
Nuggets Miner: Assisting Developers by Harnessing the
StackOverflow Crowd Knowledge and the GitHub

Traceability
Eduardo C. Campos1, Lucas B. L. de Souza1, Marcelo de A. Maia1

1Department of Computer Science – Federal University of Uberlândia (UFU),
Uberlândia, MG, 38400-902, Brazil

{eduardocunha11,lucas.facom.ufu}@gmail.com, marcmaia@facom.ufu.br

Abstract. StackOverflow.com (SOF) is a Question and Answer service oriented
to support collaboration among developers. The information available on this
type of service is also known as “crowd knowledge” and currently is one impor-
tant trend in supporting activities related to software development. GitHub.com
(GitHub) is a successful social site for developers that makes unique information
about users and their activities visible within and across open source software
projects. The traceability of GitHub’s issue tracker can be harnessed in the In-
tegrated Development Environment (IDE) to assist software maintenance. We
give a form to our approach by implementing Nuggets Miner, an Eclipse plugin,
that recommends a ranked and interactive list of results to system’s user. Video
Demo URL: https://www.youtube.com/watch?v=AjsbgUJl-nY

1. Introduction
Modern-day software development is inseparable from the use of the Applica-
tion Programming Interfaces (APIs) [Duala-Ekoko and Robillard 2012]. Several stud-
ies have shown that developers face problems when dealing with unfamiliar APIs
[Duala-Ekoko and Robillard 2012, Holmes et al. 2006, Thung et al. 2013]. It is seldom
the case that the documentation and examples provided with a large framework or library
are sufficient for a developer to use their API effectively. Frequently, developers become
lost when trying to use an API, unsure of how to make a progress on a programming
task [Holmes et al. 2006]. A common behavior of developers is to post questions on so-
cial media services and receive answers from other programmers that belong to different
projects [Treude et al. 2011].

To help developers find their way, a widely-know alternative is StackOverflow
(SOF), which is a Question and Answer (Q&A) website which uses social media to fa-
cilitate knowledge exchange between programmers by mitigating the pitfalls involved in
using code from the Internet. Mamykina et al. conducted a statistical study of the en-
tire SOF corpus to find out what is behind the immediate success of it. Their findings
showed that a majority of the questions will receive one or more answers (above 90%
very quickly - with a median answer time of 11 minutes) [Mamykina et al. 2011]. The set
of information available on this social media services is called “crowd knowledge” and
often become a substitute for the official software documentation [Treude et al. 2011].

Despite its usefulness, the knowledge provided by Q&A services cannot be di-
rectly leveraged from within an Integrated Development Environment (IDE), in the sense



that developers must toggle to the Web browser to access those services. Moreover,
when dealing with maintenance tasks, software developers often also need to know
what changes were made in the past of the project. Thus, the developers are forced to
explore the historical information of the project (e.g., issues and respective commits)
[Robillard and Dagenais 2010]. In order to address this problem, we examined a success-
ful social site called GitHub 1. This site makes unique information about users and their
activities visible within and across open source software projects [Dabbish et al. 2012].
Furthermore, the GitHub’s issue tracker has excellent traceability and this feature can be
harnessed in the IDE (e.g., given a closed issue, we can explore the respective commit).
Although GitHub’s site has an integrated issue tracker, it is not possible to search automat-
ically for related issues to a particular maintenance task. Thus, during the maintenance
task, the developer is constantly reviewing the issue tracker in search for some issue re-
lated to your task. Concluding, developers spend most of their time in the IDE to write
and understand code [LaToza et al. 2006] and they should be only focused on the current
task without any major interruption or disturbance [Raskin 2000]. Nevertheless, devel-
opers are forced to leave the IDE, thus interrupting the programming flow and lowering
their focus on the current task, and also maybe getting distracted with other activities in
the Web.

To deal with those problems, recommendation systems can be a reasonable al-
ternative option. According to Robillard et al., a recommendation system for software
engineering (RSSE) can assist developers during maintenance and development tasks
providing useful information (e.g., right code for a task, good example of API usage)
[Robillard et al. 2010]. This information can be gathered from the “crowd knowledge”
provided by Q&A services or gathered from closed issues in GitHub related to the current
maintenance task.

Considering StackOverflow, we can rely on regular dumps of the entire dataset
to obtain the desired information. In the case of GitHub, the current project that the
developer is working on must host their issues in the GitHub’s issue tracker instead of
other issue trackers (e.g., Bugzilla 2). Nuggets Miner extracts only issues with CLOSED
state (i.e., issues that were previously solved by other developers), displays the ranked
search issues directly in the IDE and allows developers to select an issue and explore the
historical changes made to the respective commit files.

Our work has the following contribution. We present Nuggets Miner, a recommen-
dation system in the form of a plugin for Eclipse IDE 3 to assist software developers in
development and maintenance tasks. Our recommendation strategy has been partially as-
sessed in [Souza et al. 2014] (i.e., only recommendations of SOF were evaluated). There
are several differences from this paper and [Souza et al. 2014] paper, but these two are
the most important: 1) that paper was not tool-oriented, indeed, no tool was presented; 2)
that paper was only about SOF posts, but Nuggets Miner also indexes project’s issues.

The rest of this paper is organized as follows. In Section 2 we illustrate Nuggets
Miner usage with a use case scenario. In Section 3 we present Nuggets Miner components
and its architecture. In Section 4 we discuss related work. In Section 5 we draw our

1https://github.com/
2http://www.bugzilla.org/
3http://eclipse.org



conclusions.

2. A Use Case Scenario

We show how Nuggets Miner can help developers to solve programming problems by
leveraging SOF and GitHub traceability from within the Eclipse IDE.

Bob is required to build a panel with three tabs using Java Swing API. However,
he is novice in this library. Bob opens up the Eclipse IDE, with the Nuggets Miner plugin
installed and writes the following query in Nuggets Miner’s Navigator: “tab pane java
swing”. Figure 1 shows the search results returned by the search engine for the query “tab
pane java swing”: Q&A pairs in the left panel and issues in the right panel. Concerning
the StackOverflow panel, the search engine returns to Bob, the top 15 Q&A pairs from
SOF in a ranked list considering two main aspects: the textual similarity of the pairs with
respect to the query and the quality of pairs (whose content was previously evaluated by
SOF community). Among the recommended Q&A pairs, Bob finds out a pair whose title
is “JTabbedPane: show task progress in a tab”. Figure 2 shows the content of a selected
Q&A pair. He reads the Q&A pair and finds an accepted answer that creates an object
of JTabbedPane type and invokes the method public void addTab(String title, Icon icon,
Component component) of this object. Bob can also import the code snippet given in the
answer into program’s editor via drag & drop and execute the Java program (in this case
without any modification). Thus, Bob can start modifying the code in the editor to achieve
the desired outcome. Concerning the Github panel, in the list of returned issues, Bob can
choose an issue that he thinks is more related to his activity. Figure 3 shows the content of
a selected issue. He can visualize the conversations between Bob’s colleagues about the
selected issue (through Conversation tab) which is supposed to be related to his current
task. In the Figure 3, it is possible to visualize the list of commits with their respective
links (through Commits tab). When Bob clicks in the commit’s link, another page will
open showing the code modified by the commit. Figure 4 shows a snapshot of commit
selected by Bob.

Figure 1. Nuggets Miner’s Navigator: Search Results.

3. Nuggets Miner

In this section, we present Nuggets Miner’s architecture (Subsection 3.1), the mechanism
for data collection and classification (Subsection 3.2) and the query engine (Subsection
3.3).



Figure 2. Nuggets Miner’s Document’s Content for the Q&A pair selected by Bob.

Figure 3. Nuggets Miner’s Issue’s Content for the issue selected by Bob.

Figure 4. Snapshot of commit selected by Bob.

3.1. The Architecture

Figure 5 depicts Nuggets Miner’s architecture. The left part of this figure represents the
server side, while the right side represents the client side (i.e., the graphical user interface
and features of the plugin).

On the server side, there is a component for collection and classification of data,
which is responsible for collecting and classifying Q&A pairs from SOF. Through this



component, we can also collect issues with CLOSED state along with the respective com-
mits for a given interest project hosted on GitHub. Therefore, the Apache Solr 4 index is
constructed with Q&A pairs from SOF and with issues and respective commits of the
developer’s project hosted in the GitHub.

Figure 5. Nuggets Miner’s architecture.

The client side is responsible for querying the Apache Solr index, parsing the
JSON response (converting the JSON in a object-oriented representation for further ma-
nipulation), applying the methodology for ranking the Q&A pairs, applying the method-
ology for ranking the related issues and present these search results to the user’s system.

The ranking criteria for Q&A pairs is based on two main aspects: the textual
similarity of the pairs with respect to the query and the quality of the pairs (assessed by
SOF community members), while the ranking for GitHub issues takes into account only
the textual similarity of the issues with respect to the query.

3.2. Mechanism for Data Collection and Classification

In this subsection, we explain the mechanism for data collection (Subsection 3.2.1) and
the mechanism for data classification for Q&A pairs (Subsection 3.2.2).

3.2.1. Data Collection

We downloaded a release of SOF public data dump 5 provided by Stack Exchange 6,
which comprises several XML files that represent the database of each website. Since
performing these operations by manipulating data directly from XML files is resource
intensive, we imported everything in a relational database in order to classify the SOF
Q&A pairs. The “posts” table of this database stored all questions posted by questioners

4http://lucene.apache.org/solr/
5http://blog.stackexchange.com/category/cc-wiki-dump/
6http://stackexchange.com/



in the website until the date the dump was performed. This table also stores all answers
that were given to each question, if any.

To retrieve the issues with CLOSED state from a GitHub project, we developed
another program that connects in the GitHub server (informing the user and password) and
performs the download of these issues from a given repository (e.g., in our study we con-
sidered a Swing look-and-feel project called Insubstantial 7 that is hosted on GitHub8).
Our program used an object-oriented GitHub API 9. Then, for each retrieved issue, the
program stores the issue data (e.g., “issue title”, “issue body”, “issue id”, “commit ad-
dress of the issue in GitHub”, “code modified by the commit”) in a XML file in the
format required by Apache Solr search engine. For instance, the issue whose “id” is #124
belongs to the repository “Insubstantial/insubstantial”. The “issue title” of this issue is:
“Modify base delay of TabWindowPreview”. The commit address of this issue in GitHub
is: “https://github.com/Insubstantial/insubstantial/pull/124/commits”. This page will be
displayed inside the browser of Nuggets Miner plugin.

3.2.2. Data Classification for Q&A pairs

On SOF, users ask many kind of different questions. Accordingly to Nasehi et al.
[Nasehi et al. 2012] “questions from SOF can also be classified in a second dimension
that is about the main concerns of the questioners and what they wanted to solve”. In this
dimension, one of the categories is the How-to-do-it in which the questioner provides a
scenario and asks about how to implement it. This category is very close to scenario in
which a developer has a programming task at hand and needs to solve it. For this rea-
son, in our approach, we only consider Q&A pairs that are classified as How-to-do-it. In
order to automate the selection of this kind of Q&A pairs, we developed a classification
strategy. The information about the categories of Q&A pairs proposed in this study, the
classifier’s attributes and the steps to build the dataset for training/test of the classifier are
described in more detail in [Souza et al. 2014].

We used this classifier to automatically classify Q&A pairs of a pre-selected set
of APIs (Swing of Java, Boost of C++ and LINQ of C#) into one of three categories:
How-to-do-it, Conceptual and Seeking-something. The Apache Solr index was populated
with only Q&A pairs of How-to-do-it category of these pre-selected set of APIs.

3.3. The Query Engine

Nuggets Miner’s Eclipse plugin makes the Q&A “crowd knowledge” and closed issues
of a working GitHub project available in the IDE. Users can interact with this “crowd
knowledge” in ways that the SOF website normally does not allow, such as import code
snippets to the program’s editor through simple drag & drop. The main goal of the query
engine is to communicate with Apache Solr, by creating a query given an input string.
It is necessary that the Q&A pair has some information on your “title”, “question body”
or “answer body” to be returned by the search engine. It is also needed that the GitHub
issues has some information on your “issue title”, “issue body” or “code modified by

7http://shemnon.com/speling/2011/04/insubstantial-62-release.html
8https://github.com/Insubstantial/insubstantial
9http://github-api.kohsuke.org/



the commit” to be returned by the search engine. As stated above, the query engine
simultaneously queries Apache Solr index for both Q&A pairs and issues similar to the
entered query. The query engine tokenizes the string inserted by the developer. The
engine builds the query, according to Apache Solr syntax, in a way that every token must
be presented in the document fields.

4. Related Work
Ponzanelli et al. [Ponzanelli et al. 2013] presented an approach to assist programmers
who want to leverage the “crowd knowledge” of Q&A services. They implemented SEA-
HAWK, a recommendation system in the form of a plugin for the Eclipse IDE to harness
the “crowd knowledge” of SOF from within the IDE. In our work, we introduced a more
efficient ranking mechanism than SEAHAWK and provided the GitHub access point. We
used SEAHAWK software10 to help us developing our plugin.

Cordeiro et al. [Cordeiro et al. 2012] presented an Eclipse plugin to help develop-
ers in problem solving tasks. Based on an exception’s stack trace gathered from the IDE’s
console, they suggest related documents from SOF.

HIPKAT [ČubraniĆ et al. 2004] is a recommendation system developed to sup-
port newcomers in a project by recommending items from problem reports, newsgroup,
and articles. Our approach recommends project’s issues with CLOSED state related to
the maintenance task at hand.

Takuya et al. presented SELENE [Takuya and Masuhara 2011], a source code
recommendation tool based on an associative search engine. It spontaneously searches
and displays example programs while the developer is editing a program text. Our work
also relies on search engines, but we suggest Q&A pairs taken from SOF to enrich the
information provided by code snippets.

5. Conclusions
We presented a novel approach to leverage the SOF “crowd knowledge” and the GitHub
traceability. We have detailed the implementation of our approach, Nuggets Miner. This
recommendation system allows users interact with SOF knowledge by importing code
snippets. It also allows users navigate through related issues previously solved by others
developers. Thus, users can explore the respective commit for the recommended issue and
see the modifications. As future work, we intend to improve the evaluation of Nuggets
Miner with human subjects to assess the performance gains compared to the use of an
external browser.

6. Acknowledgments
This work was partially supported by FAPEMIG grant CEXAPQ-2086-11 and CNPQ
grant 475519/2012-4.

References
Cordeiro, J., Antunes, B., and Gomes, P. (2012). Context-based recommendation to sup-

port problem solving in sof. development. In Proceedings of 3rd Int. Workshop on
RSSE), pages 85–89.

10http://seahawk.inf.usi.ch/download.html



Dabbish, L., Stuart, C., Tsay, J., and Herbsleb, J. (2012). Social Coding in Github:
Transparency and collaboration in an open software repository. CSCW ’12, pages
1277–1286. ACM.

Duala-Ekoko, E. and Robillard, M. P. (2012). Asking and answering questions about
unfamiliar apis: An exploratory study. In Proc. of ICSE’2012, pages 266–276. IEEE
Press.

Holmes, R., Walker, R. J., and Murphy, G. C. (2006). Approximate structural context
matching: An approach to recommend relevant examples. IEEE Trans. Softw. Eng.,
32(12):952–970.

LaToza, T. D., Venolia, G., and DeLine, R. (2006). Maintaining mental models: A study
of developer work habits. In Proc. of ICSE’2006, pages 492–501. ACM.

Mamykina, L., Manoim, B., Mittal, M., Hripcsak, G., and Hartmann, B. (2011). Design
lessons from the fastest q&a site in the west. In Proc. of the SIGCHI Conference on
Human Factors in Computing Systems, pages 2857–2866. ACM.

Nasehi, S., Sillito, J., Maurer, F., and Burns, C. (2012). What makes a good code example?
A study of programming Q&A in Stack Overflow. In Proc. of ICSM’2012, pages 25–
34.

Ponzanelli, L., Bacchelli, A., and Lanza, M. (2013). Leveraging crowd knowledge for
software comprehension and development. In Cleve, A., Ricca, F., and Cerioli, M.,
editors, Proc. of CSMR’2013, pages 57–66. IEEE Computer Society.

Raskin, J. (2000). The Humane Interface: New Directions for Designing Interactive
Systems. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA.

Robillard, M. P. and Dagenais, B. (2010). Recommending change clusters to support
software investigation: An empirical study. J. Softw. Maint. Evol., 22(3):143–164.

Robillard, M. P., Walker, R. J., and Zimmermann, T. (2010). Recommendation systems
for software engineering. IEEE Software, 27(4):80–86.

Souza, L., Campos, E., and Maia, M. (2014). Ranking crowd knowledge to assist software
development. In Proc. of ICPC’2014, pages 1–11.

Takuya, W. and Masuhara, H. (2011). A spontaneous code recommendation tool based on
associative search. In Proceedings of the 3rd International Workshop on Search-Driven
Development, pages 17–20. ACM.

Thung, F., Wang, S., Lo, D., and Lawall, J. L. (2013). Automatic recommendation of api
methods from feature requests. In ASE, pages 290–300. IEEE.

Treude, C., Barzilay, O., and Storey, M.-A. (2011). How do programmers ask and answer
questions on the web? (nier track). In Proc. of ICSE’2011, pages 804–807. ACM.

ČubraniĆ, D., Murphy, G. C., Singer, J., and Booth, K. S. (2004). Learning from project
history: A case study for software development. In Proceedings of the 2004 ACM Con-
ference on Computer Supported Cooperative Work, CSCW ’04, pages 82–91. ACM.


