provides excellent support for editing and running Ant build files. It
recognizes build.xml files, and adds context actions to the various views so that
you can right-click on a build.xml file and execute an Ant build. It also provides
you with the option to run a specified target instead of just running the default target
specified in the file. In this section, we learned how to use this support so that we can
deploy to Tomcat directly from inside the Eclipse environment.

Summary
In this chapter, we learned to manually deploy our GWT application to Tomcat.
Then, we saw how to automate the deployment with Ant, which lets us deploy our
application from the command line.

Finally, we leveraged Eclipse's built-in Ant support to run our Ant build file from
inside Eclipse.

Running the Samples
Here are the steps required to download and run the source code for the samples
that we have developed in this book:

1.	 Download the ZIP file that contains the source code for our samples from
the website for this book (http://www.packtpub.com/support). Unzip
them to your hard disk. There should be two directories—Samples and
Widgets—created when you unzip the file. These two directories contain
the source code for the applications that we have developed in this book.

2.	 Start Eclipse 3.2. Create a new class path variable named GWT_HOME. Go to
Window | Preferences | Java | Build Path | Classpath Variables. Add a
new variable entry named GWT_HOME and set it to the directory where you
have unzipped the GWT distribution, for example: C:\gwt-windows-1.3.1.
This ensures that the GWT JAR files will be available to the samples project.

3.	 Import the two projects into your Eclipse workspace, one at a time. You can
import an existing project into Eclipse by going to File | Import | Existing
projects into Workspace and then selecting the root directory for the project.
The Widgets project is used for creating the two widgets that are packaged
up in a JAR file and used by the Samples project. It therefore
does not define an entry point. All you need to do is run/debug the
Samples project.

4.	 You can run the Samples project from inside Eclipse. Go to Run | Run …
and select Samples. This will start up the familiar GWT shell and launch the
hosted browser with the Samples application.

5.	 You can debug the Samples project from inside eclipse. Go to Debug |
Debug … and select Samples.

Running the Samples

[230]

6.	 If you have Apache Ant installed, you can use the Samples.ant.xml file to
build the application and create a WAR file that can be used for deployment
to a servlet container such as Tomcat.

7.	 You can also run the Samples-compile.cmd to compile the application and
Samples-shell.cmd to run the application from a console on Windows.

Index
A
AJAX applications

advantages 7, 8
random quote, for creating 25
random quote, working of 29

application, GWT
compiling 31
deploying 217
deploying, automatically using Ant 222-224
deploying, from Eclipse 225-228
deploying, manually in Tomcat 217-220
generating 17, 22
generating, AJAX used 22, 26-29
generating, ApplicationCreator used 18
generating, with Eclipse support 22-24
modifying 22
running in hosted mode 29
running in web mode 31
shell script, executing 30

ApplicationCreator
for application generating 18
working 18-22

auto form fill
about 62
dynamic form, creating 62-70
working 70

C
calendar widget

creating 153
working 165-167

composite widgets 165
custom widgets

composite, types 165
Java, types 165

JavaScript, types 165
types 165

D
dynamic lists

about 79
search criteria 80-88
working 88, 89

E
Eclipse IDE

for GWT applications 22, 24
working 24

edible labels, Flickr style
about 89
custom edible label 90-95
working 95, 96

editable tree nodes
about 105
node, modifying 105-107

F
forms See interactive forms

G
Google Web Toolkit. See GWT
GWT

about 7, 8
application, compiling 31
application, deploying 217
application, deploying automatically 222
application, deploying from Eclipse 225
application, deploying manually 217

[232]

application, executing 30
application, generating 17, 25
application, modifying 22, 25
application, running in hosted mode 29
application, running in web mode 31
asynchronous service, testing 191
code, downloading 229
code, running 229
components 15, 16
downloading 8-10
files 11
forms 47
generating application, AJAX used 25
generating application, ApplicationCreator

used 18-21
generating application, with Eclipse

support 22
GWT hosted web browser, components 15
GWT Java-to-JavaScript compiler,

components 15
interactive forms 47
interfaces 97
internationalization 201
internationalization, I18N support used

201-205
JRE emulation library, components 16
JRE web UI class library, components 16
JUnit 187
KitchenSink 12-14
libraries 11
license 16
options, customizing 12
page, testing 187
page with asynchronous service, testing

194, 195
sample code 229
samples, exploring 120-15
scripts 11
services, creating 35
test suite, creating 197
test suite, deploying 197
test suite, running 197
unit testing 187
user interfaces 97
widgets 153
XML, parsing on client 213-215

XML document, creating 208-211
XML support 207

GWT page
testing 188, 189
with asynchronous service, testing 194-196

I
interactive forms

auto form fill 62
dynamic lists 79
edible labels, Flickr style 89
live search 48
password strength checker 55
sample aaplication 47
sortable tables 71

interfaces. See user interfaces
internationalization, GWT

dynamic string internationalization 206
I18N support, using 201-205
static string internationalization 206
techniques 205
working 206

J
javascript library

Moo.fx 128
Rico color selector 140
Rico rounded corners 136
Scrip.aculo.us 145

Javascript Native Interface. See JNSI
JavaScript widgets 165
Java widgets 165
jigsaw puzzle

about 120
creating 120-124

JSNI
about 127
Moo.fx 128
Rico color selector 140
Rico rounded corners 136
Scrip.aculo.us 145
uses 127

JUnit 187

[233]

L
live search

about 48
creating 48-53
user interface, creating 50
working 54

log spy
about 109
log file, updating 109-115

M
Moo.fx

about 128
working 134-136
wrapping, JSNI used 129-133

P
pageable tables

about 97
dataset, interfacing 98-102

panels
about 54
CellPanel 54
DockPanel 54
FlowPanel 54
HorizontalPanel 54
PopupPanel 54
StackPanel 54
TabPanel 54
VerticalPanel 54

password strength checker
about 55
creating 55-60
working 61, 62

R
Rico color selector

about 140
working 144, 145
wrapping, JSNI used 140-144

Rico rounded corners
about 136
working 139, 140
wrapping, JSNI used 136-139

S
Scrip.aculo.us

about 145
effects, applying 146-149
working 151

services, GWT
about 35
asynchronous service definition interface,

AJAX support 37
asynchronous service definition interface,

creating 37
client, creating 42
consuming 42
creating 35
prime number service, creating 36
service definition interface, creating 35
service implementation, creating 38-42

sortable tables
about 71
FlexTable 79
Grid 79
table rows, sorting 72-77
working 77-79

sticky notes
about 116
working with 116-119

U
user interfaces

editable tree nodes 105
jigsaw puzzle 120
log spy 109
pageable tables 97
sticky notes 116

W
weather widget

creating 168
working 182-185

widgets, GWT
calendar widget, creating 154-165
custom widgets 153
types, custom widgets 165
weather widget, creating 168-181

[234]

X
XML support, GWT

XML document, creating 208-210
XML document, parsing 212-216

	Google Web Toolkit GWT Java AJAX Programming
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Introduction to GWT
	Basic Download
	Time for Action—Downloading GWT

	Exploring the GWT Samples
	Time for Action—Getting into KitchenSink

	GWT License
	Summary

	Chapter 2: Creating a New GWT Application
	Generating a New Application
	Time for Action—Using the ApplicationCreator

	Generating a New Application with Eclipse Support
	Time for Action—Modifying HelloGWT

	Creating a Random Quote AJAX Application
	Time for Action—Modifying Auto-Generated Applications

	Running the Application in Hosted Mode
	Time for Action—Executing the HelloGWT-Shell Script

	Running the Application in Web Mode
	Time for Action—Compile the Application

	Summary

	Chapter 3: Creating Services
	Creating a Service Definition Interface
	Time for Action—Creating a Prime Number Service

	Creating an Asynchronous Service Definition Interface
	Time for Action—Utilizing the AJAX Support

	Creating a Service Implementation
	Time for Action—Implement Our Service

	Consuming the Service
	Time for Action—Creating the Client

	Summary

	Chapter 4: Interactive Forms
	Sample Application
	Live Search
	Time for Action—Search as you Type!

	Password Strength Checker
	Time for Action—Creating the Checker

	Auto Form Fill
	Time for Action—Creating a Dynamic Form

	Sortable Tables
	Time for Action—Sorting Table Rows

	Dynamic Lists
	Time for Action—Filtering Search Criteria

	Flickr-Style Editable Labels
	Time for Action—A Custom Editable Label
	Summary

	Chapter 5: Responsive Complex Interfaces
	Pageable Tables
	Time for Action—Interfacing a Dataset

	Editable Tree Nodes
	Time for Action—Modifying the Node

	Log Spy
	Time for Action—Updating a Log File

	Sticky Notes
	Time for Action—Playing with Sticky Notes

	Jigsaw Puzzle
	Time for Action—Let's Create a Puzzle!

	Summary

	Chapter 6: Browser Effects with JSNI and JavaScript Libraries
	What is JSNI?
	Moo.Fx
	Time for Action—Using JSNI

	Rico Rounded Corners
	Time for Action—Supporting the Labels

	Rico Color Selector
	Time for Action—Wrapping the Color Methods

	Script.aculo.us Effects
	Time for Action—Applying Effects

	Summary

	Chapter 7: Custom Widgets
	Calendar Widget
	Time for Action—Creating a Calendar

	Weather Widget
	Time for Action—Creating a Weather Information Service

	Summary

	Chapter 8: Unit Tests
	Test a GWT Page
	Time for Action—Creating a Unit Test

	Test an Asynchronous Service
	Time for Action—Testing the Asynchronous Service

	Test a GWT Page with an Asynchronous Service
	Time for Action—Combining the Two

	Create and Run a Test Suite
	Time for Action—Deploying a Test Suite

	Summary

	Chapter 9: I18N and XML
	Internationalization (I18N)
	Time for Action—Using the I18N Support

	Creating XML Documents
	Time for Action—Creating an XML Document

	Parse XML Documents
	Time for Action—Parsing XML on the Client

	Summary

	Chapter 10: Deployment
	Manual Deployment in Tomcat
	Time for Action—Deploying a GWT Application

	Automated Deployment Using Ant
	Time for Action—Creating the Ant Build File

	Deployment from Eclipse
	Time for Action—Running Ant from Eclipse

	Summary

	Appendix A: Running the Samples
	Index

