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Abstract—Software is present in almost all economic activity,
and is boosting economic growth from many perspectives. At the
same time, like any other man-made artifacts, software suffers
from various bugs which lead to incorrect results, deadlocks,
or even crashes of the entire system. Several approaches have
been proposed to aid debugging. An interesting recent research
direction is automatic program repair, which achieves promising
results towards the reduction of costs associated with defect
repair in software maintenance. The identification of common
bug fix patterns is important to generate program patches
automatically. In this paper, we conduct an empirical study
with more than 4 million bug fixing commits distributed among
101,471 Java projects hosted on GitHub. We used a domain-
specific programming language called Boa to analyze ultra-large-
scale data efficiently. With Boa’s support, we automatically detect
the prevalence of the 5 most common bug fix patterns (identified
in the work of Pan ef al.) in those bug fixing commits.
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I. INTRODUCTION

There are more bugs in real-world programs than human
programmers can realistically address [4]. The battle against
software bugs exists since software existed. It requires much
effort to fix bugs, e.g., Kim and Whitehead [3] report that the
median time for fixing a single bug is about 200 days. Program
evolution and repair are major components of software main-
tenance, which consumes a daunting fraction of the total cost
of software production. Research in automatic program repair
has focused on reducing defect repair costs and are therefore
especially beneficial. Moreover, research in this direction has
already produced promising results. For example, Le Goues et
al. [4] reported that their approach was able to automatically
fix 55 out of 105 bugs. However, the research community has
limited knowledge on the nature of bug fixes [7] and still does
not have general consensus on which kinds of software bugs
are most common [8].

This paper presents an in-depth investigation on the bug
fixing commits of Java programs, taken from several million
human-made bug fixes from GitHub (the world’s largest
collection of open-source software, with more than 23 mil-
lion public repositories). This software repository contains an
enormous collection of software and information about soft-
ware [1]. We used a domain-specific programming language
called Boa [1] to analyze ultra-large-scale data efficiently. In
particular, we analyzed the characteristics of those bug fixing
commits from different perspectives in order to answer the
four research questions below:
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RQq: Considering bug fixing commits associated with only
one file, which file types are usually changed to fix a bug?

RQ2: Which kinds of statements appear more frequently in
bug fixing commits?

RQs: What is the prevalence of the 5 most common bug
fix patterns identified in the work of Pan et al. in the analyzed
bug fixing commits?

RQ4: How many distinct developers committed these bug
fixing commits? And how many committers are there for each
analyzed Java project?

To sum up, our contributions are as follows:

o We have shown that developers often forget to add IF
preconditions in the code. One proof of this is that the
bug fix pattern that most appeared in the analyzed bug
fixing commits of Boa dataset was IF-APC (Addition of
IF Precondition Check);

o Our findings suggest that mutation based program repair
may need to consider multi-language programming and
bugs in non-source files (e.g., configuration files). Our
results confirm the findings obtained by Zhong and Su
[11] (please see the Findings 1, 2, 13, and 14 for more
details). This is relevant because current automatic repair
approaches have been evaluated on only source files
belonging to a limited number of programming languages
(such as C and Java).

II. RELATED WORK

Zhong and Su [11] designed and developed BugSrat, a
tool that extracts and analyzes bug fixes. They conducted
an empirical study on more than 9,000 real-world bug fixes
from six popular Java projects. Their results provide useful
guidance and insights for improving the state-of-the-art of
automatic program repair. We study a much larger dataset
[1] with 101,471 Java projects. Moreover, we designed Boa
programs that automatically detect the five most common
bug fix patterns identified in the work of Pan er al [8].
Martinez and Monperrus [6] analyzed the links between the
nature of bug fixes and automatic program repair. Furthermore,
the empirical study focuses on only one aspect of automatic
program repair, namely the search space of fixing bugs.
They mined repair models from manual fixes, and the mined
repair models improve random search. Our study provides
findings to better understand and improve these approaches.
For example, we notice that many bugs reside in source files
of different programming languages or in non-source files



(e.g., configuration files). Xuan et al. [10] proposed Nopol, an
approach to automatic repair of buggy conditional statements
(e.g., if-then-else statements). In our dataset, the bug fix
pattern that appears more frequently is IF-APC (Addition of IF
Precondition Check), totaling 29.2019% of the analyzed bug
fixing commits. Kim et al. [2] proposed an approach called
PAR to fix bugs in Java code automatically. PAR is based
on repair templates: each of the PAR’s ten repair templates
represents a common way to fix a common kind of bug.
Soto et al. [9] conducted a large-scale study of bug fixing
commits in Java projects. Their findings provide useful insights
for automatic program repair tools in Java. They created Boa
programs to detect the PAR’s bug fix patterns [2] and provided
an informative approximation of their prevalence in the Boa
dataset. We used the same dataset in our study but we created
Boa programs to detect the five most common bug fix patterns
identified in the work of Pan et al. [8]. Moreover, we do not
limit our study to bug fix patterns. We also investigated other
aspects related to human-made bug fixes such as the kinds of
statements that appear more frequently in bug fixing commits
and the kinds of files that are usually changed to fix a bug.

III. DATASET AND CHARACTERISTICS

In this paper, we use the September 2015/GitHub dataset
offered by Boa [1], including 554,864 Java projects with
23,226,512 commits. Boa identifies 4,590,405 as bug fixing
commits distributed among 101,471 Java projects (18.2875%).
In other words, 81.7125% of Java projects present in this
dataset do not have any bug fixing commit. In this paper,
we focus our analysis on these 101,471 Java projects because
our goal is to study bug fixes and patterns. Figure 1 shows
a query written in Boa language that returns the number
of bug fixing commits in Java GitHub projects. The built-in
function isfixingrevision (line 6) uses a list of regular
expressions to match against the revision’s log (i.e., commit’s
log message). If there is a match, then the function returns
true indicating the log most likely was for a commit fixing a
bug.

Figure 2 shows the distribution of bug fixing commits
among 101,471 Java projects. As we can see in this figure,
81% of these projects have 1 to 15 bug fixing commits. Only
9% of these projects have 51 or more bug fixing commits.
This pie chart shows that is not common to see open-source
Java projects hosted on GitHub with a large number of bug
fixing commits (e.g., more than 50 bug fixing commits).

Programming Language: As returned by Boa, the major
language of a project is the one with the highest percentage
of source code, considering the files in the project. Figure 3
shows the distribution of the analyzed projects per number
of programming languages. As we can see, 56,414 out of
101,471 Java projects (i.e., 55.5961%) use only one program-
ming language (i.e., Java). However, 10,837 out of 101,471
Java projects (i.e., 10.6798%) use five or more programming
languages.

Kinds of changed files: Table 1 shows the kinds and des-
criptions of changed files present in the Boa dataset and the

Distribution of Fixing commits among Java projects

ml-15
ml6-25
m26-50
m 51 or more

Fig. 2. Distribution of bug fixing commits among Java GitHub projects.
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Fig. 3. Number of programming languages in each Java project using GIT.

number of changed files per file kind. We consider a file
changed if it is new, modified, or deleted in a commit. In
total, 52,052,571 files were changed.

IV. RESULTS

In this section, we used the described dataset to answer the
four research questions listed in the paper’s introduction.

RQ1: Considering bug fixing commits associated with only
one file, which file types are usually changed to fix a bug?

Figure 4 shows the number of 1-file fixing commits per
File Kind. As shown in Figure 4, the 2 kinds of changed
files that appear most frequently in the 1-file fixing commits
are: SOURCE_JAVA_JLS3 and UNKNOWN. The number of
1-file fixing commits related to these 2 kinds of changed
files are respectively, 776,834 and 857,738. Text and binary
files are changed least frequently. This is unsurprising, since
such files are often documentation, and binaries should be
changed rarely. XML files in Java projects usually represent
build files or configuration files (the names of the most
found configuration files end with “xml” or “properties” [11]);
7.7363% of analyzed 1-file fixing commits are related to
changes in XML files. As these bugs are not related to
source files, they could not be fixed by current automatic
program repair techniques [11]. Rather more surprising is
how frequently UNKNOWN files are changed. We deepen our
analysis in these committed UNKNOWN files and found that



1 counts: output sum of int;

2 p: Project = input;

3

4 exists (i: int; match( ~java$ , lowercase(p.programming languages[i])))

5 foreach (j: int; p.code_repositories[j].kind == RepositoryKind.GIT)

6 foreach (k: int; isfixingrevision(p.code_repositories[j].revisions[k].log))

7 counts << 1;

Fig. 1. Querying number of bug-fixing commits in Java GitHub projects using Boa language.
TABLE I
KINDS OF CHANGED FILES PRESENT IN THE Boa DATASET (JLS: JAVA LANGUAGE SPECIFICATION).

File Kind Total Description
SOURCE_JAVA_JLS4 83,798 The file represents a Java source file that parsed without error as JLS4
TEXT 541,023 The file represents a text file
BINARY 752,945 The file represents a binary file
SOURCE_JAVA_ERROR 2,073,558 The file represents a Java source file that had a parse error
SOURCE_JAVA_JLS2 2,607,413 The file represents a Java source file that parsed without error as JLS2
XML 6,818,299 The file represents an XML file
SOURCE_JAVA_JLS3 15,748,967  The file represents a Java source file that parsed without error as JLS3
UNKNOWN 23,426,568 The file’s type was unknown

they are related to other programming languages like: C++, C,
PHP, JavaScript, CoffeeScript, Erlang, Groovy, Scala, Python,
Emacs Lisp, etc. Although the analyzed projects were mainly
written in Java, 45,057 out of 101,471 Java projects (i.e.,
44.4038%) use 2 or more programming languages (see Figure
3 for additional details). This results showed that 42.3352% of
fixing commits that have changed 1 file are related to changes
in non-Java source files.

s 2
Summary of RQ;. We notice that many bugs reside in

non-Java source files (e.g., source files of different pro-
gramming languages like Scala, Groovy, PHP, etc.) or non-
source files (e.g., XML files). Many implementations of
research techniques that automatically repair software bugs
target programs written in C language (e.g., Prophet [5],
GenProg [4]). Thus existing approach may be insufficient
in fixing certain bugs. However, it is desirable to understand
where such bugs reside, so we could investigate their nature
kand explore corresponding repair approaches.
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RQs2: Which kinds of statements appear more frequently in
bug fixing commits?

To answer this question, we use Boa to compute the number
of fixing commits that added a particular statement kind in
order to solve the corresponding bug. We investigate the fol-
lowing 13 statement kinds present in Boa Programming Guide
L ASSERT, BLOCK, BREAK, CATCH, CONTINUE, FOR,
IF, RETURN, SYNCHRONIZED, THROW, TRY, SWITCH, and
WHILE. The statement kind BLOCK is somewhat different
because it was designed by Boa inventors to characterize a
statement that contains a list of statements within it (e.g., the
statements in the method body).

Thttp://boa.cs.iastate.edu/docs/dsl-types.php (verified on 20/07/2016)
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Fig. 4. Number of 1-file fixing commits per File Kind.

Concerning the IF Statement, we investigate how many
fixing commits added null checks. The ITFNullCheck state-
ment is an IF statement where the boolean condition is of
the form: null == expr OR expr == null OR null
!= expr OR expr != null. Basically, we build a query
written in Boa language that counts how many null checks
were previously in the file (previous version of the file, if
exists) and how many null checks are currently in the file
(actual version of the file). If there are more null checks than
previously, the bug fixing commit is counted. We performed
this algorithm for all changed files and fixing commits of our
dataset (i.e., 52,052,571 and 4,590,405, respectively) and for
all 13 statement kinds aforementioned.

Summary of RQ2. This research question is very im-
portant to investigate the nature of bug fixes in terms
of statement kind that is added to fix a particular bug.
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Fig. 6. Number of Fixing Commits that added each Statement Kind.

Moreover, we can identify the prevalence of some statement
kinds with respect to others. For instance, Figures 5 and 6
show the results we obtained. Figure 5 shows the prevalence
of IF and IFNullCheck statements with respect to the
others (more specifically, 1,340,488 fixing commits added
IF null checks). This number corresponds to 29% of all
analyzed fixing commits. Moreover, Figure 6 shows the
prevalence of BLOCK and RETURN statements with respect
to other statement kinds like iteration commands (e.g.,
kWHILE,FOR)
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RQgs: What is the prevalence of the 5 most common bug
fix patterns identified in the work of Pan et al. in the analyzed
bug fixing commits?

Pan er al. [8] identified 27 bug fix patterns through manual
inspection of the bug fix change history of seven open-source
Java projects. They found that the most common categories of
bug fix patterns are Method Call and IF-related. Moreover, the
most common individual patterns are: MC-DAP (Method Call
with Different Actual Parameter Values), IF-CC (Change in IF
conditional), and AS-CE (Change of Assignment Expression).
Below we detail each one of these five bug fix patterns.

1) Change of IF Condition Expression (IF-CC): The bug
fix changes the condition expression of an IF condition
[8]. Example:

- if (listBox.getSelectedIndex () == 0)
+ if (listBox.getSelectedIndex () > 0)

2) Method Call with different actual parameter values
(MC-DAP): The bug fix changes the expression passed
into one or more parameters of a method call [8].
Example:

- String.getBytes ("UTF-8");
+ String.getBytes ("IS0-8859-1");

3) Method Call with different number of parameters
or different types of parameters (MC-DNP): The bug
fix changes a method call by using different number of
parameters, or different parameter types. This may be
caused by a change of method interface, or use of an
overloaded method [8]. Example:

- getSolrQuery (f.getFilter());
+ getSolrQuery (f.getFilter (), analyzer);

4) Change of Assignment Expression (AS-CE): The bug
fix changes the expression on the right hand side of an
assignment statement. The expression on the left-hand
side is the same in both the bug and fix versions [8].
Example:

- names[0] = person.getName () ;
+ names[0] = employees[0].getName () ;

5) Addition of IF Precondition Check (IF-APC): This
bug fix adds an IF predicate to ensure a precondition
is met before an object is accessed or an operation is
performed. Without the precondition check, there may
be a NullPointerException error or an invalid
operation execution caused by the buggy code [8].
Example:

- repo.getFileContent (path);
+ if (repo != null && path != null)
+ repo.getFileContent (path);

Pan er al. [8] also discovered that there is a similarity of
bug fix patterns across projects. This indicates that developers
may have trouble with individual code situations, and that
frequencies of bug introduction are independent of application
domain [8]. However, the main drawback of the bug fix
patterns approach stems from its automation. We therefore
automatically detect these five bug fix patterns, estimating their
prevalence in the dataset presented in Section III.

We use Boa language to detect common bug fix patterns
in the historical information of the projects. Boa provides
domain-specific language features for mining source code [1].
Boa’s capabilities are powerful, but limited in the precision it
enables in detection of the aforementioned bug fix patterns.
For example, it cannot directly diff two files. Rather than
finding exact counts of bug fix patterns, we approximate by
processing pre- and post-fix files separately. Fortunately, these
five patterns can be detected by Boa, as we describe below.
For each pattern, we create a query written in Boa language.
In the following paragraphs, we describe in natural language
each of the five algorithms designed to detect the five bug fix
patterns aforementioned.

1) How many bug fixing commits change one or more
IF Condition Expressions (IF-CC)? To answer this
question and to detect this pattern, for both pre- and
post-fix versions of a buggy file, we count how many
IF conditions and expressions of these IF conditions
appear. Then, if the number of IF conditions is the same
between these two versions of the file (to ensure that it



2)

3)

4)

5)

is a modification and not an addition or deletion), we
check whether the number of expressions of these IF
conditions is different between these two versions of
the file. If it’s true, the pattern was detected and the
bug fixing commit is recorded. For more information
of what kind of expressions we consider, see the sec-
tion ExpressionKind of this page 2. We found that
196,283 out of 4,590,405 (4.2759%) bug fixing commits
change one or more IF condition expressions.

How many bug fixing commits change the parameter
values of the method calls (MC-DAP)? To answer this
question and to detect this pattern, for both pre- and
post-fix versions of a buggy file, we count how many
method calls appear and we also built 2 strings (i.e.,
one string for the pre-version and another string for the
post-fix version of these file) containing the parameter
values (i.e., string literals) of all method calls. Then, if
the number of method calls is the same between these
two versions of the file, we compare if the two strings
are different. If it’s true, the pattern was detected and the
bug fixing commit is recorded. We found that 290,818
out of 4,590,405 (6.3353%) bug fixing commits change
the parameter values of the method calls.

How many bug fixing commits change the number
or type of parameters of the method calls (MC-
DNP)? To answer this question and to detect this pattern,
for both pre- and post-fix versions of a buggy file, we
count how many method calls and method parameters
appear. Then, if the number of method calls is the
same between these two versions of the file, we check
whether the number of parameters are different. If it’s
true, the pattern was detected and the bug fixing commit
is recorded. For this pattern, due Boa limitations, it was
not possible to identify the types of method parameters
present in the method calls. We found that 192,375 out
of 4,590,405 (4.1908%) bug fixing commits change the
number of parameters of the method calls.

How many bug fixing commits change one or more
assignment expressions (AS-CE)? To answer this ques-
tion and to detect this pattern, for both pre- and post-fix
versions of a buggy file, we count how many assignment
expressions and expressions of these assignments appear.
Then, if the number of assignment expressions is the
same (to ensure that it is a modification and not an
addition or deletion), we check whether the number of
expressions between these two versions of the file are
different. If it’s true, the pattern was detected and the
bug fixing commit is recorded. For more information
of what kind of expressions we consider, see the sec-
tion ExpressionKind of this page 3. We found that
511,299 out of 4,590,405 (11.1384%) bug fixing commits
change one or more assignment expressions.

How many bug fixing commits added a null check

Zhttp://boa.cs.iastate.edu/docs/dsl-types.php
3http://boa.cs.iastate.edu/docs/dsl-types.php
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Fig. 7. Number of bug fixing commits per bug fix pattern.

precondition (IF-APC)? To answer this question and
detect this pattern, for both pre- and post-fix versions
of a buggy file, we count how many null checks appear.
Then, if the number of null checks in the current version
of the file is greater than in the previous version of these
file, the pattern was detected and the bug fixing commit
is recorded. The IFNullCheck statement is an IF
statement where the boolean condition is of the form:
null == expr OR expr == null OR null
expr OR expr != null. We found that 1,340,488
out of 4,590,405 (29.2019%) bug fixing commits added
a null check precondition.

(Summary of RQs. Figure 7 shows a bar chart\
with the number of bug fixing commits distributed
among the five studied bug fix patterns. As shown
in this figure, the bug fix pattern that appears more
frequently is IF-APC (29.2019% of the analyzed
bug fixing commits). Observe that several bug fixing
commits match this bug pattern in order to avoid

\NullPointerException erTors.
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RQ,4: How many distinct developers committed these
bug fixing commits? And how many committers are there
for each analyzed Java project?

To answer this research question, we build a Boa program
that retrieves the username of the person who committed the
revision. As the username is unique per person, it was possible
to identify how many bug fixing commits each person com-
mitted and how many distinct developers committed these bug
fixing commits. Figure 8 shows that a large number of open-
source projects have only a single committer (33.6933%).
Generally, open-source projects are small and have very few
committers and thus problems affecting large development
teams may not show when analyzing open-source software.

Summary of RQ,4: We found that only 130,488 distinct de-
velopers distributed among 101,471 Java projects commit-
ted 4,590,405 bug fixing commits. This shows how much
the bug fixing commits are concentrated in a few people
on the project and the need to better share knowledge in
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V. THREATS TO VALIDITY

Correctness of Boa programs. The correctness of our analy-
sis depends on both our Boa programs and its Domain-Specific
Types *. For example, we rely on Boa to identify bug fixing
commits. However, precisely accomplishing this is an open
problem. To mitigate the risk of implementation errors, we
released our Boa programs . Because Boa does not provide
an easy mechanism to identify precise, statement-level diffs
between commits, our template matching and analysis of code
changes (by counting each statement kind or expression kind)
only provide estimates of behavior. We consider our results as
informative approximations.

Systems are all open-source. All systems examined in this
paper are developed as open-source. Hence they might not
be representative of closed source development since different
development processes could lead to different bug fix patterns.
Despite being open-source, several of the analyzed projects
have substantial industrial participation.

VI. CONCLUSION

This paper explored the underlying patterns in bug fixes
mined from software project change histories. We rely on Boa
to identify bug fixing commits and to detect the five most
common bug fixing patterns identified by Pan et al. [8]. We
have conducted a large-scale empirical study with more than
4 million bug fixing commits distributed among 101,471 Java
projects hosted on GitHub to answer four research questions
about bug fixes.

The findings of our study provide useful insights for au-
tomatic repair tools in Java. For example, future work may
explore how to locate bugs in non-source files or source files of
different programming languages present in a Java project and
how to fix them with advanced techniques. Another example of
follow-up work would be to propose an approach to automatic

“http://boa.cs.iastate.edu/docs/dsl-types.php#Expression
Shttps://github.com/eduardocunhal 1/BoaPrograms (verified on 15/09/2016)

repair of assignment expressions (AS-CE bug fix pattern). Our
work also confirms the results of a recent work [6] that showed
that IF conditions are among the most error-prone program
elements in Java programs (IF-APC bug fix pattern).

Overall, our findings motivate additional study of repair in
Java and future research may leverage such knowledge to fix
more bugs.
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